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ABSTRACT

The volume of spatio-temporal data is growing at a rapid
pace due to advances in location-aware devices, e.g., smart-
phones, and the popularity of location-based services, e.g.,
navigation services. A number of spatio-temporal access
methods have been proposed to support efficient processing
of queries over the spatio-temporal data. Spatio-temporal
access methods can be classified according to the type of
data being indexed into the following categories: (1) in-
dexes for historical spatio-temporal data, (2) indexes for cur-
rent and recent spatio-temporal data, (3) indexes for future
spatio-temporal data, (4) indexes for past, present, and fu-
ture spatio-temporal data, (5) indexes for spatio-temporal
data with associated textual data, and (6) parallel and dis-
tributed spatio-temporal systems and indexes. This survey
is Part 3 of our previous surveys on the same subject [91, 99].
In this survey, we present an overview and a broad clas-
sification of the spatio-temporal access methods published
between 2010 and 2017.

1. INTRODUCTION
With the popularity of location-aware devices, e.g., smart-

phones and GPS devices, many spatio-temporal applications
have emerged, e.g., traffic analysis, and navigation applica-
tions. In these applications, moving objects periodically re-
port their timestamped geo-locations to a spatio-temporal
database server. Then, the server stores these timestamped
location-updates for further processing. Some applications
require the retention of the entire history of the spatio-
temporal data, e.g., security and surveillance applications.
In contrast, other applications keep only the most recent
history of the spatio-temporal data due to privacy agree-
ments, e.g., cell phone companies cannot keep location data
longer than specific durations. An alternative class of ap-
plications needs to maintain only the current locations of
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the moving objects, e.g., taxi and ride-sharing mobile ap-
plications. Applications, e.g., traffic analysis, may store ad-
ditional information, e.g., the objects’ velocities and direc-
tions in the spatio-temporal database server. This additional
data is useful for predicting future positions of moving ob-
jects. Several spatio-temporal access methods have been
proposed to speed-up query processing over spatio-temporal
data. Nowadays, spatio-temporal data can also be associ-
ated with textual content, e.g., tweets. New access methods
have been developed to index spatio-temporal data with as-
sociated textual content.

In the past, we have surveyed spatio-temporal access
methods that have been published on or before 2003 [91],
and then from 2003 to 2010 [99]. This survey is Part
3 of this series of surveys that covers and classifies the
new spatio-temporal access methods published between the
years 2010 and 2017. Spatio-temporal access methods that
only apply existing data structures in the context of spatio-
temporal data are not covered in the survey. For exam-
ple, spatio-temporal access methods that simply use a loose
quadtree [89, 144] are not covered as they simply use an ex-
isting access method, in this case, a loose quadtree.

Figure 1 illustrates the spatio-temporal access meth-
ods developed between 2010 and 2017. Lines in the Figure
indicate the relationship between a new spatio-temporal in-
dex structure and the original index structure it has evolved
from.

The rest of this paper proceeds as follows: Sections
2, 3, and 4 present an overview of the spatio-temporal access
methods for historical, current (and recent historical), and
future data, respectively. Section 5 surveys spatio-temporal
access methods for indexing data at all points in time. Sec-
tion 6 overviews access methods for spatio-temporal and
textual data. Section 7 overviews parallel and distributed
spatio-temporal indexes. Finally, Section 8 concludes the
survey.

2. INDEXING THE PAST
In this section, we present an overview of the access meth-

ods for indexing historical spatio-temporal data. Storing
the entire historical data of moving objects is not feasible
when moving objects update their locations frequently due
to the massive volume of this data. To address this issue,
moving objects may report location updates only when
there is a significant change in their location. Alternatively,
sampling can be used to shrink the volume of indexed
spatio-temporal data. Linear or nonlinear interpolation
can be used to reconstruct trajectories from the sampled
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Figure 1: The evolution of spatio-temporal access methods.
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location data. We classify spatio-temporal access methods
that index past spatio-temporal data based on the approach
adopted for handling the time and the space dimensions,
and whether or not the index accounts for the sequential
nature of the historical trajectories of the moving objects.

2.1 Multi-dimensional Structures
In the category, space and time are handled as dimen-

sions in the multi-dimensional space. All dimensions of the
indexed spatio-temporal data are treated similarly. In other
words, for the indexed spatio-temporal data, there is no dis-
tinction in the handling of the spatial and the temporal di-
mensions.

PH-tree [164]: The PH-tree (PATRICIA-hypercube-
tree) is a multi-dimensional data structure that extends
both the Quad-tree and the PATRICIA-trie to optimize the
search performance and the space utilization when indexing
large amounts of multi-dimensional data. A k-dimensional
object has k attributes that represent the object’s position in
the k-dimensional space. The PH-tree follows the Quad-tree
in that the PH-tree partitions the space across all dimensions
at any given node. However, instead of using an integer or a
floating point representation of the attributes of the indexed
objects, the PH-tree serializes the attributes of the indexed
objects using binary representation. Objects are indexed
in a PATRICIA-trie-like approach that uses the binary bit-
representation of the attributes of the indexed objects. The
PH-tree uses common prefixes among the bit representation
of the attributes to reduce the space required by the index.
The PH-tree can be seen as a hyper-cube of size 2k when
indexing data with k dimensions. However, this hyper-cube
is typically sparse and the PH-tree automatically switches
to a linear representation of the hyper-cube that stores bit
prefixes and pointers to children nodes when sparsity in the
data is detected.

2.2 Overlapping and Multi-version Struc-
tures

In this category of spatio-temporal indexes, the treatment
of the spatial dimensions is different from that of the tem-
poral dimension. The idea behind this category of indexes
is to build a separate index for each time instance.

SMO-index [114]: The focus of the Succinct Moving
Object Index (SMO-index) is the efficient processing of
timestamp and interval spatio-temporal queries while reduc-
ing the storage requirements of the index. In the SMO-
index, both the data and the index are stored compactly
in the same structure without using external memory. The
SMO-index has two main components: (1) a time-ordered
sequence of snapshots of the objects’ locations indexed by
K2-trees [19], and (2) a sequence of movement logs, where
each log is the time-ordered sequence of changes in the ob-
jects’ locations between consecutive snapshots. A Snapshot
S is of the form < Tree, Leaves, Labels >, where Tree and
Leaves are bitmaps that represent the internal nodes and
the leaves of the K2-tree, respectively. Labels is an array
of object identifiers. Instead of storing the absolute position
of an object at each time instance in the movement logs,
movement in the horizontal and vertical axes with respect
to the previous location of the object is stored. The rea-
son is to optimize the storage needed by the movement logs.
Timestamp and interval queries are processed by accessing

the snapshots and movement logs. Accessing a snapshot is
similar to processing a range query on a K2-tree.

2.3 Trajectory-Oriented Access Methods
Trajectory-oriented access methods focus on answering

topological and navigational queries over trajectories.
Topological queries focus on the locations visited during
the movements of the objects. In contrast, navigational
queries focus on the information that can be inferred from
the movements of objects, e.g., the speed and the direction
of an object.

TrajStore [32]: The main idea behind TrajStore is to
partition the trajectories (that result from the movements
of the objects) into sub-trajectories, and then cluster
into disk pages the trajectory segments that are spatially
and temporally close to each other. TrajStore targets to
minimize the number of disk reads required for queries
over specific spatial regions with large time-intervals. An
adaptive quadtree is used as a spatial index, where each
cell in the tree corresponds to multiple disk pages that
contain the sub-trajectories in the area covered by this
cell. A sparse temporal index is associated with each cell.
This temporal index contains the least start-timestamp
and the highest end-timestamp for each page within a
specific cell. These cells are recursively split and merged
according to a cost function that ensures optimal cell size
and minimizes disk I/Os. Each cell is further compressed
to avoid redundancy in cases where many trajectories have
approximately the same path in a cell. Spatio-temporal
range query processing is executed by first filtering the cells
using the spatial index, and then by retrieving the pages
that overlap the temporal range of the query.

PARINET [107, 117]: PARINET (short for
PARtitioned Index for in-NEtwork Trajectories) is an
access method for retrieving the historical trajectories of
moving objects over road networks. PARINET partitions
the road network and trajectory data based on the data
distribution and the network topology. The time intervals
for the trajectory data within each partition are indexed
using a B+-tree. A Road-Partitioning table (RP, for short)
is maintained to store information about the partitions
of both the spatio-temporal data and the road network.
An entry of a partition, say P , within RP contains the
list of road identifiers covered by P and a pointer to the
B+-tree of the time intervals in Partition P . A network-
constrained spatio-temporal range query Q is represented
in the form (Qs, Qt), where Qs is a list of road identifiers
and Qt = [ts, te], ts is the start-timestamp, and te is the
end-timestamp of the query. The spatio-temporal range
query Q is processed by first finding the set of partitions
that contain the road identifiers in the query. Then, a range
scan is performed on the B+-tree index of the selected
partitions to identify the candidate moving objects that
overlap Qt. Each candidate is further filtered to check if it
satisfies both spatial and temporal conditions of Q.

T-PARINET [117]: Temporal PARINET indexes
trajectories by periodically creating new PARINET indexes
for specific time windows. A new PARINET is created when
the performance degradation and lifespan of the current
index exceed specific thresholds. The structure of the new
PARINET is based on the expected data distribution and
the expected query load. A time-partitioning table is used
to maintain the time window of each PARINET and a
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pointer to the PARINET. A spatio-temporal range query
Q is of the form (Qs, Qt), where Qs is the spatial range of
Q and Qt is the temporal range of the Q. If the temporal
range Qt = [ts, te] of the query exceeds the time window
of the current PARINET, Qt is split into k intervals using
the time-partitioning table. Then, the original query is
converted into a set of k queries that are executed on their
corresponding PARINET indexes.

UTH [167]: Trajectories may have uncertain portions.
When moving objects report discrete location updates
to the spatial database server, there is no information
about the object’s movement between consecutive location
updates, and hence the uncertainty in the trajectory. A
spatio-temporal index that accounts for this uncertainty
assumes a specific model of movement between location
updates for the uncertain trajectories. The Uncertain
Trajectory Hierarchy indexes uncertain trajectories on
road networks in the following way. UTH assumes a
time-dependent probability distribution for the uncertain
movement between discrete location updates. UTH consists
of three main components: (1) an edge hash table, (2) a
movement R-tree (mR), and (3) a trajectory list. An edge
in the road network can be retrieved effectively from the
edge hash table using the edge ID. For every edge, a 1D
movement R-tree (mR) is maintained. Movement R-trees
index the time periods in which the objects are moving on
an edge. An entry in mR for an edge e(vi, vj) and an object
a moving on the edge is of the form [tea(vi), tld(vj)], where
tea and tld are the earliest arrival-time and latest departure-
time of the associated vertex, respectively. This entry
represents the maximum time interval (MTI) for Object a
while being on e. There is one entry for each possible path
of an object moving on Edge e. The trajectory list contains
actual trajectory data. In the trajectory list, trajectory
samples are sorted by their timestamps per moving object.
Spatio-temporal range queries are processed in a filter-refine
approach. First, edges that overlap the spatial range of
the query are identified, and the movement trees of edges
are queried to find candidate entries. Then, candidate
entries are further refined by calculating a qualification
probability per entry. The qualification probability of an
entry with respect to a query represents the likelihood of
the object to belong to the resultset of the query. The
qualification probability QP r

a,q quantifies the probability
of Object a being within network distance r from Query
q. Candidate entries with qualification probability below a
specific threshold are removed from the query’s resultset.
To find candidate edges, an expansion tree ET (q, r) for
Query q is created. This tree is rooted at q, and contains
all the positions along the edges of the road network that
are within Distance r from q, where r represents the spatial
range of the query. Then, using UTH, the mR tree of every
candidate edge within the expansion tree is queried to find
the entries with tq ∈ MTI. The candidate paths that are
the paths pointed at by these entries are further refined by
calculating a qualification probability and checking if the
path qualification probability meets a specific threshold.

