Hash-Merge Join: A Non-blocking Join Algorithm for Producing Fast
and Early Join Results

Mohamed F. Mokbel

Ming Lu

Walid G. Aref

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{mokbel,mlu,aref}@cs.purdue.edu

Abstract

This paper introduces the hash-merge join algorithm
(HMJ, for short); a new mon-blocking join algorithm
that deals with data items from remote sources via un-
predictable, slow, or bursty network traffic. The HMJ
algorithm is designed with two goals in mind: (1) Min-
imize the time to produce the first few results, and
(2) Produce join results even if the two sources of the
join operator occasionally get blocked. The HMJ al-
gorithm has two phases: The hashing phase and the
merging phase. The hashing phase employs an in-
memory hash-based join algorithm that produces join
results as quickly as data arrives. The merging phase is
responsible for producing join results if the two sources
are blocked. Both phases of the HMJ algorithm are
connected via o flushing policy that flushes in-memory
parts into disk storage once the memory is exhausted.
Ezperimental results show that HMJ combines the ad-
vantages of two state-of-the-art non-blocking join al-
gorithms (XJoin and Progressive Merge Join) while
avoiding their shortcomings.

1 Introduction

Traditional join algorithms [8, 13, 16] assume that
all input data is available beforehand. This assump-
tion is not valid for web-based applications. A web
query retrieves data items from remote sources via a
network connection. Network traffic may be unpre-
dictable, slow, or bursty, which may result in blocking
input data [1, 17]. The blocking behavior of network
traffic makes the traditional join algorithms unsuitable
for pipelined query plans [15]. In addition, traditional
join algorithms optimize the query execution for the
production of the entire join result. However a typical
internet user may be interested only in the first few
results.

With the goals of avoiding the blocking behavior
of remote data sources and producing join results as
quickly as possible, a family of non-blocking join algo-
rithms are developed (e.g., see [5, 7, 9, 11, 12, 18, 20]).
Non-blocking join algorithms have the ability to pro-
duce join results even if one or both sources are blocked.
Thus, a fully pipelined query plan can still function
properly even with blocking sources. In addition, non-
blocking join algorithms are optimized to produce the
first few results as quickly as possible. Thus, it is suit-
able for the case when the users are interested only
in getting the first few answers. In addition to web-
based applications, non-blocking join algorithms are
useful in data integration [11], parallel databases [4],
online aggregation [9, 10], providing approximate an-
swers [14, 19], spatial databases [12], and adaptive
query processing [2].

In this paper, we propose the Hash-merge join algo-
rithm (HMJ, for short); a novel non-blocking join algo-
rithm that deals with unpredictable and slow network
traffic. The Hash-merge join algorithm is designed with
two goals in mind: (1) Minimizing the time to produce
the first few results. (2) Providing the ability to pro-
duce join results even if the two sources of the join
operator are blocked.

The Hash-merge join algorithm has two phases: The
hashing and merging phases. The hashing phase em-
ploys an in-memory hash-based join algorithm that
produces join results as quickly as data arrives. Once
the memory gets filled, certain parts of the memory
are flushed into disk storage to free memory space for
the newly incoming tuples. If one of the sources is
blocked for any reason, e.g., due to slow or bursty net-
work traffic, the hashing phase can still produce join
results from the unblocked source. If the two input
sources are blocked, the HMJ algorithm starts its merg-
ing phase. In the merging phase, previously flushed
parts in disk are joined together using a sort-merge-like
join algorithm. Thus, the HMJ algorithm can produce
join results even if the two sources are blocked. Once

the blocking of any of the two sources is resolved, the
HMJ algorithm switches back to the hashing phase.
The HMJ algorithm switches back and forth between
the two phases until all data items are received from
remote sources. Then, the whole memory is flushed
into disk storage and the merging phase takes place to
produce the final part of the join result.

The HMJ algorithm combines the advantages
of two state-of-the-art non-blocking join algorithms,
XJoin [17, 18] and Progressive Merge Join (PMJ) [5, 6]
while avoiding their shortcomings. XJoin stores incom-
ing tuples in memory while employing an in-memory
hash-based join algorithm to produce fast join results.
When memory gets filled, the largest hash bucket is
flushed into disk. Although XJoin produces fast re-
sults, its I/O complexity is high and hence a large to-
tal time to produce the entire join result. On the other
side, PMJ partitions the memory into only two par-
titions, one for each source. Once the memory gets
filled, each partition is sorted and is joined with the
other partition, and then is flushed to disk. Thus, in
PMJ, no join results are produced until the memory
gets filled. This results in a higher initial delay than
that of XJoin for producing the first results. However,
PMJ employs a sort-merge-like join algorithm to join
disk-resident data. Thus, PMJ performs less I/O’s and
hence less overall time than XJoin for producing the
entire results of a join.

Similar to XJoin, the proposed Hash-merge join al-
gorithm employs an in-memory hash-based join algo-
rithm to produce fast and early results. To avoid the
drawbacks of XJoin, HMJ employs a new flushing pol-
icy, termed the Adaptive Flushing policy that aims to
synchronously flush two hash buckets, one from each
source, into disk storage. By using the Adaptive Flush-
ing policy, HMJ can use a refined version of the sort-
merge-like join algorithm as in PMJ. Thus, HMJ re-
sults in less I/Os and overall time than XJoin for pro-
ducing the total result. In summary, the contributions
of this paper are as follows:

1. We propose the Hash-merge join algorithm; a
new non-blocking join algorithm that is applica-
ble in environments where data arrives from re-
mote source via unpredictable network connec-
tions (Section 3).

