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ABSTRACT
This paper introduces a new family of Generic and Pro-

gressive algorithms (GPAC, for short) for continuous mo-
bile queries over mobile objects. GPAC provides a general
skeleton that can be tuned through a set of methods to be-
have as various continuous queries (e.g., continuous range
queries and continuous k-nearest-neighbor queries). GPAC
algorithms aim to provide three goals: (1) Online evalua-
tion through an in-memory processing of the incoming mo-
bile data. (2) Progressive evaluation through employing an
incremental evaluation paradigm. (3) Fast query response
through employing an anticipation paradigm. Query an-
swer is anticipated and is cached in memory to allow for fast
evaluation. GPAC algorithms are encapsulated in physical
pipelined query operators. GPAC pipelined operators can
be combined with traditional query operators in a query ex-
ecution plan to support a wide variety of continuous queries.
Experimental results based on a real implementation inside
a prototype streaming database engine show the efficiency of
GPAC operators in providing incremental and fast response
for continuous queries.

1. INTRODUCTION
The rapid increase of spatio-temporal applications calls

for new query processing techniques to deal with both the
spatial and temporal domains. Examples of these applica-
tions include location-aware services [18], traffic monitor-
ing [23], and enhanced 911 service. Such applications re-
ceive streaming data from mobile objects continuously (e.g.,
from moving vehicles in road networks). Recent research ef-
forts for continuous spatio-temporal query processing (e.g.,
see [12, 14, 15, 16, 19, 25, 28, 29, 31, 33, 34]) rely on the
ability to store and index spatio-temporal data. Although
working well in theory, such indexing schemes fail in prac-
tical to cope with high arrival rates of spatio-temporal data
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streams. With the notion of data streams, only in-memory
algorithms can be realized.

In this paper, we propose the Generic Progressive Algo-

rithm (GPAC, for short) for continuously evaluating mobile
queries over spatio-temporal data streams. GPAC provides
a generic skeleton that can be tuned through a set of meth-
ods to behave as different continuous mobile queries (e.g.,
continuous range queries and k-nearest-neighbor queries).
The GPAC family of algorithms is mainly designed to
achieve three goals: (1) Online evaluation. Incoming data is
processed in-memory without the need for secondary stor-
age. (2) Progressive evaluation. Only the updates of the pre-
viously reported result are computed progressively as new
tuples arrive. (3) Fast query response. Once a change in the
previously reported result is recognized, GPAC immediately
sends the update to the user.

Unlike most of the existing algorithms for continuous
spatio-temporal queries (e.g., see [3, 19, 30, 33, 37]) that are
implemented as high-level functions at the application level,
GPAC algorithms are encapsulated in physical pipelined
query operators that can be part of a query execution plan.
By having GPAC as pipelined query operators, we achieve
three goals: (1) GPAC operators can be combined with other
operators (e.g., distinct, aggregate, and join) to support on-
line and progressive evaluation for a wide variety of contin-
uous spatio-temporal queries. (2) Pushing GPAC operators
deep in the query execution plan reduces the number of tu-
ples in the query pipeline where GPAC operators act as fil-
ters to other operators. (3) Flexibility in the query optimizer
where multiple candidate execution plans can be produced.
In general, the contributions of this paper are summarized
as follows:

1. We propose GPAC; a generic and progressive family of
algorithms that achieves online, progressive, and fast
response for continuous spatio-temporal queries over
spatio-temporal streams.

2. We introduce two instances of GPAC for continuously
evaluating spatio-temporal range queries and spatio-
temporal k-nearest-neighbor queries.

3. We encapsulate GPAC algorithms into physical
pipelined query operators that can be combined with
other operators as part of a query execution plan.

4. We give experimental evidence, based on a real system
implementation [20], that GPAC provides the query
optimizer with a variety of pipelined query plans.



The rest of the paper is organized as follows: Section 2
highlights related work. In Section 3, we propose GPAC.
Section 4 provides two instances of GPAC that behave as
continuous range queries and k-nearest-neighbor queries.
Encapsulation of GPAC into physical query operators is pre-
sented in Section 5. Section 6 provides an experimental
study of GPAC. Finally, Section 7 concludes the paper.