UTGRID [83]: The Uncertain Trajectories GRID is
designed to answer top-k similarity queries over uncertain
trajectories. The top-k similarity query identifies the k
most-similar trajectories to a query trajectory. UTGRID is
designed as a spatial-first index that partitions the indexed
space into uniform non-overlapping cells. Within a grid

cell, say C, a 1D R-tree is used to index the trajectories
that overlap Cell C according to the probability of overlap
between the trajectories and C. Trajectories are partitioned
into segments to be indexed in UTGRID. Trajectory
segments that span multiple grid cells are split at grid
cell boundaries. An indexed trajectory segment within a
grid cell C consists of the trajectory identifier, the time
span of the trajectory segment, and the probability of
overlap between the trajectory and C. To avoid using
complex probability functions to represent the probability
of overlap between trajectory segments and cells, the entire
temporal range is split into small time-intervals. Then, the
probability of overlap between a trajectory and a grid cell
is represented as a sequence of pairs (φ, ǫ), where φ is the
average probability of overlap between a trajectory and the
grid cell in this small time-interval, and ǫ is the maximum
deviation between the exact probability of overlap and φ.

FMI [82]: FootMark Index is used for the efficient
processing of the time-period most-frequent path query
(TPMFP, for short). The TPMFP query identifies the
most-frequent path between a specific source location vs
and a specific destination location vd during a certain time
period T . This query is processed by creating a footmark
graph Gf for vd during T . The footmark graph Gf is
a sub-graph of the entire road-network graph G. The
edge weights of Gf represent the number of trajectories
that pass through an edge in G and reach vd during T .
Then, TPMFP from vs to vd is found from Gf by using
a dynamic programming algorithm. The purpose of FMI
is to filter the indexed trajectories according to vd and
T to construct the footmark graph. FMI consists of a
B+-tree BTvi for each vertex, say vi, of the road-network
graph G. The B+-tree for Vertex vi indexes the time
at which the trajectories reach vi. The leaf entries of
the B+-trees are of the form < tid, ta >, where tid is
the trajectory identifier, and ta is the time at which the
trajectory tid reaches the vertex vi. A hashmap from
the vertices to their corresponding B+-trees is maintained
within FMI. CFMI (Containment-Based Footmark Index)
is an improved version of FMI that stores only the dominant
trajectories, i.e., the longest trajectories that share the
same path with the other contained trajectories and pass
through vd during T . The footmarks of the contained
trajectories are calculated by storing their starting locations
with respect to their corresponding dominant trajectory.
This requires fetching only the dominant trajectories from
disk. The leaf entries of the B+-tree in CFMI are of the
form < tid, ts, ta, did, sloc >, where tid is the trajectory
identifier, ts is the starting time of the trajectory tid, did is
the identifier of the dominant trajectory of tid, and sloc is
the starting location of tid within the dominant trajectory
did.

TrajTree [112]: The TrajTree index is developed
to efficiently answer k-NN queries in large trajectory
databases. In the TrajTree, trajectories are represented as
a sequence of trajectory bounding-boxes by partitioning
each trajectory into a large number of segments, where
sub-trajectories that are close to each other are grouped.
The root of the TrajTree represents a trajectory box sequence
that is a sequence of bounding boxes constructed over the
entire spatial range covered by the indexed trajectories.
The trajectories at the root are recursively partitioned into
different groups until a node is reached that contains less
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than n trajectories. Leaf nodes in the TrajTree contain
the trajectories (or the sub-trajectories) to be indexed
while non-leaf nodes contain trajectory box-sequences. A
new trajectory is inserted into the index by adding it to
the trajectory box sequence that undergoes the minimum
expansion in volume. To increase the pruning power of
the TrajTree, a set of d spatial points, termed the vantage
points, are distributed in the trajectory space. For every
trajectory, a vantage descriptor is maintained to store the
distance between a trajectory and vantage points. These
vantage descriptors are later used to give an upper bound on
the distance between a query and the indexed trajectories.

TRIFL [137]: TRIFL is an access method that is
optimized for indexing trajectories in flash storage. TRIFL
is optimized for the specific nature of trajectory data that
involves insertions at high rates with infrequent deletions.
To better fit the nature of flash storage, TRIFL favors
large-granularity I/Os over page-granularity I/Os. First,
TRIFL performs spatial partitioning on the trajectory
data. Then, the trajectory data that lies within a spatial
partition is indexed temporally. TRIFL uses Grid-based
spatial partitioning that is based on the spatial distribution
of the trajectory data. For temporal indexing, TRIFL uses
the following two indexes: (1) the Append Only B+-tree
(BAO+-tree) for indexing timely updates, i.e., updates
that come with a timestamp that is greater than all the
indexed timestamps, and (2) the T ime Interval Index (TII)
for indexing deferred insertions, i.e., updates that have
a timestamp that is earlier than the current timestamp.
The BAO+-tree is a variation of the B+-tree that supports
append-only operations and that has a page fill-factor of
100%. The TII index splits the time domain into a set of
time intervals. For every time interval within the TII index,
a list of trajectories that overlap this interval is maintained.
Periodically, the BAO+-tree and the TII index for a spatial
partition are merged into a new BAO+-tree.

The trajectory-oriented access methods, discussed
above, have been designed to handle several important
aspects of trajectory indexing, including (1) the efficiency
of the index, e.g., PARITNET and T-PARITNET, (2) the
uncertainty in the objects’ locations, e.g., UTH, and (3) the
scalability in indexing the trajectory data, e.g., TrajStore.

3. INDEXING THE CURRENT AND RE-

CENT PAST DATA
In this section, we present an overview of the spatio-

temporal access methods that deal with queries about the
current location or the recent history of the moving objects.
We classify these spatio-temporal access methods based on
whether or not a recent history of an object is maintained
or only the current location of the moving object.

3.1 Indexing the Current Locations of Mov-
ing Objects

Many applications require online access to the current
locations of moving objects, e.g., traffic analysis. Online
access can be achieved by indexing the current locations
of the moving objects. Indexes that store the current
location of a moving object often requires the removal of
the previous locations of the moving object every time
the current location of the moving object changes. The
access methods that are presented in this section have been

proposed to index the current locations of moving objects.
PEB-tree [76]: The Policy Embedded Bx-tree is de-

signed to index the current locations of the moving objects
while preserving the privacy of the users’ locations. To effi-
ciently achieve peer-wise privacy, i.e., protect the location
of the user from unauthorized peers, the PEB-tree accounts
for both the location proximity of users and the rules that
define privacy of users. The main idea of the PEB-tree is
to generate an indexing key for each object. The indexing
key encodes both the location and the privacy policy
information. In the PEB-tree, users that are allowed to see
each others’ locations and that are spatially close to each
other are stored adjacently in the index. The PEB-tree is
based on the Bx-tree [60] index. Leaf nodes of the PEB-tree
are of the form < PEB key, user id, x, y, vx, vy, t, Pntp >,
where PEB key is the indexing key, (x, y) and (vx, vy) are
the user’s location and velocity, respectively, at Time t and
Pntp points to the user’s privacy policy. The PEB key

is calculated based on: (1) the timestamp of the user’s
location, (2) a sequence value that is calculated based on
compatibilities among privacy policies of different users,
and (3) the z-curve value of the user’s location. This
calculation of the PEB key is a one-time process and is
performed offline when users are first registered. Insertion
and deletion of objects in the PEB-tree are similar to those
for the Bx-tree. To answer privacy-aware range queries,
the PEB key of the range is computed by combining
both the spatial range and privacy policy constraints. To
calculate the search range of the policy constraints, a list is
maintained per user to keep track of other users that have
policies that are compatible with the list owner.

DIME [33]: The Disposable Index for Moving objEcts
(DIME, for short) maintains the current locations of the
moving objects. DIME has been designed to answer snap-
shot and continuous spatial range queries on moving objects.
The purpose of the spatial range query is to identify moving
objects inside a specific spatial range. This spatial range is
defined using a minimum bounding-rectangle (MBR). The
main objective of DIME is to efficiently support frequent
updates of object locations as objects move. Processing
location updates in spatio-temporal indexes that have
been developed prior to DIME requires expensive delete
operations. The delete operation is needed to remove the
obsolete location after the object moves to a new location.
In DIME, instead of performing separate delete operations
per location update, large portions of the expired index are
removed. DIME maintains multiple instances of a spatial
index, e.g., the R∗-tree. One instance is stored in main
memory to consume the incoming updates. The remaining
instances are maintained on disk. The main-memory
instance is periodically flushed to disk to create a new
empty main-memory instance, and the oldest disk-instance
is disposed of, i.e., is deleted. The deleted disk instance
can never contribute to the resultset of any query because
it gets removed after the maximum duration between two
consecutive updates is reached. The main advantage of
this index is that updates happen in main memory and
no disk-based index-update operations are required. Also,
expensive delete operations are grouped when disposing
of the oldest instance. One implication of DIME is that
querying takes place over two data structures, the one in
main-memory and the one in disk and results from both
structures need to be reconciliated.
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RUM+-tree [171]: The RUM+-tree extends the
RUM-tree [125, 153] with an additional data structure. The
RUM-tree builds on the R-tree index, where it augments
the R-tree with a main-memory update memo for indexing
the current locations of moving objects. The additional
structure in the RUM+-tree is a hash table on object
identifiers apart from the update memo. During an update,
the leaf node of the object having the update is directly
located through the hash table. The main idea is to deal
with updates locally in a bottom-up manner, i.e., if the new
location of the moving object still falls in the same MBR as
its old location, only the location of the object is updated
within the leaf node. If the new location of the moving
object falls outside the old MBR, then a new version of this
object is inserted into the RUM+-tree. The old version of
the object is removed lazily with the help of the update
memo. This addresses the limitation of the RUM-tree that
location updates are always inserted as new versions of the
objects even if these updates occur in the same MBR. One
disadvantage of the RUM+-tree over the original RUM-tree
is the maintenance of the additional auxiliary hash table
during object updates, and whose size is proportional to
the number of distinct object identifiers. The RUM-tree
does not use the extra hash table at the potential extra cost
during update time.