2. We propose a synchronized flushing policy, termed
the Adaptive Flushing policy that can be used in
conjunction with any hash-based non-blocking join
algorithm. The Adaptive Flushing policy is adapt-
able to the fluctuations of data arrival rates. The
main goal of the Adaptive Flushing policy is to al-
ways keep the memory balanced between the two

remote sources, even if one of the sources has a
higher arrival rate than the other. As we will see
in Section 4, and in the performance section, keep-
ing the memory balanced makes the join algorithm
more responsive to producing fast results once a
new data item is received.

3. We prove the correctness of HMJ by proving the
following: (a) Completeness, i.e., all join results
will be produced by HMJ. (b) Uniqueness, i.e.,
HMJ produces duplicate-free results (Section 5).

4. We provide experimental evidence that HMJ (with
the Adaptive Flushing policy) outperforms XJoin
and PMJ (Section 6).

The rest of the paper is organized as follows: Sec-
tion 2 highlights related work for non-blocking join al-
gorithms. Sections 3 introduces the HMJ algorithm.
The Adaptive Flushing policy is introduced in Sec-
tion 4. The proof of correctness of the HMJ algorithm
is given in Section 5. A study of the performance of
HMJ and a discussion of the results are presented in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Hash-based join algorithms. The non-blocking
symmetric hash join [20] extends the traditional hash
join algorithm to support pipelining. Two in-memory
hash tables with m buckets are maintained for sources
A and B. Once a new tuple ¢, with a hash value h(¢),
is received from source A, h(t) is used to probe bucket
h(t) of source B. Then, t is stored in bucket h(t) of the
hash table of source A. The symmetric hash join al-
gorithm requires that the two relations fit in memory.
The XJoin algorithm [17, 18] extends the symmetric
hash join to be applied for disk-resident data. XJoin
starts by joining tuples in memory, similar to the sym-
metric hash join. When memory gets filled, the largest
hash bucket among all A and B buckets is flushed into
disk. When both sources are blocked, XJoin performs
join using the buckets previously flushed into disk. The
double Pipelined Hash Join (DPHJ) [11] is another ex-
tension of the symmetric hash join algorithm. DPHJ
has two stages. The first stage is similar to the in-
memory join in the symmetric hash join and XJoin.
In the second stage, pairs that are not joined together
in the first phase are marked and are joined in disk.
DPHJ is suitable for moderate size data, but does not
scale well for large data sizes.

Sort-based join algorithms. The progressive-
merge join (PMJ) algorithm [5, 6] is the non-blocking

version of the traditional sort-merge join. The main
idea of PMJ is to read as much data as can fit in mem-
ory. Then, in-memory data is sorted and is joined to-
gether, and then is flushed into disk. When all data
is received, PMJ joins the disk-resident data using a
refinement version of the sort-merge join that allows
producing join results while merging.

Nested-loop-based join algorithms. The family
of ripple joins [7, 9] generalize block nested-loop join
and hash join. Ripple joins automatically adjust their
behavior to provide precise confidence interval for on-
line aggregation. The scalability of ripple joins is dis-
cussed in [7]. However, ripple joins are geared towards
online aggregation, thus the quality of the results (ob-
tained from statistical measures) controls the join pro-
cessing.

3 Hash-Merge Join Algorithm

The Hash-merge join algorithm (HMJ, for short) has
two phases: the hashing and the merging phases. Fig-
ure 1 provides a state diagram of HMJ. HMJ starts
with the hashing phase where input tuples from two
remote sources A and B are received. Incoming tu-
ples are stored in in-memory hash buckets based on
their hash values. In-memory tuples are joined together
during the hashing phase and are added to the out-
put result. Once the memory gets filled, certain parts
of memory are flushed into disk. If both sources are
blocked for any reason, e.g., due to a slow network,
then HMJ transfers control to the merging phase. In
the merging phase, tuples that are previously flushed to
disk are joined together. Thus, HMJ has the ability to
produce join results even if both sources are blocked. If
the blocking of any source is resolved, HMJ returns to
the hashing phase. HMJ alternates between the hash-
ing and merging phases till the whole data is processed.
Then, the merging phase takes control to output the
final part of the result.

3.1 Phasel: Hashing

Figure 2 sketches the hashing phase of HMJ. Two
in-memory hash tables, each with N buckets, are main-
tained for sources A and B. Buckets are allowed to
have different sizes. As a consequence, the memory is
not necessarily divided evenly between sources A and
B. In the following, we use the symbols Ay and By, to
denote the kth bucket in the hash table for sources A
and B, respectively.

The pseudo code of the hashing phase is given in
Figure 3. Once a new tuple ¢ with hash value h(#) is re-

|

|

in-disk 1
Sorting and Merging

I

I

Source unblocked

Figure 1. The Hash-merge join algorithm.

Source A Source B
hash (A) hash (B)
@ o w @

Hashtablefor A

Memory

Figure 2. Sketch of the Hashing phase.

Hash tablefor B

ceived from source A (respectively, source B), we check
if there is enough memory to accommodate ¢ (Step 1
in Figure 3). If there is enough memory space, t is
used to probe the hash table of source B (respectively,
source A). Thus, ¢ is joined with all tuples in bucket
Byy) (respectively Ap(;)) (Step 3 in Figure 3). Then,
the tuple ¢ is stored in bucket Ay (respectively, Byy))
(Step 4 in Figure 3). However, if memory is exhausted,
we need to free some part of memory to accommodate
t and other incoming tuples. A certain flushing policy
(see Section 4) is used to free part of the memory. The
main idea is to choose two buckets A; and By, with the
same hash value k. Then, A, and B, are sorted inter-
nally in memory, and are synchronously flushed into
disk.

If one of the sources, say source A, is blocked for
any reason (e.g., a slow or bursty network connection),
the hashing phase can still produce join results. Tuples
from the unblocked source B can still be received and
are used to probe the in-memory hash table of A to
produce results. HMJ transfers the control from the
hashing phase to the merging phase only if: (1) The

Procedure HashingPhase(tuple ¢, source A (B))
Begin
1. If there is not enough memory to accommodate t

(a) The flushing policy chooses two buckets Ay and By,
as victims.