2. RELATED WORK
Most of the existing continuous spatio-temporal query

processing techniques assume that incoming data from mo-
bile objects are materialized in secondary storage. Vari-
ous external memory index structures are used, e.g., simple
grid [8, 19, 26, 35], B-tree-like [13], R-tree-like [14, 16], and
TPR-tree-like [17, 28, 29, 34] structures. However, issues
of high arrival rates, infinite nature of data, and spatio-
temporal streams are overlooked by these approaches. On
the other side, numerous research efforts are devoted to
stream query processing (e.g., see [1, 5, 22]). However, the
spatial and temporal properties of data streams are not ex-
ploited.

Three approaches are investigated for continuously evalu-
ating continuous spatio-temporal queries: (1) Reevaluation.
A query has an additional temporal parameter (e.g., valid
time [38]) or a spatial parameter (e.g., a valid region [37] or a
safe period [8]) that indicates the region where the query an-
swer is valid. Once a query is out of the temporal or spatial
region, it needs to be reevaluated. (2) Caching the results.
Previous results are cached either in the client side [30] or
in the server side [15] and are used to prune the search for
the new results. (3) Incremental evaluation. The query an-
swer is limited to only the positive or negative updates of
the previously reported answer [19, 35]. Positive (Negative)
updates indicate that a certain object has to be added to
(removed from) the previously reported answer. In GPAC,
we utilize the third approach with incremental updates be-
ing handled through the query pipelines. In addition, GPAC
progressively computes the incremental answer and sends it
immediately to the user rather than bulk the updates and
send them once as in [19, 35].

Our proposed Generic Progressive Algorithm (GPAC) dis-
tinguishes itself from the above approaches where it has the
following unique properties: (1) GPAC goes beyond the idea
of materializing incoming data into secondary storage. In-
stead, GPAC evaluates incoming spatio-temporal streams
online. (2) GPAC is encapsulated in physical pipelined
query operators and can be extended to a variety of contin-
uous spatio-temporal queries. In addition, GPAC combines
the advantages of other techniques, where (1) GPAC is an
incremental approach, (2) GPAC outputs immediately any
change to the query result once a change takes place, and
(3) GPAC deals with stationary as well as mobile queries.

3. PROGRESSIVE EVALUATION OF
CONTINUOUS SPATIO-TEMPORAL
QUERIES

In this section, we introduce the Generic Progressive Al-

gorithm (GPAC) for continuous spatio-temporal queries over
spatio-temporal streams. GPAC is similar in spirit to gener-
alized search tree indexes (e.g., GiST [11] and SP-GiST [2]),
but GPAC is in the context of spatio-temporal query pro-
cessing algorithms. GPAC is introduced as a general skele-

ton that can be adjusted through a set of methods to behave
as various continuous spatio-temporal queries (e.g., continu-
ous range queries and nearest-neighbor queries). In GPAC,
each mobile query is bounded to one focal object. For ex-
ample, if a moving object M submits a query Q that asks
about its nearest police car, then M is considered the fo-

cal object of Q. Mobile objects and queries are required to
send updates of their locations every T seconds. Failure to
do so results in considering the mobile object or query as
disconnected. As GPAC can be implemented either at the
application level or as a physical query operator, the out-
put of GPAC is sent either directly to the user or to the
next query operator in the pipeline. Thus, throughout the
rest of the paper, we use the terms “user” and “next query

operator” as synonyms.

3.1 Main idea of GPAC
To overcome the massive size of incoming data streams,

traditional data stream query processors (e.g., see [1, 5, 22])
employ the so-called sliding-window queries, where the query
is limited to only the recently received tuples. Two types of
sliding windows are distinguished, time-based window (e.g.,
a query is interested only in received tuples within the last
hour) and tuple-based windows (e.g., a query is interested
only in the last 100 tuples). In sliding window queries, once
a tuple becomes old enough, it is expired (i.e., deleted) from
the memory leaving its space to a more recent tuple. Thus,
incoming streaming data follow a first-in-first-expire model.