Composite Index for Indoor Moving Ob-
jects [151]: This index supports temporal changes in the
indoor space, and requires pre-computing the shortest
distances in the indoor space. The composite index has
the following three layers: (1) the geometric layer that
is composed of a tree tier and a skeleton tier, (2) the
topological layer, and (3) the object layer. The tree tier
indexes the indoor partitions, e.g., the rooms, the staircases,
and the hallways, using an R-tree-like index, where a leaf
node represents a partition, say P , and contains a pointer
to a bucket containing the moving objects located in P .
The skeleton tier is a graph containing information about
the staircases. Graph nodes in the skeleton-tier represent
entrances. Edges connect entrances that belong to the same
staircase or that are on the same floor. The topological layer
captures the connectivity between partitions. The object
layer contains all the moving objects’ buckets. A hash
table, o-table, is used to map each moving object to all the
partitions it overlaps with. Notice that for indoor moving
objects, there is uncertainty in the locations of the moving
objects. A moving object may be estimated to overlap
multiple partitions. To process range and k-NN queries, the
geometric layer is searched to identify the candidate objects
and partitions. Candidate moving objects are pruned by
computing the upper and lower distance-bounds between
the moving objects and the query. Exact indoor distance is
computed only for the unpruned moving objects.

Sim-tree [157]: The Sim-tree is a two-dimensional
access method used for traffic simulations over road
networks. Spatial indexes are used in traffic simulations
to store the locations of moving objects. Traditional
R-Tree-based indexes suffer from poor performance when
indexing objects that frequently update their locations as
they move. The Sim-tree is a balanced binary-tree that uses
average object-densities over the road network to build the
index. This index studies the expected road-densities across
the day, e.g., morning {pre-peak, peak, and post-peak},
and then builds an index for every period by recursively

decomposing the space into two sections with almost
equal densities. Building the Sim-tree using the expected
densities eliminates the need to re-balance the index and
significantly improves the simulation performance.

V-tree [121]: This access method is designed to answer
the snapshot kNN queries on the current locations of
objects. The distance metric used is the road-network
distance. The V-tree is a balanced f -ary tree that re-
cursively partitions the graph of the road network, where
f is the fanout of a tree node. Leaf nodes in the V-tree
contain subgraphs of the road network and maintain the
shortest-path distance between every pair of vertices in
the subgraph. Boundary vertices have edges between two
sibling subgraphs. Sibling subgraphs share the same parent
node. Non-leaf nodes in the V-tree maintain the distances
between boundary nodes in their child subgraphs. Moving
objects are indexed at the nearest leaf-level vertex by
storing the distance between the moving object and its
nearest vertex. Updates to the locations of moving objects
either change the distance between the object and the
vertex or change the vertex to which the moving object is
attached to. Leaf-level vertices that have moving objects
attached to it are called active vertices. kNN processing
is performed by finding the nearest active vertices to the
location of the query in order to generate the kNN list of
moving objects.

The access methods, discussed above, that index the cur-
rent locations of the moving objects have been designed to
handle various aspects in the maintenance of the current lo-
cation of moving objects including (1) efficiency, e.g., DIME
and the RUM+-tree, (2) handling of the movements of ob-
jects indoors, e.g., the composite index for indoor moving
objects, and (3) constraining the movement of objects over
road-networks, e.g., the V-tree.

3.2 Indexing the Recent Past
In this category, we survey access methods for indexing

the recent past for spatio-temporal data. Many applications
do not retain the entire historical spatio-temporal data but
keep track of only the recent history of the moving objects,
e.g., due to privacy requirements. This is achieved by main-
taining a sliding window and deleting the expired entries
periodically.

SWST [126]: The Sliding Window Spatio-Temporal
index supports indexing of limited-history spatio-temporal
data under a time-sliding window. SWST is designed as a
two-layered index that consists of a spatial grid index and
a temporal index within every spatial grid cell. The tempo-
ral index is based on the B+-tree index. Keys used in the
B+-trees embed both temporal and spatial information to
improve the pruning power of SWST. Additionally, an isP-
resent memo structure is maintained per spatial cell. This
memo stores a histogram that identifies which temporal in-
tervals have spatio-temporal data. Every spatial grid cell
maintains two B+-trees. Each B+-tree is responsible for
indexing data for an entire time-sliding window. One B+-
tree indexes incoming location-updates and the other holds
older updates. Sliding-window maintenance is performed
as follows: when an entire time-sliding window expires, the
B+-tree that holds old data is entirely removed, and a new
B+-tree is created to hold the newly incoming data. Query
evaluation is performed by identifying spatial grid cells that
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overlap the spatial range of the query. Then, the B+-trees
within the candidate grid cells are accessed to identify the
temporally overlapping objects. The purpose of the isPre-
sent memo is to reduce the number of accesses to the B+-
trees during query processing.

Trails-tree [87, 88]: The trails-tree is a disk-based
structure for indexing recent trajectories of moving objects.
The trails-tree maintains a temporal sliding-window over
indexed data. The trails-tree addresses the performance
limitations of SWST [126], and requires a lower number of
disk I/Os during update and query processing. The trails-
tree extends the RUM-tree [125, 153], and uses a 3D R-
tree with an additional data structure named the current
memo. Indexed entries within the trails-tree are of the form
(oid, x, y, ts, te), where oid is the identifier of the moving
object, (x, y) is the location of Object oid during Time Pe-
riod (ts, te). The trails-tree uses the current memo to main-
tain information about the most-recent update of an object.
Initially, all incoming updates are stored in the trail-tree
as (oid, x, y, ts, NOWTIME), where NOWTIME is a con-
stant indicating that the exact value of te is not known. The
trails-tree employs a lazy-cleaning mechanism that main-
tains the time-sliding window by removing expired objects
and sets the proper te for old entries with the help of the
current memo. Query processing is performed using a filter-
and-refine approach. First, an initial resultset is retrieved
by traversing the nodes of the trails-tree. Then, this initial
resultset is refined by removing the expired and non-current
entries with the help of the current memo.

4. INDEXING THE FUTURE
In this section, we discuss spatio-temporal access methods

that predict the future positions of moving objects. Various
approaches are adopted to predict the future positions, e.g.,
using historical data, using the objects’ reference locations
and their velocities, or using probability distribution models.
In this section, we classify the indexes based on the approach
adopted to predict the future locations of moving objects.

4.1 Indexing the Future Based on the Under-
lying Road-Network

This category of spatio-temporal access methods predicts
the future locations of moving objects based on the under-
lying road network.

P-Tree [57]: The Predictive Tree supports predictive
queries over moving objects without the knowledge of the
objects’ historical trajectories. The main idea behind the
P-tree depends on the connectivity of the underlying road-
network. The P-tree assumes that moving objects travel
through the shortest path to reach their destination. A P-
tree is built per moving object as it starts a trip on the road
network. The starting node of an object on the road-network
graph is deemed to be the root of the P-tree of the moving
object. The P-tree of an object consists of all the nodes that
are reachable from the root node within a certain time frame
T following the shortest route. The probability of reaching
a node is predicted based on a probability assignment model.
A node of the road-network graph will be added to a P-tree
only if the object’s probability exceeds a specific threshold
P . For every node in the road-network graph, a list of the
objects predicted to be present at this node is maintained
with their probabilities and travel time cost, i.e., the esti-
mated travel time, to reach this node from the current lo-

cation. When the location of an object is updated, the new
location becomes the new root of the P-tree. Nodes that
are not reachable from the new root are pruned from the
P-tree. The P-tree will be extended to add new nodes that
are reachable from the new root within a specific probability
threshold. A new P-tree will be created if the new location of
the object deviates from the estimated shortest-path route.
With every modification of the P-tree, the probabilities of
nodes are re-computed and the list of predicted objects asso-
ciated with each node in the road-network graph is updated
accordingly. Spatial range and kNN queries are processed
using the list of predicted objects at the qualifying nodes,
and this list is manipulated according to the type of query
issued.

4.2 Indexing the Future Based on Historical
Data

This category of spatio-temporal access methods predicts
the future location of a moving object based on the history
of movements of the object.

Prediction Distance Table [62]: This indexing tech-
nique supports server-side processing of predictive range
queries based on the mobility statistics extracted from his-
torical trajectories. The main idea behind this technique
is to use the turning patterns at the level of the individ-
ual moving objects. Initially, each moving object shares the
most probable turning pattern for each vertex containing
mobility statistics with the server. A moving object sends
an update to the server only if there is a change in the most
probable turning pattern for any of its vertices. The region
covered by the road network is partitioned into a grid con-
tainingm×n cells. For each cell, say c, the set of cells, say S,
that intersect the predicted paths are identified along with
the estimated travel times from c to every cell in S. This
is performed for every object as the mobility statistics differ
for the different objects. The minimum travel times among
all objects between two cells, say ci and cj , i.e., DP (ci, cj)
is stored in the prediction distance table. An entry in the
prediction distance table is of the form [ci, cj , h‘], where h‘
is the minimum travel-time between ci and cj . A hash ta-
ble for destination cells is also maintained, where the key
to the hash table is the destination cell identifier, i.e., cj .
This hash table stores a pointer to a B+-tree-like sorted
container with key h‘ and with value being the origin cell
i.e., ci. When there is a new turning pattern for an object,
say o, there will be an update to the prediction distance table
only if any Dp(ci, cj) computed for Object o is less than the
existing value for [ci, cj ]. This indexing approach supports
predictive range queries that are processed using the hash
table by first identifying the candidate origin cells whose
destination cells fall in the query range. Candidate entries
from the hash table are refined by pruning the cells whose
Prediction Distance h‘ is lower than the predictive distance
range specified in the query.

Concurrently Updatable Index [118]: This index
structure uses separate indexes for the spatial and temporal
domains. The spatial domain is indexed using a grid-based
index [48], where each cell of the grid has pointers to the
moving objects or queries that intersect the cell. There are
also pointers to objects that might intersect the cell with
a probability that exceeds a specific threshold. Operations
on various cells can be performed concurrently without de-
pending on the other cells. The temporal index partitions



To appear: GeoInformatica, 1-36, 2018

the objects into buckets, where each bucket represents a
time interval, and stores objects or queries that belong to
this time interval. A Bucket is deleted when the lifespan of
this bucket exceeds a specific duration. When a bucket gets
deleted, objects belonging to that bucket are also deleted
from the spatial index. Updates from moving objects are
classified into two types: general updates and temporal up-
dates. A general update happens when there is a change in
the path adopted by the moving object, and this takes place
by deleting the old trajectory and inserting the new trajec-
tory. A temporal update does not involve a change in the
spatial location, and hence does not affect the spatial index.
However, a temporal update means that there is a change in
the time of events associated with the object. If a temporal
update results in a change of a temporal bucket, then a new
pointer is added to the new bucket, and the pointer pointing
to the old bucket is deleted.

4.3 Indexing the Future Based on Velocity
Partitioning

When dealing with predictive queries, the velocities of the
moving objects significantly affect query performance. This
indexing approach accounts for the skew in velocity distri-
bution of the moving objects to improve query performance.

DVA [98]: This velocity partitioning technique is
based on partitioning the velocity domain according to the
Dominant Velocity Axes (DVAs, for short). The dominant

velocity axes are the ones in which most of the objectsâĂŹ
velocities are parallel to. DVAs are computed using a com-
bination of Principal Components Analysis (PCA, for short)
and k-means clustering [84]. The coordinate space is trans-
formed according to DVAs. A moving object index, e.g.,
the TPR*-tree [135], or the Bx-tree [60], is created based
on each DVA. A moving object is inserted into the index
with the closest DVA. A threshold is defined per DVA to
determine whether an object belongs to it or not. If the
threshold is not met, the object is inserted into an outlier
index that uses the regular coordinate system. Before pro-
cessing a spatio-temporal range query, the query range is
transformed into the coordinate space of all DVAs. Query
results are obtained by querying all indexes of all DVAs and
combining the results.