(b) Sort buckets Ay and By, in memory.
(c) Flush buckets Ay, and By, into disk.

2. Compute the hash value h(t) of tuple t.
3. Join tuple t with all tuples in bucket Bp(yy (An(t))-
4. Store tuple t in bucket Ap) (Bpt))-

End.

Figure 3. Pseudo code of the Hashing phase

two sources are blocked, or (2) All data is processed. In
the former case, the Hash-merge join algorithm returns
to the hashing phase when the blocking behavior of any
of the sources is resolved.

The idea of the hashing phase is very similar to that
of the symmetric hash join [20] and to the first stage of
both XJoin [18] and the double Pipelined Hash Join
(DPHJ) [11]. However, there are two major differ-
ences: (1) In HMJ, selecting the victim partitions to be
flushed into disk is handled in a different way than in
the cases of XJoin and DPHJ. Basically, HMJ selects
two victim partitions (with the same hash value), one
from each source. On the other hand, both XJoin and
DPHJ choose only one partition from one source to be
flushed. Notice that in the symmetric hash join, there
is no such victim partitions, where it is assumed that
all data items can fit in memory. (2) In HMJ, flushed
partitions need to be sorted in memory before flushing.

3.2 Phasell: Merging

The merging phase of the Hash-merge join algorithm
deals with in-disk hash buckets that are previously
flushed into disk during the hashing phase. Figure 4
gives a snapshot of the disk storage upon the start of
the merging phase. For each hash bucket with hash
value h, there are my, blocks for sources A and B. The
my, blocks indicate that this bucket has been chosen as
a victim my, times in the hashing phase. For example,
in Figure 4, bucket 1 has four blocks while bucket 2 has
only two blocks.

The pseudo code of the merging phase is given in
Figure 5. The main idea of the merging phase is to ap-
ply a refinement version of the traditional sort-merge
join algorithm for each individual bucket. Thus, the
sort-merge algorithm is applied N times (Step 1 in
Figure 5). We introduce a parameter f to tune the
performance of the merging phase. f indicates the

— D
v
] H[I g I
R

Figure 4. The layout of the disk at the start of
the Merging phase.

fan in of the sort-merge algorithm, i.e., the number
of partitions to be merged in each step of the merg-
ing phase. Thus, to merge all blocks in each bucket,
we need LogsAp,; passes for each bucket, where A,;
is the number of blocks in bucket A4; (Step 2 in Fig-
ure 5). For each pass, we use the sort-merge join with
two refinements: (1) Join results are produced during
the merging. Thus, the blocking behavior of separat-
ing the sorting and merging steps is avoided (Step 3a
in Figure 5). (2) To avoid producing duplicate results,
we do not produce the tuples that result from blocks
that are of the same number (Step 3b in Figure 5).
These tuples are already produced either in the hash-
ing phase or in an earlier merging pass. Notice that
such two blocks have been flushed into disk concur-
rently, after being completely joined with each other
in memory. The duplicate-free results are continuously
sent to the output stream for further processing (e.g.,
a pipelined query plan) (Step 3c in Figure 5).

Figure 6 gives an example of the merging phase in
the non-blocking HMJ algorithm. One bucket from
source A (respectively, B) has two blocks A and Ay
(respectively, By; and Bpe). The pairs of (Ap1,Bp1)
and (Apa,Byp2) are already joined together either in the
hashing phase or in an early merging pass where the
tuples (4,4) and (6,6) are produced. In the merging
phase, only the pair of blocks (Ap;1,Bp) and (Apz2,Bp1)
need to be joined. Duplicate avoidance is employed
by checking whether the produced tuples come from
buckets with the same number or not.

The merging phase of HMJ is similar to the merg-
ing phase of the progressive merge join algorithm
(PMJ) [5, 6] in the sense that both algorithms em-
ploy a refinement version of the traditional sort-merge
join algorithm. However, two differences can be distin-
guished: (1) HMJ applies the sort-merge join algorithm
N times for the NV hash buckets, while in PMJ, the sort-
merge join algorithm is applied only once, where there

Procedure MergingPhase()
Input:

e A and B: Two disk partitions, each with N hash buckets,
correspond to sources A and B (e.g., see Figure 4). A; (B;)
is the ith bucket of source A (B) with m; blocks. A;; (Bik)
denotes the kth block of the ith bucket for source A(B).

o f: The fan in; the number of blocks to be merged each
time.

Begin

1. For i =1to N

2. Do LogyAm; times

3. For k =1 to A /f step f

(a) Sort and merge the blocks

A’i]m A’L'(k+1)7 e 5Ai(k+f—1) 'wzth the blocks
Biks Bi(k41)> " s Bi(k+5—1) using a modified ver-
sion of the traditional sort-merge join algorithm
that can produce join results (z,y) while sorting.

(b) If a join result (z,y) comes from two similar blocks,
i.e., © € Ajj,y € Byj, then ignore the tuple (z,y).
Otherwise, add the tuple (z,y) to the result set S.

(c) Send S to the output stream.
End.

Figure 5. Pseudo code of the merging phase.

is only one bucket per data source. (2) HMJ transfers
control back and forth between the hashing and merg-
ing phases, while in PMJ, the merging phase starts
after the data is finished and is processed in memory.

3.3 Number of Hash Buckets

The choice of the number of hash buckets in HMJ re-
sults in a trade-off between the efficiency of the hashing
and merging phases. The hashing phase favors a large
number of hash buckets (i.e., many small-sized buck-
ets) for two reasons: (1) A newly arriving tuple will
be tested for the join condition with a limited num-
ber of tuples. (2) Flushed partitions will have small
sizes, thus memory is almost always full, which results
in more join results during the hashing phase. On the
other hand, the merging phase favors a small number of
hashing buckets (i.e., few large-sized buckets) for two
reasons: (1) Having large sized buckets results in less
number of in-disk buckets, hence, less number of times
to apply the merging among in-disk buckets (Step 3 in
Figure 5). (2) Flushing large size buckets results in al-
most full disk pages. Thus, the utilization of disk pages
is increased.

To resolve this issue, we use a large number of hash-
ing buckets during the hashing phase. However, when
flushing, we combine each p consecutive buckets to-
gether. Thus, if the number of hashing buckets in the

b!

=

bl

b2

o]~] [e]a]a]>

b

N
fo]e]

Memory result (4,4), (6,6)
Disk result (1,1), (7,7)

Figure 6. Example of the merging phase.

hashing phase is h, then the number of hash buckets
in disk would be h/p. The flushing policy chooses one
corresponding pair (i.e., ones with the same hash value
from each source) of the h/p buckets as the victim
buckets.

4 Flushing Memory Partitions

Flushing in-memory buckets into disk plays an im-
portant role in the efficiency of HMJ. In this section,
we discuss some flushing policies that can fit in HMJ.
Based on the naive policies, we distinguish three re-
quirements that need to be satisfied by an efficient
flushing policy. Then, we develop the Adaptive Flush-
ing policy that produces the best results for HMJ. To
illustrate our ideas, we use the example given in Fig-
ure 7. A memory of size 100 is divided into ten hash
buckets; five for each source. A flushing policy needs
to choose two victim buckets; one from each source,
with the same hash value. To speed up the process
of selecting victim buckets, we maintain an in-memory
summary table that keeps track of the number of tu-
ples in each bucket pair for both sources, along with
the total number of tuples.

Flush All Policy. In this policy, we combine all the
in-memory buckets into only one bucket. Then, the
whole memory is flushed into disk. Flush All policy is
used in the progressive merge join algorithm [5], where
there is only one bucket for each source. The main
motivation for the Flush All policy is: (1) Flushing
the whole memory results in less I/O where pages are
completely full. (2) Hash buckets are organized in disk
in large blocks. Large blocks result in a more efficient
merging phase. However, the Flush All policy results in
major drawbacks: (1) After flushing, the whole mem-
ory is freed. Free memory results in a significant delay
in producing join results in the hashing phase. Con-
sider the case that a new tuple arrives while the mem-
ory is only 10% full. The new tuple has little chance to
be joined with any other in-memory tuple. (2) Com-

A B A B

[4]u1s[6]25 [12[15[20] 4] 2] 1[4]12]i8
2|11) 13|24
Flush Smallest ==> (6,4) 3| 13| 10|23
Flush Largest ==> (25,2) 4| 6| 4|10
Adaptive Flushing, b=25, a =10 ==> (11,13) 5|25 2 [27
Adaptive Flushing, b=10, a =10 ==> (13,10) 29 #1

Adaptive Flushing, b=10, a =1 ==> (25,2) Summary Table

Figure 7. Example of flushing policies.

bining all tuples in only one bucket results in joining
unnecessary tuples in disk. For example, a tuple with
hash value h; will be joined with tuples with hash value
ha.
Flush Smallest Policy. The Flush Smallest policy
selects victim bucket pairs with smallest total size. For
example, in Figure 7, the Flush Smallest policy chooses
the fourth bucket pair, where it has the smallest total
(10) among all in-memory bucket pairs. The Flush
Smallest policy is biased towards the hashing phase.
The main idea is to always keep the memory almost
full. Then, a newly arriving tuple has a high chance to
be joined with other in-memory tuples. However, the
performance deteriorates in the merging phase since
most disk-based blocks are of small sizes. In addition,
the hashing phase results in excessive I/Os due to the
continuous flushing of small partitions.
Flush Largest Policy. The Flush Largest policy se-
lects victim bucket pairs with largest total size. For
example, in Figure 7, the Flush Largest policy chooses
the fifth bucket pair, where it has the largest total (27)
among all in-memory bucket pairs. The Flush Largest
policy is biased towards the merging phase. The main
ideais to always have in-disk large blocks. Large blocks
result in an efficient merging phase. At the same time,
the Flush Largest policy does not free all the mem-
ory. Thus, join results can still be produced from the
hashing phase. However, the Flushing Largest policy
has the following drawbacks: (1) Selecting the largest
sum bucket pair may result in flushing small buckets.
For example, in Figure 7, a bucket with size two from
source B is flushed. (2) If the memory is not balanced
between the two sources, i.e., source A has 80% of the
memory, while source B has only 20%, selecting the
largest bucket pair may result in increasing the mem-
ory skewing.

Based on the above discussion, we identify three
main requirements that need to be considered when
designing a flushing policy for the HMJ.

1. Supporting the hashing phase. The flushing
policy should always keep enough in-memory tu-

ples such that newly incoming tuples can produce
in-memory join results.

2. Supporting the merging phase. The flushing
policy should avoid flushing small partitions that
deteriorate the performance of the merging phase.

3. Keeping balanced memory. The flushing pol-
icy should try to keep the memory balanced be-
tween sources A and B. To illustrate the impor-
tance of having a balanced memory, assume the
case where 90% of the memory is allocated for
source A while only 10% is allocated for source
B. A newly arrived tuple from A has little chance
to find matching tuples from B. Thus, the per-
formance of the hashing phase is reduced. In ad-
dition, flushed buckets from B tend to have small
sizes. Thus, the performance of the merging phase
deteriorates.

In the rest of this section, we propose the Adaptive
Flushing policy; a flushing policy that works along with
HMJ and fulfills the above three requirements.