Speed Partitioning using Dynamic Program-
ming [156]: The main idea in this partitioning technique
is to partition the index based on the velocities of the mov-
ing objects such that the expansion of the query search space
is minimized thereby improving the query performance. Un-
like other speed-partitioning techniques that rely on heuris-
tics, this technique computes an optimal partitioning using
a dynamic programming algorithm. First, the speed do-
main is partitioned into k optimal-parts. Then, objects are
also partitioned into k index structures according to their
speed values. Each partition can be further decomposed
into four quadrants based on the directions of the moving
objects. This indexing technique is structured into three
components: (1) the speed analyzer that computes the opti-
mal speed-partitioning by analyzing the data from the mov-
ing objects, (2) the index controller that partitions a user’s
query, forwards the query partitions into their correspond-
ing index partitions, and combines the partial query results
received from each index partition, and (3) the index par-
titions, where the actual processing of queries takes place.
When a moving object updates its location or velocity, the

index controller determines whether the object should be in-
serted into a different partition or not. This decision is based
on the current speed of the object. Partitions are updated
periodically because locations and speed distributions of the
continuously moving objects keep changing over time.

D-Grid [155]: The Dual space Grid is an in-memory
data structure that indexes the moving objects based on
both velocity and location. The D-Grid prunes the queries’
search space using the associated velocity information. An-
swering predictive spatio-temporal range queries using a
query window enlargement rectangle (, QwER, for short)
suffers from the drawback of missing some slow-moving can-
didate objects that may not be part of the enlarged query
window. The reason is that the maximum velocity of the
moving objects is used to compute QwER. The D-Grid ad-
dresses this issue by partitioning the objects based on their
velocity information, and representing the velocity space as
a uniform grid termed v-grid. Each v-grid cell is associ-
ated with a location grid termed the l-grid. Each l-grid
cell points to a doubly-linked list of buckets. These buck-
ets store the data of an object, i.e, the object’s location
and velocity. Similar to the U-Grid [123], D-Grid contains
a hash-based secondary index on object identifiers that pro-
vides direct access to the objects to handle object updates.
Local updates are performed by just updating the current
cell. In contrast, non-local updates, i.e., the ones that span
multiple cells, are performed by marking the object in its
previous location as invalid and inserting the new location
update into a new grid cell. All invalid objects are deleted
using a lazy garbage-cleaning mechanism when the number
of invalid objects within an l-grid cell exceeds a predefined
threshold. Predictive range and kNN queries are processed
by first computing the QwER using the velocity histogram.
Then, for each v-grid cell that intersects the QwER, a range
search is performed using the enlarged query window of the
corresponding l-grid cell.

4.4 Time-parameterized Future Indexing
This category of access methods depends on indexing the

objects based on parametric rectangles. The boundaries
of a parametric rectangle at a specific timestamp, say t,
are defined using a function of the current location of the
moving object, t, and the velocity of the moving object.

OST-tree [139]: The Obfuscating Spatio-Temporal
data tree (OST-tree, for short) has been designed to
preserve the privacy of spatio-temporal data. The OST-tree
extends the TPR-tree [116] with spatial and temporal
obfuscation. Spatial obfuscation is achieved by enlarging
the spatial range in which a moving object is projected to be
located inside. Temporal obfuscation enlarges the temporal
range a specific object can be located inside. For example,
the obfuscated location of an object located in (x, y) at
timestamp t is the rectangle (xmin, ymin, xmax, ymax) within
the temporal range (tmin, tmax). The OST-tree accounts
for the spatial and temporal obfuscation parameters into
the function defining the parametric rectangles. The spatial
obfuscation parameter defines the enlargement of the
projected spatial location of the user within the parametric
rectangles. Similarly, the temporal obfuscation parameter
defines the enlargement in the temporal range within the
parametric rectangles.

GG TPR-tree [71]: The Grid-based Grouping time
parametrized tree (GG TPR-tree, for short) has been de-
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signed to optimize the performance of the TPR-tree [116] for
objects moving over specific paths, e.g., road networks. The
GG TPR-tree predicts the future locations of the moving
objects. The key idea is to group compatible objects into
clusters and treat the objects as groups not individually.
Compatible objects have similar velocities, move on the
same network edge, and are located close to each other.
The GG TPR-tree makes use of the fact that compatible
objects tend to have similar behavior with respect to their
projected future locations. This behavior changes at the
intersection points of the underlying network. Initially, the
GG TPR-tree handles objects individually. Then, once
compatible objects are detected, they are grouped together.
To prevent the deterioration in performance of the GG
TPR-tree, the indexed objects get regrouped when the
objects are no longer compatible.

HTPR*-tree [44]: The History TPR*-tree (HTPR*-
tree, for short) has been designed to extend the abilities
of the TPR*-tree [135] to support historical queries. The
TPR*-tree [135] supports queries on current and future
locations of moving objects. The main difference between
the HTPR*-tree and the TPR*-tree is that the HTPR*-
tree keeps track of the creation and update times of the
moving objects within the leaf nodes of the HTPR*-tree.
This allows the HTPR*-tree to support historical queries
over the indexed objects. The HTPR*-tree is able to
efficiently support frequent updates of moving objects
by using a bottom-up update approach. The bottom-up
update approach uses auxiliary memory structures, i.e.,
a hash table, a main memory bit vector, and a direct
access table. The hash table locates the leaf nodes of the
HTPR*-tree that contain the most-recent update of the
moving object. The direct access table identifies parent
nodes within the HTPR*-tree. The bit vector indicates
whether or not the leaf nodes are full. During an update
within the HTPR*-tree, instead of searching the index in
an expensive top-down approach, the HTPR*-tree uses
the auxiliary memory structure to reduce the number of
updates needed for the update based on the following rules:
(1) if the incoming update lies outside the boundaries of
the root node of the HTPR*-tree, the top-down approach
is used, and (2) the hash table and the bit vector are used
to identify the leaf node containing the previous location
information of the moving object. If the incoming update
is located inside the previous leaf node, the direct access
table is used to update and tighten the boundaries of the
parent nodes all the way to the root of the tree. Otherwise,
the top-town insertion is used.

TPRuv-tree [42]: The Time Parametric R-tree with
Uncertain Velocities (TPRuv-tree, for short) has been de-
signed to answer the Continuous k Nearest Neighbor query
for objects moving on road networks (CkNN, for short). In
this query, it is required to report the k objects that have
the highest likelihood to be close to the query’s focal point
in an upcoming temporal range, e.g., within the next [1-5]
minutes. The likelihood of closeness is used instead of the
exact distance because TPRuv-tree does not assume that
moving objects have fixed velocities. Both the data objects
and the query point are continuously moving over the road
network. An uncertain velocity is represented by a velocity
range [vmin, vmax], where vmin and vmax are the minimum
and maximum velocities of a moving object, respectively.
The distance interval between a moving object and a query

is calculated based on the object’s minimum velocity, the
object’s maximum velocity, the object’s direction, and the
direction of the query. The distance interval [dmin, dmax]
represents how close the object to the query point, where
dmin is the minimum possible distance and dmax is the
maximum possible distance. Objects are assigned close-
ness likelihood scores based on their distance intervals.
TPRuv-tree is structured as a two-layered index. The top
layer of TPRuv-tree is composed of an R-tree index that
is used to store the spatial information of the underlying
road network. Leaf nodes of the R-tree point to the lower
layer of the index. Each leaf node contains a direct access
table that contains the information of edges contained in
the leaf node’s MBR. An entry in the direct access table
contains the edge identifier, the edge’s speed limit, a list
of neighboring edges, and a list of objects moving on that
edge. TPRuv-tree is only updated when objects move from
one edge to another. In TPRuv-tree, distance intervals of
moving objects change as objects move across edges because
the direction and the speed of the objects change according
to the edge. Hence, the overall temporal range of the query
is split into temporal subintervals. Within each temporal
subinterval, objects do not change the edges they move on.
The result of the CkNN query is reported per subinterval
based on the closeness likelihood scores of objects. These
scores are calculated using the objects’ distance intervals
per temporal subinterval.

SeTPR*-tree [97]: The Shared Execution TPR*-tree
(SeTPR*-tree, for short) is a disk-based index that is
designed to optimize the performance of both the range and
kNN queries over moving objects. The main observation
behind the SeTPR*-tree is that the moving objects tend to
have frequent updates and indexes that are optimized for
handling frequent updates tend to have poor query perfor-
mance. To address this issue, the SeTPR*-tree uses shared
query execution along with lazy insertions and deletions
to maintain efficient query performance while supporting
frequent updates. The SeTPR*-tree uses a main-memory
buffer that contains a main-memory TPR*-tree [135] to re-
ceive incoming updates. The SeTPR*-tree uses a disk-based
TPR*-tree to persist the updates of moving objects. Also,
the SeTPR*-tree uses a main-memory deletion hash-table
to store all the delete operations that are reported by the
moving objects. Batched insertion and deletions are sub-
sequently reflected in the disk-based TPR*-tree. Only one
main-memory page is allocated for batch query-processing.
The SeTPR*-tree uses a shared query-execution algorithm
that ensures that any disk page that is relevant to a
batch of queries is loaded to the buffer only once. The
shared query-execution algorithm rearranges the steps for
processing the queries into group queries that read a disk
page only once. All the incoming insertions are held in the
main-memory TPR*-tree. When the main-memory buffer
is full, updates in the main-memory TPR*-tree are inserted
into the disk-based TPR*-tree. To reduce the number of
disk I/Os for the disk-based insertions, the SeTPR*-tree
adopts a proximity-ordered insertion approach. In this
approach, the main-memory TPR*-tree is traversed in
depth-first order. During this traversal, the encountered
objects are added into an insertion list. The depth-first
ordered traversal in the main-memory TPR*-tree ensures a
proximity-ordered insertion into the disk-based TPR*tree,
and reduces the overall number of disk I/Os needed to merge
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the main-memory TPR* tree with the disk-based TPR*tree.

The access methods above use the time-parametrized ap-
proach to index the moving objects under various scenar-
ios including (1) maintaining user privacy, e.g., the OST-
tree, (2) indexing the moving objects in road networks, e.g.,
the TPRuv-tree, and (3) supporting the frequent updates of
moving objects, e.g., the SeTPR*-tree.

5. INDEXING THE PAST, THE PRESENT,

AND THE FUTURE
In this section, we study a class of spatio-temporal in-

dexes that index the spatio-temporal data at all points in
time, i.e., the past, current, and future times.

PASTIS [113]: The PArallel Spatio-Temporal Indexing
System is an in-memory index that supports past-, present-,
and future-time queries. The history of the moving objects
is maintained in a table termed Location that stores the lo-
cation, velocity, and timestamp of the moving objects. The
spatial domain is partitioned into uniform grid cells, and is
ordered using the Z-order space-filling curve. Each grid cell
has a partial temporal-index that consists of a lookup table
containing entries for time intervals over the past N days.
Data older than N days is stored on disk. Each entry in
the lookup table contains a compressed bitmap (CBmap, for
short) that identifies the moving objects that have been in
a specific grid cell at a given time interval, and a hashmap
termed Hm-RIDList. Hm-RIDList associates each moving
object with a list of record identifiers that locate the actual
movement records of the moving object in the Location ta-
ble. For an update of an object with Timestamp dst, the
interval lookup table is checked to determine if dst maps
to an existing interval, and if so, then the corresponding
bitmap and hashmap entries are updated. If dst maps to a
non-existing interval, then a new interval is initialized. The
predicted locations are computed for a location update ac-
cording to the projected velocity and the current location
of the moving object. The predicted locations are stored in
a new hashmap, termed PHm, that is maintained to an-
swer predictive queries. The processing of range queries is
performed by bitwise ORing of the temporal bitmaps of the
objects in cells that are fully covered by the spatial range of
the query. For partially-covered cells, the RIDLists of the
moving objects are traversed to determined if the objects
are located inside the query range.