4.1 Adaptive Flushing Policy

The main idea of the Adaptive Flushing policy is
to make the flushing adaptable to the changes in the
blocking behavior of both sources. For example, if
source A blocks, then, the memory may have more tu-
ples from B than A. The Adaptive Flushing policy aims
to balance the memory to have similar number of tu-
ples from each source. To tune the adaptability of the
Adaptive Flushing policy towards memory balancing,
we use the parameter b. If | A| and |B| are the ratios of
tuples from A and B, respectively, to all memory tu-
ples, then we say that the memory is balanced only if
absolute(|A| — |B|) < b. To avoid flushing small buck-
ets, the Adaptive Flushing policy uses the parameter
a to indicate the smallest acceptable size for a certain
bucket to be flushed. Figure 8 gives the pseudo code
of the Adaptive Flushing policy.

Initially, the Adaptive Flushing policy has a search
space S that contains all the possible bucket pairs
(A, Bg). If the memory is balanced (Step 1 in Fig-
ure 8), the search space S is limited to the bucket pairs
whose sizes are greater than the acceptable bucket size
a. If there is no bucket pair that satisfies the smallest
bucket size threshold, the search S is kept to the whole
set of bucket pairs. Furthermore, the search space S is
limited (if possible) to those bucket pairs that will not
affect memory balancing upon flushing. Finally, the
victim bucket pair is the pair with largest total size
from the limited search space S.

Procedure Adaptive Flush Policy()
e Input: S: The set of all bucket pairs (Ag, Bg), a: The
acceptable partition size, b: Balancing threshold.
e Output: Two victim partiitons Ap and By,.
Begin

1. If absolute(|A| — |B|) < b //Memory is balanced

e S¢ = Set of pairs (Ag, By), where |Ay| > a, |B| > a.
o IfS*#¢, then S = S°
e S¢ = Set of pairs (Ay,By) € S, such that removing
(Ag, Bg) will not affect the memory balancing.
o IfS‘+£¢, then S = S°
o Return (A, By) € S, where |Ap|+|By| is mazimum.
2. If |A] > |B]
e S = Set of pairs (Ag, By,), where |Ag| > |By|.
else
e S = Set of pairs (Ag, By), where |By| > |Ag].
3. S‘ = Set of pairs (A, Br) € S, where |Ag| > a, |Bg| > a.
4 If S+ ¢, then § = S°
5. Return (Ap,Bp) € S, where |Ay| + |Bp| is mazimum.
End.

Figure 8. The Adaptive Flushing Policy.

In the case of unbalanced memory (Step 2 in Fig-
ure 8), the search space S is limited to those bucket
pairs that reduce the memory unbalancing. For exam-
ple, if the memory has more tuples from A than from
B, then the victim bucket pair should have more A tu-
ples than B tuples. Furthermore, if possible, the search
space S is limited to those bucket pairs of size larger
than a. Finally, the victim bucket pair is the one with
largest total size from the limited search space S.

For example, consider applying the Adaptive Flush-
ing policy with b = 25 and a = 10 to the memory
layout in Figure 7. The difference in memory ratio
is 59% — 41% = 18% < 25%. Thus, the memory is
considered balanced. Then, the search space is limited
to the second (11,13) and third (13,10) bucket pairs
where all buckets are of size > 10. Since both bucket
pairs do not affect the memory balancing with respect
to b, we choose the bucket pair with largest total size
(11,13). If the balanced factor is set to b = 10, while
keeping a = 10, then the memory is considered un-
balanced. The search space is limited to those bucket
pairs with |Ag| > |Bg|, i.e., the third (13,10) and fifth
(25,2) pairs. With the acceptable threshold a = 10,
the search space is limited to only the third bucket
pair (13,10). Notice that the idea of having the pa-
rameter a is to avoid selecting small buckets. Thus, if

we set a = 1, while keeping b = 10, then the Adaptive
Flushing policy would select the bucket pair (25,2).

5 Correctness of the Hash-merge Join
Algorithm

In this section, we give a proof of correctness of the
non-blocking Hash-merge join algorithm (HMJ). The
correctness proof is divided into two parts: First, we
prove that HMJ is complete i.e., all result tuples are
produced. Second, we prove that HMJ is a duplicate-
free join algorithm, i.e., output tuples are produced
exactly once.

Theorem 1 For any two sources A and B, HMJ pro-
duces all output results of A x B.

Proof: Assume that 3(r,s) : r € A,s € B, and (r, s)
satisfies the join condition. However, the tuple (r,s)
is not reported by HMJ. Since (r, s) satisfies the join
condition, then r € A, and s € Bj. Assume that
r € Apr,8 € Bpy, which means that r and s are in
the kth and mth blocks of the hash buckets with value
h, respectively. Then, there are exactly two possible
cases:

Case 1: k = m. In this case, the flushing policy
guarantees that the blocks Ay and By, are in memory
at the same time. If the data item r arrives before s,
then r will be stored in bucket Apy (Step 4 in Figure 3)
without joining with s. Later when s arrives, it will
probe the block Ay (Step 3 in Figure 3), and join with
r. Notice that we guarantee that r is still in memory
at the arrival of s. Otherwise the condition k = m is
violated. The same proof is applicable when r arrives
before s. Thus, the tuple (r,s) cannot be missed in
case of k = m.

Case 2: k # m. In this case one of the blocks
App or By, is flushed to disk before the other one is
created. Thus, Apr and By, are disk-based blocks.
In the merging phase, all disk-based blocks are joined
together using a refinement version of the traditional
sort-merge join algorithm (Step 3a in Figure 5). Thus,
the tuple (r, s) cannot be missed in the merging phase.

(From Cases 1 and 2, we conclude that the assump-
tion that (r,s) is not reported by the Hash-merge join
algorithm is not possible. Thus, HMJ produces all out-
put results.

O

Theorem 2 For any two sources A and B, HMJ pro-
duces aoll output tuples of A x B exactly once.