6. SPATIO-TEMPORAL AND SPATIO-

TEXTUAL INDEXING
Recently, many applications have emerged that deal with

text data, where the text data is associated with spatial
and temporal attributes. Examples of these applications
include the analysis of microblogs and the processing of ac-
tivity trajectories. Microblogs, e.g., tweets, contain a set of
keywords, a timestamp, and a spatial attribute that repre-
sents the location of the user. Activity trajectories associate
keywords to the spatio-temporal trajectories of users. These
keywords represent the activities performed by users at spe-
cific locations. These applications may require the filtering
or ranking of objects based on their spatial, temporal, or
textual properties. One approach to index spatio-temporal
text data is to use an existing spatio-temporal index, and
extend it to include text data. Alternatively, one can use an

existing spatio-textual index, and extend it to include the
temporal dimension. One of the earliest spatio-textual in-
dexes is the structure proposed by Aref and Samet [8]. This
index combines the spatial pyramid [131] with the bitmap
index to answer queries about the features of map data,
e.g., Where are the “Corn fields” located? Spatio-temporal
and textual data can be modeled as individual objects, e.g.,
tweets, or a related sequence of objects, e.g., activity (tex-
tual) trajectories. In this section, we survey the indexing
techniques proposed to answer spatio-temporal and textual
queries. We classify spatio-temporal and textual indexes
based on their adopted data model, i.e., individual objects
or textual trajectories.

6.1 Indexing Individual Objects
This category of spatio-temporal and textual indexes han-

dles objects individually. Most of the access methods in this
category are designed to answer aggregate analytical queries
over spatio-temporal and textual data, e.g., identifying the
most-frequent keywords in specific locations. Other types
of spatio-temporal and textual indexes that handle individ-
ual objects address continuous queries over streamed spatio-
temporal and textual data.

AFIA[127]: The Adaptive Frequent Item Aggregator
(AFIA, for short) is designed to identify the top-k frequent
terms, i.e., keywords, in a specific spatio-temporal range.
This index uses a grid-based approach [6] with uniform and
fixed cell-sizes. Spatial grids of multiple granularities are
used to partition the indexed space, where each grid cell per
granularity stores a summary of the most-frequent terms in
that cell. For temporal support, new instances of grid cells
are created periodically. Also, temporal cells are also cre-
ated at multiple time-granularities, and each spatial grid-
cell maintains frequencies of terms for all supported tem-
poral granularities, e.g., hour, day, week, and month. To
process a query with a specific spatio-temporal range, the
query range is partitioned into several coarser regions, and
the aggregates from these regions are combined to get the
final top-k result. Also, this index changes the size of the
summaries dynamically to adapt to changes in the number
of frequent terms within grid cells.

Mercury [86]: Mercury uses a partial in-memory pyra-
mid [8] to support top-k spatio-temporal-textual queries over
microblogs under constrained memory. The pyramid struc-
ture is a multi-level partitioning of the indexed space. In the
spatial pyramid, each cell at Level i is partitioned into four
equal cells in the subsequent level, i.e., Level i + 1. Each
pyramid cell maintains a list of the microblogs that have
arrived in the spatial range of the cell during the past T
time units. Microblogs within a cell are ordered according
to their arrival timestamps. To reduce the insertion over-
head, microblogs are periodically bulk-inserted into Mercury
using a main-memory buffer. To avoid an extremely deep
pyramid, a pyramid cell is split only if its content spans
at least two quadrants. This check is performed by main-
taining per pyramid cell a 4-bit variable, termed SplitBits.
Cells are merged only when three of the four sibling cells
are empty to avoid having redundant split and merge op-
erations. Deletion of the expired microblogs is performed
either during the insertion of new microblogs or during a
periodic deletion. Top-k microblogs are identified by com-
puting the scores of the indexed microblogs according to a
ranking function of the spatial proximity of the microblog
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to the location of the query and the time recency of the
microblog. The query-processing algorithm uses a priority
queue of the pyramid cells being searched to visit the pyra-
mid cells according to a ranking function that depends on
the spatial proximity between the cell and the location of
the query and the timestamp of the most recent microblog
in every pyramid cell. Also, during query processing, a list
of the top-k microblogs is maintained. This list is sorted in
the order of the scores of the microblogs, and gets updated
as the pyramid cells are being visited.

AP+-tree [149]: The AP+-tree (Adaptive spatial-
textual Partition tree) indexes the queries and not the
spatio-textual data objects. It is designed to index and
answer a multiplicity of continuous moving spatio-textual
filter queries at the same time. A spatio-textual filter query
is defined using a spatial range and an associated set of key-
words. A moving spatio-textual filter query continuously
changes its location over time because the query issuer may
be moving in space and needs to continously retrieve the up-
dated query answer as it changes its location. In this type of
query, it is required to identify the spatio-textual data ob-
jects that are located inside the spatial range of the query
and that contain all the query keywords. A spatio-textual
object is defined using a spatial point location and an as-
sociated set of keywords. A continuous spatio-textual filter
query progressively runs over streams of spatio-textual data
objects. The AP+-tree is an f-ary in-memory index, where
continuous queries are recursively partitioned. Partitioning
the indexed queries in an AP+-tree node is either spatial or
textual. The type of partitioning is based on a cost function
that chooses the best partitioning approach. Nodes par-
titioned spatially are termed s-nodes while those that are
partitioned textually are termed k-nodes. The AP+-tree is
adaptive to the movement of queries, and adds extra cost in
the direction of movement of the queries to reflect the query
movement-patterns. For efficient insertion and deletion, a
list of queries in each leaf node is maintained as a hashmap
structure, termed the s-list. Each incoming data object has
an expiration time. Active objects are augmented to the
leaf nodes that contain the relevant queries in a list, termed
the m-list. One disadvantage of storing the data objects
along with the continuous queries is the duplication of thr
stored data objects. The reason is that data objects will
be stored in all the leaf nodes that have relevant queries.
For a query, say Q, a list of the leaf nodes that overlap Q

is maintained to handle efficiently the location updates of
the continuously moving queries. When queries move, they
need to be re-evaluated. This re-evaluation is performed in-
crementally by reporting either positive updates (i.e., the
addition of new output data objects), or negative updates
(i.e., the deletion of the expired output data objects).

GeoTrend [85]: GeoTrend is an access method for iden-
tifying the trending keywords within recent microblogs in a
specific spatial region. GeoTrend adopts a hybrid spatio-
textual and temporal data structure that builds on the in-
complete pyramid structure [8] for spatial indexing. In every
cell in the pyramid, a textual index is maintained. This tex-
tual index is a hash table that stores aggregate statistics of
the keywords in the microblogs over the past time-period,
say T . The length of the time duration T depends on the
availability of main memory. The aggregate statistics of a
keyword, say k, is a set of N counters. Each counter stores
the number of microblogs containing Keyword k for a par-

tial time-interval of length T
N
. GeoTrend uses an expiration

technique to evict the obsolete aggregates. When the index
is under high workload, GeoTrend adopts a load-shedding
technique that evicts the less-important aggregates that are
less likely to contribute to any query answer. The main dif-
ference between GeoTrend and Mercury [86] is that Mercury
searches for individual microblogs while GeoTrend uses ag-
gregates over microblogs to identify the trending keywords.

R-trees with STLs [3]: This disk-based index provides
exact answers to the top-k F requent Spatio-Temporal query
(the kFST query, for short). This query identifies the most-
frequent terms in a specific spatio-temporal range. This in-
dex extends the nodes of a multi-dimensional R-tree with
sorted terms lists (STL, for short). An STL of an R-tree
node, say N , is a list that contains the frequencies of terms
of the objects covered by Node N . This list is sorted based
on the frequencies of terms. To improve the query perfor-
mance, STLs are added to both leaf and internal nodes of
the underlying R-tree. To reduce the memory overhead of
the index, STLs store the frequencies of the most frequent
λ terms, where λ is estimated analytically.

6.2 Indexing Textual Trajectories
This category of spatio-temporal and textual indexes

addresses the sequential nature of textual (also termed,
activity) trajectories. These indexes answer several inter-
esting similarity queries over textual trajectories.

GAT [166]: The Grid index for Activity Trajectories
(GAT) has been designed to address the Activity Trajectory
Similarity Query (ATSQ, for short). ATSQ is represented
by a set, say S, of location points, where each point has
an associated set of activities. The answer to this query
is the k most-similar activity trajectories to S. Activity
trajectories are represented as an ordered sequence of
spatio-temporal location updates, where each location up-
date is associated with a (possibly empty) set of activities.
A matching activity trajectory contains all the activity
keywords of the query at close proximity to the query’s
location points. GAT is composed of a multi-level grid, i.e.,
a pyramid, where every grid cell at Level i covers four cells
at Level i + 1. A hierarchal inverted cell list (HICL) that
maintains an inverted list of activity keywords for every
level in the multi-level grid. This inverted list maintains,
for every activity keyword α, a list of grid cells that contain
trajectory updates involving α. The size of HICL can grow
extensively due to the large number of indexed activity
keywords and their posting lists. Hence, HICL may not fit
entirely in the main memory. To address this issue, parts
of HICL that represent the top levels of the multi-level
grid are kept in main memory, and parts of HICL that
represent the lower levels of the multi-level grid are stored
on disk. Within every cell in the multi-level grid, and for
each activity, an inverted trajectory list (ITL, for short) is
maintained to keep track of trajectory identifiers (IDs, for
short) that contain that activity. Also, GAT maintains a
trajectory activity sketch (TAS, for short) to summarize
the activities per trajectory to efficiently prune trajectories
that do not match the required activities of the query.
ATSQ is processed by first using HICL to identify candidate
leaf-level grid cells that are closest to the location of the
query. Then, candidate cells are checked using ITL to
validate candidate trajectories. TAS is used to efficiently
ensure that the trajectories contain the query keywords.
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RAC-tree [29]: RAC-tree has been proposed to answer
the Ranking-based Activity Trajectory Search query (RTS,
for short). RTS is composed of a spatial location, a set
of keywords that represents the activities specified by
the query, and a threshold on the travel distance of the
retrieved trajectories. Similar to the Activity Trajectory
Similarity Query (ATSQ, for short) [166], RTS retrieves the
k-most relevant activity trajectories, and needs to cover
all query keywords. In RTS, if a user is searching for
activity trajectories that involve the keyword “restaurant”,
the ranking of the restaurant is considered alongside with
the spatial proximity between the location of the query and
the locations of the trajectory. Hence, the main difference
between ATSQ and RTS is that RTS takes into account
the ranking of the activities. The RAC-tree is based on
a quad-tree partitioning of the spatial locations of the
indexed trajectories. Leaf nodes of the RAC-tree contain
the locations of the trajectories, the activity keywords, and
the rankings of the activities. A non-leaf node within the
RAC-tree contains a summary of the activity keywords cov-
ered with the non-leaf node. The RAC-tree is traversed to
identify the candidate trajectories while using the keyword
summary-information to efficiently prune the non-relevant
index nodes. Candidate trajectories are subsequently
refined to identify the final resultset of the query.

GKR [90]: The Grid and KR∗-tree index is a hybrid
index structure that combines SETI [25] for indexing the
trajectories of moving objects and the KR∗-tree [55] for
indexing spatio-textual objects. Similar to SETI, GKR
uses a grid to partition the space into uniform disjoint
cells and to store the content of these cells into separate
disk pages. Each disk page is associated with a set of
keywords from the trajectory segments stored in it. Disk
pages of a grid cell are organized using the KR∗-tree. A
KR∗-tree contains a structure that associates index nodes
with keywords, and organizes disk pages according to
their temporal properties. Spatio-temporal and textual
queries of the form Q = (R, T, ψ), where R specifies the
spatial range, T is the time interval, and ψ is a set of
keywords, are processed by first finding candidate grid-cells
that overlap R. Then, the corresponding KR∗-trees of
the candidate grid-cells are traversed to find nodes whose
timestamp overlaps T and contain a keyword from Set ψ.
The corresponding disk-pages of these nodes are further
filtered in two steps to discard false-positive trajectory
segments in the spatio-temporal dimensions and to remove
trajectory segments that do not fully cover the set of query
keywords ψ.

IFST [90]: The Inverted F ile with Spatio-Temporal
order index (IFST, for short) is based on SFCQuad [31],
and extends SFCQuad to support the temporal dimension.
IFST consists of two main structures: (1) an inverted
file that contains the trajectory’s segment-identifiers per
keyword, and (2) a spatio-temporal structure to index the
segments according to their spatio-temporal properties.
The spatio-temporal index is composed of a quad-tree
that indexes the trajectory segments according to their
spatial locations using the Z-curve ordering. A leaf node
in the quad-tree contains an R*-tree to index the timespan
of trajectory segments. The inverted lists are split into
blocks and are compressed before storing them on disk. To
process a spatio-temporal and textual query of the form
Q = (R, T, ψ), the underlying quad-tree is traversed to

identify the nodes that overlap R. For a qualified quad-tree
leaf node, the corresponding R*-tree is traversed to identify
segment identifiers that have a timespan that overlaps T .
The inverted index is used to find the segment identifiers for
the keywords contained in ψ. Then, similar to GKR [90], a
two-step filter is used to obtain the final result.

IOC-Tree [54]: The Inverted OC -tree (the IOC-tree,
for short) answers spatio-temporal and textual filter queries
on trajectories. The IOC-tree is based on an inverted
index, where query processing is performed by filtering
the indexed data using a keyword-first strategy. In the
IOC-Tree, each keyword has an octree [59] that is built
by recursively dividing the spatio-temporal space into
eight nodes. Leaf nodes are encoded using the 3D Morton
code [92], where non-empty leaf nodes are stored on disk in
a one-dimensional structure ordered by Morton codes. A
signature is also maintained per octree node that contains
a summary of the trajectory information within that node.
This signature is used to filter out the non-qualifying nodes,
and the signature gets updated during the insertion/deletion
of trajectories. Exact trajectory information per non-leaf
nodes is stored on disk. Query processing is performed by
dividing the nodes into three types: (1) nodes that do not
satisfy the spatio-temporal constraint, (2) nodes that are
partially covered by the spatio-temporal range of the query,
and (3) nodes that are fully-covered by the spatio-temporal
range of the query. After the signature test is performed to
filter out the non-qualifying nodes, candidate trajectories
are loaded from disk, and are validated to get the final
result.

GiKi [165]: The Grid index Keyword index (GiKi,
for short) has been designed to answer the Approximate
Keyword Query of Semantic Trajectories(AKQST, for
short). The input to AKQST is a set of keywords, where
it is required to retrieve the k most-relevant semantic
trajectories or sub-trajectories. A semantic trajectory
(or sub-trajectory), i.e., an activity trajectory, needs to
cover all the query keywords while having the shortest
travel-distance. Coverage of keywords in AKQST is based
on approximate keyword-matching, e.g., to tolerate any
misspelled keywords. The relevance of trajectories is
defined as a function of (1) the aggregate travel-distance
of the trajectory, and (2) the similarity between the
trajectory keywords and the query keywords. GiKi con-
sists of a Semantic Qaud-tree (SQ-tree, for short) and a
Keyword-Reference Index (K-Ref, for short). The SQ-tree
is constructed based on a multi-level grid-partitioning of
the indexed activity-trajectories. Grid cells that overlap the
trajectories are used to build the spatial quad-tree within
the SQ-tree. A non-leaf node in the SQ-tree contains (1) an
identifier of the corresponding grid cell in the multi-level
grid, (2) pointers to children nodes of the quad-tree, and
(3) a signature of all the keywords covered within the corre-
sponding grid cell in the multi-level grid. The signature of
keywords is a MinHash [160] of all the keywords covered by
the quad-tree node. A MinHash signature of the keywords
is calculated by generating multiple hash-functions over all
the n-grams [50] of all the keywords covered by a quad-tree
node. The n-gram of a string, say S, is a set of strings
similar to S that is calculated by introducing wild-card
characters in S. For example, the 3-gram of “Box” is
{“##B, #Bo, Box, ox$, x$$”}. A leaf node in the SQ-tree
contains the keyword signature and pointers to the indexed
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trajectories. K-Ref is a textual index that is maintained
per trajectory to speed up the computation of the string
edit-distance. In K-Ref, K-means clustering is used to
identify the keyword clusters per trajectory. For every
cluster, a reference keyword is chosen. These reference
keywords are considered as representatives of the clusters
of keywords. Then, keywords of a trajectory are indexed
based on their distance to the reference keywords using a
B+-tree. AKQST is processed by using the SQ-tree and
K-Ref to identify candidate trajectories that have keywords
similar to the query keywords. Then, the relevance of
the candidate trajectories is calculated to identify the k
most-relevant trajectories.

IRWI-tree [58] The IRWI-tree is designed for indexing
spatio-textual trajectories. The IRWI-tree is able to effi-
ciently answer the sequenced spatio-temporal and textual
query over trajectories. A sequenced spatio-temporal and
textual query, say q, searches for trajectories that satisfy
a sequence of spatio-temporal and textual range queries
q1, q2, · · · , qn, e.g., to retrieve objects that take the bus in
the morning and the train in the afternoon. The IRWI-tree
is a hybrid index that combines an R-tree index with an
inverted list. Leaf entries in the IRWI-tree are of the form
of trajectory units [I, L, Seg], where I is the interval of the
entry, L is the textual content of the entry, and Seg is the
spatial location of the indexed trajectory unit. Internal
nodes of the IRWI-tree contain summaries of the trajectory
units in the leaf level. Sequenced spatio-temporal and tex-
tual queries are answered by splitting the sequenced query
into multiple simple queries that are processed in parallel
starting at the root of the IRWI-tree. Only trajectories that
satisfy all simple queries in the proper order are reported in
the resultset of the query.

ITB-tree [168]: The Inverted Trajectory Bundle-tree
(ITB-tree, for short) is designed to answer a variation
of the top-k spatial-keyword similarity query on activity
trajectories. The parameters of this query are a spatial
location and a set of keywords. In this query, it is required
to retrieve the k most-relevant activity trajectories. The
relevance of activity trajectories is defined as a function of
(1) the spatial proximity between the activity trajectories
and the location of the query, (2) the number of query
keywords contained in the activity trajectory, and (3) the
popularity of activity points in the trajectory. The popular-
ity of an activity trajectory point, say P , is measured based
on the number of other trajectories visiting P . In other
words, an activity trajectory is popular when it contains
points that are frequently visited by other trajectories. The
ITB-tree extends the Trajectory Bundle-tree (the TB-tree,
for short) [106] for indexing spatio-temporal trajectories.
The TB-tree is a hierarchical spatio-temporal structure that
ensures that all trajectory points in a leaf node belong to
the same trajectory. When a trajectory spans multiple leaf
nodes, these leaf nodes get connected by a doubly-linked
list. The ITB-tree adds an inverted list to the nodes of the
TB-tree. A leaf node in the ITB-tree contains trajectory
points and an inverted list for all keywords indexed in this
node. Trajectory points in the posting lists are sorted based
on their popularity. Also, for each keyword, say w, two flags
are maintained to indicate whether or not w appears in
the previous or the subsequent leaf nodes in the connected
doubly-linked list. In the ITB-tree, a non-leaf node, say N ,
maintains an inverted list for all the keywords covered by

N . This inverted list maintains the maximum popularity
for any keyword covered by N .

Multi-Index [145]: The multi-index is a combination
of heterogeneous traditional access methods for indexing
symbolic trajectories of moving objects. A symbolic trajec-
tory is a sequence of units. A unit consists of a time interval
and a label. A label is a symbolic textual description of
the location visited or the action performed during the
time interval of the unit. For example, the sequence of
street names visited by a moving object constitute the
labels of a symbolic trajectory. More than one label can
exist for the same moving object to describe its movement,
e.g., the transportation mode, the districts, and the points
of interest visited. Fabio et al. [145] adopt an expressive
pattern-matching-based query language to query symbolic
trajectories. One example query is to identify the moving
objects that have visited specific points of interest at a
specific sequence or at specific time intervals. To efficiently
support pattern-matching-based queries, the multi-index is
adopted. The multi-index combines the following structures
to index labels based on the labels’ data types: (1) A
trie to index strings, (2) a 2D R-tree to index points and
rectangles, (3) a 1D R-tree to index time intervals, and
(4) a B+-tree to index numeric data.

2TA [148]: Wang et al. have introduced the 2TA
algorithm to answer the Exemplar Textual Query (ETQ,
for short). Similar to the Activity Trajectory Similarity
Query (ATSQ) [166], ETQ retrieves the k most-relevant
activity trajectories. However, ETQ does not require the
retrieved trajectories to cover all the query keywords. The
relevance of the retrieved trajectories depends on a function
of (1) the spatial proximity between the locations of the
query points and the locations of the trajectory points, and
(2) the number of shared keywords between the query and
the trajectory. 2TA uses the spatial grid and the inverted
list to answer ETQ. The spatial grid is used to identify
the candidate trajectory-points based on spatial proximity.
The inverted list is used to keep track of trajectory points
per keyword. 2TA uses the spatial grid and the inverted
list data structures to search activity trajectories and rank
them to answer ETQ.

ST-tree [79]: The ST-tree is designed to answer
semantic-aware similarity queries on activity trajectories.
Instead of adopting exact or approximate keyword match-
ing, the semantic-aware similarity query considers the
semantic similarity between the keywords representing the
activities of the trajectories. For example, Keywords “Gym”
and “Exercise” have high semantic-similarity. This query
attempts to identify the k most-relevant activity-trajectories
to a specific set of keywords and spatial locations. Rele-
vance is defined as a function of (1) the spatial proximity
between the locations of the trajectories and the locations
of the query, and (2) the semantic similarity between the
keywords representing the trajectories’ activities and the
keywords of the query. To measure the semantic similarity
of the keywords, Latent Dirichlet Allocation (LDA, for
short) [17, 159] is used to map the keywords of activities
into a high-dimensional vector that represents the semantics
of the keywords. The ST-tree integrates the quad-tree with
Locality Sensitive Hashing (LSH, for short) [49]. LSH is
used to reduce the dimensions of the LDA representation
and to ensure that relevant activity trajectories are assigned
to the same bucket with high probability. In the ST-tree,
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activity trajectories are first indexed using a quad-tree.
Every leaf node in the quad-tree points to an LSH structure
for each trajectory point indexed by this leaf node. Query
processing in the ST-tree uses the quad-tree to find the
candidate trajectories that are close to the location of the
query. Then, LSH is probed to identify the semantically-
similar activity-trajectories.