Proof: Assume that 3(r,s) : r € A,s € B, and (r, s)
satisfies the join condition. Assume that HMJ reports

the tuple (r,s) twice. We denote such two instances
as (r,s); and (r,s)2. Thus, we identify the following
three cases:

Case 1: (r,s); and (r,s)2 are both produced
in the hashing phase. Assume that the data item r
arrives after s. Once the tuple r arrives, r probes the
hash bucket of s and outputs the result (r,s);. Then,
during the hashing phase, only newly incoming tuples
are used to probe the hash buckets of » and s. Thus,
the tuple (r,s) cannot produced again in the hashing
phase.

Case 2: (r,s); and (r,s); are produced in the
merging phase. Once the tuple (r, s); is reported in
the merging phase (Step 3a in Figure 5), then r and s
are merged into bigger blocks with similar block num-
bers b. Step 3b in Figure 5 avoids the reporting of
output tuples that comes from similar block numbers.
Thus, the tuple (r, s)2 cannot be produced in the merg-
ing phase.

Case 3: One of the tuples, say (r,s);, is pro-
duced in the hashing phase, while the other one
is produced in the merging phase. Since (r,s)1
is reported in the hashing phase, then we guarantee
that the blocks that contain r and s are flushed into
the disk at the same time. Thus, these blocks have
the same block number. Similar to the proof of Case
2, blocks with similar numbers do not report any join
results. Thus, the tuple (r, s)2 cannot be produced by
the merging phase.

. From the above three cases, we conclude that the
assumption that the tuple (r, s) is reported twice is not
valid.

O

6 Experimental Results

In this section, we give experimental evidence that
HMJ is superior to other non-blocking join algo-
rithms (e.g., XJoin [18] and the Progressive Merge Join
(PMJ) [5]). The experiments in this section are divided
into three categories:

e Flushing policy. The objective of this set of ex-
periments is to study the effect of different flushing
policies on the performance of HMJ.

e Fast and reliable networks. This set of exper-
iments compares the performance of HMJ to both
XJoin and PMJ in the case of fast and reliable
networks, i.e., the sources are never blocked.

e Slow and bursty networks. This set of experi-
ments compares the performance of HMJ to both

Nunber of results * 1000
w
S
nunber of 1/0* 1000
=
@

55 9.5

9
0 10 20 30 40 50 60 70 80 90 100
Percentage of flushing partitions

0 10 20 30 40 50 60 70 80 90 100
Per centage of flushing partitions

(a) Result (b) I/0

Figure 9. The impact of flushing size.

XJoin and PMJ in the case of slow and bursty net-
works (i.e., the sources are subject to blocking).

For most of the experiments, we measure the time
and I/0 needed to produce the kth output tuple. For
large output results, a typical user would be interested
in only the first few results. Unless mentioned other-
wise, the data set involved in the join operation con-
tains 1,000,000 tuples. The memory size is set to ac-
commodate 10% of the input data.

6.1 Flushing Palicy

In this set of experiments, we study two aspects
related to the flushing policy implementation inside
HMJ. First, we study the impact of the number of
hashing buckets used in the hashing phase. Second,
we study the impact of different flushing policies. The
results are shown for the experiments performed in the
case of fast and reliable networks. However, similar re-
sults are obtained when applying the same experiments
to slow and bursty networks.

6.1.1 Number of Hash Buckets

In these experiments, we aim to specify the best value
for the parameter p; the percentage of the number of
flushed buckets to the total number of hash buckets.
(vefer to Section 3.3). Experiments are performed us-
ing the Adaptive Flushing policy. Similar performance
is achieved when using other flushing policies. Fig-
ure 9a gives the effect of varying p from 1% to 100% on
the number of produced results from the hashing phase.
As discussed in Section 4, as more in-memory buckets
are flushed, This results in a less chance of producing
join results from the hashing phase, basically, because
new incoming tuples have less chance to be joined with
existing in-memory tuples. However, as given by Fig-
ure 9b, flushing more memory results in much less I/O
overhead. As a compromise, setting p to about 5%

220
200
180 r
160 r
140 r
120 r
100 r
80 r
60
40 r

Time (sec)

HV: Adaptive —e— -+
HMI: Flush All —&—
20 | o4 HMI: Flush Smallest —%—

0 100 200 300 400 500 600
Nunmber of results * 1000

(a) Time

20 T T T
HWD: Adaptive —e—
18 HVO: Flush All —a—
16 HMI: Flush Small —%—

14

12 +
10 |

I/ O operation * 1000

o N O O
= T T T

0 100 200 300 400 500 600
Nurmber of results * 1000

(b) 1/0O

Figure 10. Performance of different flushing policies.

achieves a trade-off between producing in-memory re-
sults in the hashing phase and less I/O in the merging
phase. For the following experiments, we set p to 5%.

6.1.2 Different Flushing Policies

The experiment in Figure 10 is designed to test the im-
pact of different flushing policies on the performance of
HMJ. Mainly, we compare the Flush All, Flush Small-
est, and Adaptive Flushing policies with respect to the
time and I/O needed to produce the kth result. For the
Adaptive Flushing policy, we set the acceptable bucket
size a to be the average bucket size (i.e., M/h), where
M is the memory size, and h is the number of hash
buckets. The balancing factor b is set to be M /5. These
values for a and b give the best performance for the
Adaptive Flushing policy. Notice that we do not in-
clude the Flush Largest policy in our comparison, since
the Flush Largest policy is a special case of the Adaptive
Flushing policy by setting a =0, b= M.

In Figure 10, we notice that all policies result in
a plotting with almost two segments. The segment
with higher slope indicates the join results that are
produced in the hashing phase. The second segment
with lower slope indicates the join results produced in
the merging phase. For example, the Adaptive Flush-
ing policy produces 100K tuples in the hashing phase.
Figure 10a gives the time required to produce the kth
result of HMJ. The Adaptive Flushing policy always
outperforms the other policies. The Flush All policy
produces less results during the hashing phase due to
the fact that newly incoming tuples have less chance
to be joined with in-memory tuples. Figure 10b gives
the number of I/O’s required to produce the kth re-
sult. For early join results (e.g., up to 100K results),

the Adaptive Flushing policy has the best performance.
However, during the merging phase, the Flush All pol-
icy slightly outperforms the Adaptive Flushing policy
due to the fact that having large size buckets on disk
would reduce the number of I/0’s. For the rest of
experiments, we use HMJ with the Adaptive Flushing
policy.