The indexes discussed above support various important
trajectory similarity queries over textual trajectories. These
trajectory queries employ multiple cost functions that mea-
sure the relevance of the textual trajectories to the query.

7. PARALLEL AND DISTRIBUTED

SPATIO-TEMPORAL ACCESS METH-

ODS
The current scale of spatio-temporal data being gener-

ated has made centralized indexes less suited to support the
needs of spatio-temporal applications. The performance of
centralized indexes is restricted by the resources of a sin-
gle machine. This has led to the development of parallel
and distributed spatio-temporal access methods to scale up
the processing of spatio-temporal queries. There are two
main approaches for designing scalable spatio-temporal ac-
cess methods; (1) As extensions to general-purpose scalable
systems, and (2) As standalone indexes. An Index that ex-
tends a general-purpose system often integrates a traditional
spatio-temporal index into the general-purpose scalable sys-
tem. In contrast, a standalone index does not build on an
existing system. In this section, we highlight the main par-
allel and distributed spatio-temporal access methods.

7.1 Indexes that Extend General-purpose
Scalable Systems

This category of spatio-temporal access methods builds
on an existing general-purpose scalable system. The main
advantage of this approach is to inherit the scalability and
fault-tolerance features of the underlying general-purpose
scalable system. General-purpose scalable systems can
be classified into batch and streaming systems. Batch
systems, e.g., Hadoop [38] and Spark [163] require minutes
or even hours to process large amounts of data. Streaming
systems, e.g., Storm [140] process data in real-time with
minimal latency. In this section, we highlight the main
spatio-temporal indexes that extend general-purpose scal-
able systems.

DSI [162]: The Dynamic Strip Index (DSI, for short)
is a distributed structure to support the processing of
kNN queries over moving objects. DSI partitions the
two-dimensional space into two sets of non-overlapping
strips (vertical and horizontal strips). DSI is realized on
top of the Storm streaming system [140]. DSI maintains
the current locations of moving objects within the strips.
Strips have a lower and an upper bound on the number of
objects they contain. When a strip has more objects than
the upper bound, the strip splits. Conversely, when a strip
has fewer objects than the lower bound, the strip attempts
to merge with neighbor strips. Using horizontal and vertical
strips simplifies the splitting and merging operations.
Strips are assigned to distributed processes, and a single
worker process can have more than one strip. Splitting and
merging of strips guarantee that there will be no overloaded

or under-utilized processes. To answer kNN queries using
DSI, candidate strips are identified to calculate local kNN
resultsets. Then, the global kNN resultset is aggregated
over all the local kNN resultsets.

QaDR-tree [53]: The QaDR-tree is a distributed index
designed to support spatio-temporal range queries over
spatio-temporal data inside Hadoop [38]. Hadoop is a
distributed cluster-based big data processing system. The
QaDR-tree belongs to spatio-temporal access methods for
the past. The QaDR-tree is a two-layered index that is
composed of a global-index layer and a local-index layer.
The global-index is based on a 3D quad-tree, i.e., an
octree [59, 89]. The dimensions of the 3D quad-tree are the
space and time dimensions. The 3D quad-tree partitions
the spatio-temporal data into blocks. The size of a data
block is set to 60MB that is smaller than the total size of
each Hadoop data block that is 64MB. This extra space
is allocated for the local index to be stored with the
spatio-temporal in each of the Hadoop data blocks. The
local index used is a 3DR-tree. To answer a spatio-temporal
range query, the global 3D quad-tree is consulted to identify
the relevant Hadoop data blocks. Then, the local 3DR-tree
within each of these blocks is used to identify the final
query results.

ST-Hadoop [7]: Spatio-Temporal Hadoop is a dis-
tributed framework for storing, indexing, and querying
spatio-temporal data. ST-Hadoop builds on the Spatial-
Hadoop [41] system. SpatialHadoop extends the Hadoop
MapReduce [38] system with spatial constructs, i.e., a
spatial query language and spatial indexes. Indexing of
spatio-temporal data in ST-Hadoop is performed using
the following phases: (1) sampling and (2) bulk-loading.
In the sampling phase, a MapReduce [38] job scans the
spatio-temporal data, and keeps a sample of the data in
main memory. This sample guides the indexing of all
data in the bulk-loading phase. Spatio-temporal indexing
in ST-Hadoop is a temporal-first index, where data is
first partitioned into temporal slices, then a spatial index
is built for every temporal slice. The boundaries of the
temporal slices are estimated from the sample, and can be
either time-driven or data-driven. In time-driven slicing,
the temporal ranges of the slices are fixed, e.g., each slice
spans one month. In data-driven slicing, slices hold the
same amount of data, and the temporal ranges of slices
may not be the same. To further improve the performance
of ST-Hadoop, a hierarchical temporal index is built on
top of the temporal ranges of the slices. Spatial indexing
within a slice uses traditional spatial indexes that already
exist in SpatialHadoop, i.e., the Grid, the R-tree, and the
KD-tree. Bulk-loading uses a MapReduce job to scan the
spatio-temporal data and indexes the data according to the
temporal slices.

DTR-tree [146]: The Distributed Trajectory R-tree
(DTR-tree, for short) is a realization of the R-tree index
on top of Apache Spark [163]. Apache Spark is a general-
purpose distributed big-data system. The DTR-tree indexes
trajectories and activity trajectories using distributed R-
trees based on the trajectories’ spatial attributes. The
DTR-tree is organized in a global-local setup, where a
global R-tree is maintained to provide a partitioning over
the indexed trajectory-data. Leaf nodes of the global R-tree
represent children R-trees that are stored in distributed
machines. In the DTR-tree, trajectories are indexed based
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on their spatial locations using two-dimensional R-trees.
DMTR-tree [15]: The DMTR-tree index is designed

to support the skyline trajectory query over activity tra-
jectories. The parameters of the skyline trajectory query
are a trajectory start location, a trajectory end location, a
set of keywords, and a distance threshold. In the skyline
trajectory query, it is required to identify the set of skyline
trajectories that are not dominated by other trajectories in
any of the following dimensions: (1) the spatial proximity,
and (2) the query keywords contained in the trajectory.
The DMTR-tree uses the DTR-tree [146] with a separate
inverted list to keep track of the trajectories that contain
the popular keywords.

DITIR [22]: DITIR is a distributed index for indexing
and querying trajectory data in realtime. It supports the
ingestion and indexing of trajectory data at high rates.
DITIR is built on top of Apache Storm [140]; a distributed
data streaming system. DITIR uses an insertion server
to index the incoming trajectory-data, and a query server
to handle the incoming queries. DITIR stores data in a
distributed file system in temporal chunks. The insertion
server builds data chunks as in-memory B+-trees. The
key of a B+-tree entry is the Z-value of the geo-location
of an incoming data-entry. The B+-trees are periodically
flushed into a distributed file system. To avoid spending
time on node splits during B+-tree insertions, DITIR
uses template-based B+-tree indexing. In template-based
indexing, it is assumed that the spatial distribution of
data (and the distribution of the Z-values) does not change
significantly between consecutive data chunks. DITIR uses
the structure of the B+-tree from a previous chunk as a
template to index a subsequent chunk. The query server
maintains metadata about chunks in the distributed file
system to improve search performance in DITIR. The
metadata includes an R-tree that stores the spatial ranges
of the various chunks.

The parallel and distributed access methods, discussed
above, extend general-purpose scalable systems with spatio-
temporal indexing abilities. These indexes often inherit the
performance, scalability, and fault-tolerance properties of
the underlying general-purpose scalable system.

7.2 Standalone Parallel and Distributed
Spatio-temporal Indexes

This category of spatio-temporal access methods does
not depend on an existing general-purpose scalable system.
In this section, we highlight the main standalone parallel
and distributed spatio-temporal access methods.

TwinGrid [122]: The TwinGrid index maintains the
current locations of update-intensive moving objects. It
uses two separate grid-based memory-resident indexes for
handling queries and updates so that both can be processed
in parallel without interference. The updates index, also
termed the writer store, is a memory-resident write-only
structure that contains the most up-to-date copy of the
data. The reader-store is a read-only index that contains a
near up-to-date snapshot of the earlier index. The entire
memory-resident writer-store, i.e., the updates index, is
copied periodically. The duration between two successive
copies is called the cloning period. Copying is performed
using the memcpy system call from the write-store to the
reader-store while pausing updates. Therefore, the query

results are not up-to-date with the maximum staleness of
the cloning period. The structure of TwinGrid extends
the uniform grid-based structure [123]. Each grid cell does
not store data but contains a pointer to a linked list of
buckets where data is actually stored. Also, TwinGrid uses
a secondary-index structure that indexes objects based on
their identifiers, and has direct access to the data of an
object based on a bucket pointer, and a pointer to the
object within the bucket. These pointers prevent the need
to scan an entire cell or bucket during updates. TwinGrid
supports multi-threading by maintaining multiple queues,
one queue per thread. These queues contain the incoming
updates as well as the queries that are being processed.

PGrid [124]: The Parallel Grid (PGrid, for short)
indexes the current locations of moving objects. PGrid
uses a locking mechanism that handles both the queries
and the updates concurrently, thereby providing up-to-date
query results. PGrid has a structure that is similar to that
of TwinGrid [122], where queries are served by a primary
uniform grid [6] and a secondary index that handles updates
in a bottom-up fashion [70]. Each object, say o, in PGrid
can have up to two versions at a time; one representing
o’s previous location and the other for o’s current location.
The previous version of an object is maintained to ensure
correct query answers even during an update of a moving
object. The indexed entry of a moving object contains
the update timestamp to identify the latest version of the
object’s location, the object identifier, and the location
of the moving object. A new location update logically
deletes the old version. The actual deletion of the old
version happens with the subsequent update to the object.
Both the primary and the secondary indexes are modified
concurrently. Locking is used at both the object and the
grid-cell levels. A latch-based optimistic lock-free index
traversal (OLFIT, for short) [24] and a single-instruction
multiple-data (SIMD, for short) technologies are used for
parallel and atomic object reads and writes within PGrid.

MPB-tree [56]: The Multi-dimensional Parallel Binary
Tree (the MPB-tree, for short) indexes four-dimensional
spatio-temporal data. The four dimensions are x, y, z,
and time. The MPB-tree consists of four binary trees, one
binary tree per dimension, and a shared memory-pool that
stores the intervals of the four dimensions. Each binary tree
is a Triangular Binary Tree (the TB-tree, for short) that
uses a triangular decomposition strategy similar to that
in the Triangular Decomposition Tree (the TD-tree, for
short) [130]. The TD-tree is a temporal index that uses a
two-dimensional representation for temporal intervals, and
performs triangular decomposition of the indexed intervals.
A TB-tree node stores the triangle covered by the node,
pointers to the left and right children nodes, and an interval
pointer-array that contains pointers to intervals in the
shared memory-pool. A shared memory-pool entry contains
the following items: (1) the identifier of the spatio-temporal
object, (2) an offset from which the object is stored in the
file, and (3) an interval array that stores the four intervals
of the 4D MBR of the object. Each interval is pointed to
by a leaf node in the corresponding TB-tree. An interval is
inserted into the MPB-tree through four parallel TB-tree
insertions. The four insertions correspond to the indexed
four dimensions, where every dimension has its own TB-
tree. Leaf nodes in the TB-tree have a maximum capacity
threshold. If the leaf node chosen for the insertion of an
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interval pointer exceeds the maximum capacity, the leaf
node is split by recursively decomposing the node’s triangle
into smaller sub-triangles using a triangular-decomposition
strategy. A spatio-temporal range-query is divided into
four parallel interval-queries that are executed on their
corresponding TB-trees. Each interval query is transformed
into a 2D rectangular region, and the query result consists
of all the intervals that occur within this rectangle. Thus,
a 4D MBR is transformed into four 2D rectangles and
each of the four rectangular regions is an input to the
corresponding TB-tree in each dimension.

ToSS-it [4]: The Throwaway Spatial Index Struc-
ture (ToSS-it, for short) indexes the current locations of
moving objects on a distributed server. The main idea
behind ToSS-it is to exploit the underlying parallel and
distributed architecture by building a new index whenever
there is a location change instead of updating the old
index. This eliminates the need to maintain a centralized
update-tracking buffer to maintain updates that are not
yet reflected into the index. This improves the scalability
of the system. ToSS-it uses a Voronoi diagram [119] that is
distributed over the multiple nodes. The Voronoi diagram is
constructed in a distribute-first-build-later fashion by first
distributing all the objects across the cloud servers while
maintaining their spatial locality. The initial distribution
of the data is performed using a centralized server. Then,
local Voronoi diagrams (LVD, for short) are built at each
server. LVDs decompose the space into disjoint polygons.
The generation of the LVDs utilizes all the available cores
of the CPUs to further partition the objects at each node.
A hierarchical Voronoi index structure is also built at each
server to speed up query processing. A query, say q, can
by submitted to one node, say Nq, that will then find the
nodes INq that intersect the query region and forward the
query to these nodes. The query is run in parallel in the
INq nodes using LVDs. Partial results of the query at each
node are sent back to Nq for aggregation. D-ToSS [5] is
an enhanced version of ToSS-it, where D-ToSS does not
require a centralized server when partitioning data across
the nodes.

STIG [39]: The goal of Spatio-Temporal Indexing
using GPUs (STIG, for short), is to support the processing
of interactive spatio-temporal range queries that require
multiple point-in-polygon (PIP, for short) tests. STIG
belongs to spatio-temporal access methods that index the
past/historical spatio-temporal data. A single index is
used to simultaneously filter spatio-temporal data over
multiple dimensions to reduce the number of costly PIP
operations. STIG leverages the parallelism provided by
the parallel processors in GPUs to concurrently execute
multiple PIP tests that are independent of each other.
STIG is a generalization of a kd-tree with k = 2 × s + m,
where s represents the spatial dimension, and m represents
other attributes, e.g., the temporal dimension. This index
is designed for data with multiple spatial and temporal
attributes, e.g., taxi logs with pick-up and drop-off locations
and times. STIG consists of two parts: internal nodes of
the kd-tree, and leaf nodes. A leaf node stores a pointer to a
leaf disk-block and a k-dimensional box that bounds all the
records in that block. STIG clusters the points along the k
dimensions to speed up query processing and to maximize
the utilization of the underlying GPUs. STIG does not
support updates, and has to be rebuilt periodically when

new records are added to the database.
Elite [152]: Elite is an access method for spatio-

temporal trajectories. Elite supports parallel updates of
moving objects and query processing over multiple compute
nodes. Elite addresses both range and nearest-neighbor
queries. Spatio-temporal data is distributed across multiple
nodes based on the spatio-temporal locality of the data.
Data is indexed at the local and global levels. Data in
each node is indexed using a local index. A global index
coordinates the communication among the multiple local
indexes. Elite consists of the following three layers: (1) the
skip-list layer, (2) the torus layer, and (3) the oct-tree
layer. The skip-list and torus layers constitute the global
index while the oct-tree layer constitutes the local indexes.
The oct-tree [59] in each local index stores the trajectory
locations and maintains a hash table. The hash-table
maps the identifier of a trajectory to the oldest and the
most-recent locations of the trajectory. The most-recent
location of the trajectory is maintained to efficiently insert
the incoming trajectory-updates. Every trajectory location
has a pointer to the successive trajectory-location. Both
the oldest location of the trajectory and the successor
pointers are used for traversing the entire trajectory. The
torus layer consists of chained tori, where each torus is a
cluster of nodes. Each node in a torus maintains a routing
table that contains the IP addresses and the data ranges
of the neighboring nodes. The information in the routing
table is used for communication among nodes in the torus.
The skip-list layer contains a doubly-linked skip-list [111],
where each node in the skip-list corresponds to a torus
cluster. The key of a skip-list node consists of the temporal
interval of the torus cluster and a pre-assigned consecutive
IP-address segment. The IP-address segment serves as a
pointer to the torus cluster. For communication between
two tori, one torus node picks a random IP-address from
the IP-address segment of its linked torus. Then, the
picked random node performs intra-torus communication
to find the destination node. This communication is
needed to pass query information. Spatio-temporal range
queries are evaluated by first identifying the torus nodes
that overlap the query region. All candidate torus-nodes
run the corresponding sub-queries in parallel. The local
indexes are traversed to identify trajectories that overlap
the query region. Idle torus-nodes get allocated to each of
the candidate nodes to perform further resultset refinement.
Query results from all these nodes are merged to compose
the final result.

The spatio-temporal indexes, discussed above, use several
techniques to improve the scalability of spatio-temporal data
processing without depending on existing general-purpose
scalable systems. These indexes implement their own scala-
bility and fault-tolerance methodologies.

8. CONCLUSION
This survey is Part 3 of a series of two other sur-

veys [91, 99] that collectively cover the spatio-temporal ac-
cess methods developed up to 2017. In the years 2010 to
2017, new categories of spatio-temporal access methods have
been developed, namely, (1) spatio-temporal access meth-
ods for indexing the recent past, (2) spatio-temporal access
methods with text support, and (3) parallel and distributed
spatio-temporal access methods. Spatio-temporal indexes
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for the recent past supports the limited retention of the
data. Spatio-temporal and textual indexes have been devel-
oped due to the ubiquity of GPS-enabled smartphones and
their applications. Social networks, e.g., as in Twitter [142],
generate text data that is associated with the location where
text is produced. The concept of activity (or textual) trajec-
tories has been introduced to represent trajectories that have
a textual description associated with the trajectory points.
Also, several interesting spatio-temporal and textual sim-
ilarity queries on textual trajectories have been proposed.
Spatio-temporal and textual indexes integrate a spatial or
a spatio-temporal index with a textual index. Due to the
massive scale of spatio-temporal data, there has been a large
body of research that targets the development of parallel and
distributed spatio-temporal indexes. Many parallel and dis-
tributed spatio-temporal access methods have been realized
inside a general-purpose big-data processing system.

This work has been partially supported by the National
Science Foundation under Grant Number III-1815796.
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[145] F. Valdés and R. H. Güting. Index-supported pattern
matching on tuples of time-dependent values. GeoIn-
formatica, 21(3):429–458, 2017.

[146] H. Wang and A. Belhassena. Parallel trajectory search
based on distributed index. Information Sciences,
388:62–83, 2017.

[147] L. Wang, Y. Zheng, X. Xie, and W.-Y. Ma. A flexible
spatio-temporal indexing scheme for large-scale GPS
track retrieval. In International Conference on Mobile
Data Management (MDM’08), pages 1–8. IEEE, 2008.

[148] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, M. Sander-
son, and X. Qin. Answering top-k exemplar trajectory
queries. In The IEEE International Conference on
Data Engineering (ICDE’17), pages 597–608. IEEE,
2017.

[149] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang.
AP-tree: Efficiently support location-aware pub-
lish/subscribe. The International Journal on Very
Large Data Bases (VLDB J.), 24(6):823–848, 2015.

[150] J. H. X. Xu and W. Lu. RT-tree: An improved R-tree
indexing structure for temporal spatial databases. In
The International Symposium on Spatial Data Han-
dling, pages 1040âĂŞ–1049, 1990.

[151] X. Xie, H. Lu, and T. B. Pedersen. Efficient distance-
aware query evaluation on indoor moving objects. In
The IEEE International Conference on Data Engi-
neering (ICDE’13), pages 434–445. IEEE, 2013.

[152] X. Xie, B. Mei, J. Chen, X. Du, and C. S. Jensen.
Elite: An elastic infrastructure for big spatiotemporal
trajectories. The International Journal on Very Large
Data Bases (VLDB J.), 25(4):473–493, 2016.

[153] X. Xiong and W. G. Aref. R-trees with update memos.
In The IEEE International Conference on Data Engi-
neering (ICDE’06), pages 22–22, 2006.

[154] X. Xiong, M. F. Mokbel, and W. G. Aref. LUGrid:
Update-tolerant grid-based indexing for moving ob-
jects. In International Conference on Mobile Data
Management (MDM’13), page 13, 2006.

[155] X. Xu, L. Xiong, and V. Sunderam. D-grid: An
in-memory dual space grid index for moving object
databases. In The IEEE International Conference on
Mobile Data Management (MDM’16), pages 252–261,
2016.

[156] X. Xu, L. Xiong, V. Sunderam, J. Liu, and J. Luo.
Speed partitioning for indexing moving objects. In

The International Symposium on Spatial and Tempo-
ral Databases (SSTD’15), pages 216–234, 2015.

[157] Y. Xu and G. Tan. Sim-Tree: indexing moving objects
in large-scale parallel microscopic traffic simulation. In
ACM Conference on Principles of Advanced Discrete
Simulation (PADS) (SIGSIM’14), pages 51–62, 2014.

[158] Q.-y. YAN and F.-r. MENG. Multiple version TPR-
tree. Computer Engineering and Design, 10:057, 2004.

[159] X. Yan, J. Guo, Y. Lan, and X. Cheng. A biterm
topic model for short texts. In Proceedings of the 22nd
international conference on World Wide Web, pages
1445–1456. ACM, 2013.

[160] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Ap-
proximate string search in spatial databases. In The
IEEE International Conference on Data Engineering
(ICDE’10), pages 545–556. IEEE, 2010.

[161] M. L. Yiu, Y. Tao, and N. Mamoulis. The Bdual-tree:
Indexing moving objects by space filling curves in the
dual space. The International Journal on Very Large
Data Bases (VLDB Journal), 17(3):379–400, 2008.

[162] Z. Yu, Y. Liu, X. Yu, and K. Q. Pu. Scalable dis-
tributed processing of k nearest neighbor queries over
moving objects. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 27(5):1383–1396, 2015.

[163] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Arm-
brust, A. Dave, X. Meng, J. Rosen, S. Venkataraman,
M. J. Franklin, et al. Apache spark: a unified engine
for big data processing. Communications of the ACM,
59(11):56–65, 2016.
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