6.2 Fast and Reliable Networks

In this section, we consider input data from dis-
tributed sources with similar arrival rates via a fast
and reliable network. Thus, there is no blocking be-
havior. In the experiments, we join two sources with
1M data items for each. The output result is around
550K tuples. Figure 1la gives the time required to
produce the kth tuple. HMJ consistently outperforms
XJoin and PMJ for up to 500K results. Both HMJ and
XJoin produce 100K results during the hashing phases,
while PMJ produces 50K results in the first phase (sort-
ing phase). However, it takes around 90 seconds from
XJoin to finish the hashing phase, while the hashing
phase in HMJ takes around 60 seconds. The main rea-
son for the efficiency of the hashing phase in HMJ is
due to the flushing policy, where the flushed buckets
are smartly chosen to keep room for having more in-
memory join results. For the total time result, i.e., the
time to output 550K tuples, PMJ has a better perfor-
mance. This can be explained from the I/O results in
Figure 11b.

Figure 11b gives the number of I/Os required to
produce the kth output tuple. For up to 100K, both
HMJ and XJoin have less I/O than PMJ. This be-
havior is mainly because both HMJ and XJoin flush
small buckets in their hashing phase rather than flush-

160

140

Time (sec)
[[
H (2] fee] o N
o o o o o
-

N
o
T

o

200 300 400
Nunber of results * 1000

0 100

(a) Time

12

1/ O operation * 1000

200 300
Nunmber of results * 1000

0 100

600

(b) 1/0O

Figure 11. Fast and Reliable Networks.

ing the whole memory as in PMJ. Once the sorting
phase of PMJ is done, large buckets are organized on
disk. Thus, the number of I/Os in the merging phase
of PMJ is less than the number of I/Os in the merging
phase of HMJ. If we consider only producing early re-
sults up to 100K, then HMJ is clearly superior in terms
of both time and I/0O.

Figure 12 considers the case when the input data ar-
rives from two sources with different arrival rates. The
arrival rate of input data from source A is five times
the arrival rate of data from source B. The results in
the merging phase almost have the same behavior as in
Figure 11. However, in the hashing phase, both HMJ
and XJoin are more stable to the variations in arrival
rates than PMJ. Also, unlike Figure 11, the hashing
phase of HMJ is finished before the hashing phase of
XJoin. The main reason is that using the Adaptive
Flushing policy in HMJ always keeps the memory bal-
anced even if the data arrival is not.

Figure 13 gives the time required to produce the first
1000 results. In this experiment, we vary the memory
size from 2% to 50% of the input data. We plot only
HMJ against PMJ. XJoin has performance similar to
that of HMJ as both algorithms rely on the original
symmetric hashing join for producing the first few re-
sults. For very small memory sizes (less than 5%), PMJ
needs to flush the whole memory more than once to
get the first 1000 results. With the increase in mem-
ory size, the number of flushes deceases, thus better
time is achieved. However, with the increase in mem-
ory, PMJ does not produce any results till the memory
is exhausted. Thus, the time to fill the memory is in-
creased with the increase of memory size. For HMJ,
increasing the memory size does not affect the perfor-
mance. In-memory join results are produced without

10

the need to fill the memory.
6.3 Slow and Bur sty Networks

In this section, we consider the case of slow and
bursty networks. We assume that data arrives from
the two sources A and B with Pareto distribution; a
distribution that is widely used in case of slow and
bursty networks [3]. A data source is considered to be
blocked if no tuple arrives within a certain time thresh-
old T'. Figure 14a gives the time for producing the kth
result. Both HMJ and PMJ have a step-like perfor-
mance due to the switching between the first phase
(i.e., the hashing phase in HMJ and the sorting phase
in PMJ) and the merging phase. XJoin does not have
such behavior because XJoin operates on three stages.
The first stage is the hashing, while the second stage
is joining between memory partitions with disk parti-
tions. The third stage is a cleaning stage (starts af-
ter 20K tuple) that joins in-disk partitions. The third
stage of XJoin takes control when the input data is fin-
ished. The last segment of all join algorithms in Fig-
ure 14a corresponds to the case when all data inputs
have arrived and are processed in memory. Thus, the
last segment represents the in-disk join of disk-resident
buckets. Notice that the last segment starts after 20K,
35K, and 38K for XJoin, HMJ, and PMJ, respectively.

The overall performance of HMJ outperforms XJoin
and PMJ. The main reason is the efficiency of the hash-
ing phase in HMJ. This can be noticed from the slope
of each segment in Figure 14a. Comparing PMJ with
HMJ, the slope of segments that correspond to the first
phase is lower for HMJ indicating that more results are
produced. On the other side, for the segments that rep-
resent the merging phase, the slope of PMJ segments is

140

= P

[© o N

o o o o
T T

Time (sec)

N
o

HVW —e—
PM) —&— |
XJoin —%—

N
o
T

o

100 150 200 250 300
nunber of results * 1000

0 50 350

(a) Time

12

1/ O operation * 1000

100 150 200 250 300
Nunmber of results * 1000

0 50

350

(b) 1/0O

Figure 12. Different arriving rates in fast and reliable networks.

Time (sec)
© © © o o o o o o©o
= N w - (9] o ~ © ©

o

5 10 15 20 25 30 35 40 45 50
Buffer size (%

o

Figure 13. Producing the first 1000 results.

lower than those of HMJ. An exception is the last seg-
ment, where it is almost the same for both algorithms.
The efficiency of the hashing phase in HMJ amortizes
the drawbacks of the merging phase.

Although XJoin has the same hashing phase as that
of HMJ, HMJ outperforms XJoin during the hashing
phase. The main reason is that the Adaptive Flushing
policy employed by HMJ keeps the memory balanced
and makes use of the properties of the hashing phase.
On the other side, the flushing policy employed by
XJoin (flush the largest bucket from only one source)
results in an unbalanced memory. Thus, the hashing
phase of XJoin may not produce many results as in
HMJ.

Figure 14b gives the number of I/Os needed to pro-
duce the kth result. HMJ has slightly lower I/Os than
PMJ for the first 20K results. For the rest of the re-
sults, PMJ has lower I/O’s. The main reason is that
PMJ has larger in-disk buckets. Generally, when the
interest is only in the earlier results, HMJ is better than

11

XJoin and PMJ in both time and I/O performance.

7 Conclusion

This paper proposes the Hash-merge join algorithm
(HMJ); a non-blocking join algorithm for producing
fast and early join results. HMJ works on environ-
ments where the data are coming from different sources
via a slow and bursty network. HMJ can produce join
results even if one or both sources are blocked. HMJ
has two phases: The first phase (the hashing phase)
is responsible for producing fast and early join results
by employing a hash-based in-memory join algorithm.
The second phase (the merging phase) is responsible
for producing join results when the two input sources
are blocked by employing a refinement version of the
traditional in-disk sort-merge join algorithm. An ele-
gant flushing policy is employed in HMJ to link both
the hashing and merging phases. The flushing policy
is responsible for flushing memory parts into disk. The
correctness of HMJ with respect to completeness (i.e.,
all output tuples are produced) and uniqueness (i.e., no
duplicate results are produced) is proved. Comprehen-
sive experimental results show that the performance of
HMJ outperforms the two state-of-the-art non-blocking
join algorithms, XJoin [17, 18], and the progressive
merge join (PMJ) [5, 6].

References

[1] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan.
Scrambling query plans to cope with unexpected de-
lays. In Intl. Conf. on Parallel and Dist. Inf. Sys.,
PDIS, pages 208-219, Dec. 1996.

2]

[6]

[7]

(8]
[9]

450

400

350 r

300 r

250

200

Time (sec)

150

100 ¢

50

20 30 40 50
Nurmber of results * 10000

60

(a) Time

1/ O operation * 1000

Nurmber of results * 10000

(b) 1/0O

Figure 14. Slow and Bursty Networks.

R. Avnur and J. M. Hellerstein. Eddies: Continu-
ously Adaptive Query Processing. In Proceedings of
the ACM International Conference on Management of
Data, SIGMOD, May 2000.

M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-
tailed probability distributions in the world wide web,
chapter A practical guide to heavy tails: statistical
techniques and applications, pages 3—26. Chapman
Hall, 1998.

D. J. DeWitt and J. Gray. Parallel Database Systems:
The Future of High Performance Database Systems.
Comm. of the ACM, CACM, 35(6):85-98, 1992.

J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Wid-
mayer. Progressive Merge Join: A Generic and Non-
blocking Sort-based Join Algorithm. In Proceedings
of the International Conference on Very Large Data
Bases, VLDB, 2002.

J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Wid-
mayer. On Producing Join Results Early. In Proceed-
ings of the ACM Symposium on Principles of Database
Systems, PODS, June 2003.

Gang Luo and Curt J. Ellmann and Peter J. Haas
and Jeffrey F. Naughton. A scalable hash ripple join
algorithm. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD, pages
252-262, 2002.

G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comp. Surveys, 25(2):73-170, 1993.
P. J. Haas and J. M. Hellerstein. Ripple Joins for On-
line Aggregation. In Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD,
June 1999.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD, pages
171-182, May 1997.

Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and
D. S. Weld. An Adaptive Query Execution System for

12

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Data Integration. In Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD,
June 1999.

G. Luo, J. F. Naughton, and C. Ellmann. A Non-
blocking Parallel Spatial Join Algorithm. In Proceed-
ings of the International Conference on Data Engi-
neering, ICDE, Feb. 2002.

P. Mishra and M. H. Eich. Join Processing in Rela-
tional Databases. ACM Comp. Surveys, 24(1):63-113,
1992.

A. Motro. Using Integrity Constraints to Provide In-
tensional Answers to Relational Queries. In Proceed-
ings of the International Conference on Very Large
Data Bases, VLDB, pages 237-246, Aug. 1989.

D. A. Schneider and D. J. DeWitt. A Performance
Evaluation of Four Parallel Join Algorithms in a
Shared-Nothing Multiprocessor Environment. In Pro-
ceedings of the ACM International Conference on
Management of Data, SIGMOD, pages 110-121, May
1989.

L. D. Shapiro. Join Processing in Database Systems
with Large Main Memories. ACM Transactions on
Database Systems , TODS, 11(3):239-264, 1986.

T. Urhan and M. J. Franklin. XJoin: Getting Fast An-
swers From Slow and Burst Networks. Technical Re-
port CS-TR-3994, UMIACS-TR-99-13, Computer Sci-
ence Department, University of Maryland, Feb. 1999.
T. Urhan and M. J. Franklin. XJoin: A Reactively-
Scheduled Pipelined Join Operator. IEEE Data Engi-
neering Bulletin, 23(2):7-18, 2000.

S. V. Vrbsky and J. W.-S. Liu. APPROXIMATE -
A Query Processor that Produces Monotonically Im-
proving Approximate Answers. IEEE Transactions on
Knowledge and Data Engineering, TKDE, 5(6):1056—
1068, 1993.

A. N. Wilschut and P. M. G. Apers. Pipelining in
Query Execution. In Databases, Parallel, Architec-
tures, and their applications, 1990.