Traditional sliding-window queries can support only (re-
cent) historical queries. However, in mobile environments,
most of the queries are concerned with the current state of
data. Thus, in GPAC, we go beyond the ideas of time-based
and tuple-based queries. Instead, GPAC employs a new kind
of sliding window queries, in which we call, predicate-based

window queries. In predicate-based window queries, an in-
coming data tuple is stored in memory only if it satisfies a
query predicate. Once an object becomes out of the pred-
icate, we expire (i.e., delete) that object from the memory.
Thus, data tuples are expired out-of-order.

To support predicate-based window queries in GPAC, we
store the tuples that satisfy the query predicate in a data
structure termed Q.Answer. Then, for each newly incom-
ing tuple P , GPAC performs two tests: Test I: Is P ∈
Q.Answer? Test II: Does P satisfy the query predicate?.
Based on the results of the two tests, GPAC distinguishes
among four cases:

• Case I: P ∈ Q.Answer and P still satisfies the query
predicate. As GPAC processes only the updates of the
previously reported result, P will neither be processed
nor will P be sent to the user.

• Case II: P ∈ Q.Answer, however, P does not qualify
to be part of the answer anymore (i.e., P does not
satisfy the query predicate anymore) . In this case,
GPAC reports a negative update P− to the user. The
negative update indicates that P needs to be removed
from the query answer and hence is discarded from the
system.

• Case III: P /∈ Q.Answer, however, P qualifies to be
part of the current answer (i.e., P satisfies the query
predicate currently). In this case, GPAC reports a pos-

itive update to the user. The positive update indicates
that P needs to be added to the query answer.



Procedure Q.ReceiveTupleI(Tuple P )
Begin

1. If query Q is moving and P is the focal point

(a) Q.UpdateCriteriaI(P ) (Figure 2)

(b) return

2. if Q.satisfy(P ) AND P /∈ Q.Answer

(a) Add P to Q.Answer

(b) Send the Positiveupdate P to the user

(c) If Q.IsDynamic()

• Q.UpdateCriteriaI(P ) (Figure 2)

(d) return

3. If (!Q.satisfy(P )) AND (P ∈ Q.Answer)

(a) Delete P from Q.Answer

(b) Send the Negative tuple P− to the user.

End

Figure 1: Pseudo code of skeleton of GPAC.

• Case IV: P /∈ Q.Answer and P still does not qualify
to be part of the current answer. In this case, P has
no effect on Q. Thus, P will neither be processed nor
will P be sent to the user.

Figures 1 and 2 give the pseudo code of the main idea of
GPAC upon receiving a tuple P . Functions and variables
written in bold font need to be implemented separately for
each query type as will be addressed in Section 4. Initially,
GPAC checks if P is the focal object of the moving query
Q (Step 1 in Figure 1). If this is the case, we update the
spatial region covered by Q. Based on the update, some
tuples from Q.Answer may be out of the new query spatial
region. These tuples are deleted (expired) from Q.Answer
and corresponding negative updates are sent to the user or
the next query operator (Step 2 in Figure 2).

If the newly incoming tuple P is not the query focal ob-
ject (Step 2 in Figure 1), we check if P qualifies to be in the
query answer (Test II). If this is the case, we check if P is
part of the recently reported answer (Test I). In this case,
we do not process or send P since P is still in the reported
answer (Case I). However, if P is not part of the recently re-
ported answer (Case III), we add P to Q.Answer (Step 2a
in Figure 1) and send P as a positive update to the user
(Step 2b in Figure 1). Then, we update the query infor-
mation (if needed) based on P ’s effect on the query spatial
region (Step 2c in Figure 1). The predicate Q.IsDynamic()

returns “true” if the query spatial area is changed as a result
of P .

If the incoming tuple P does not qualify to be part of the
answer, then we check if P is part of the recently reported
answer (Step 3 in Figure 1). In this case (Case II), we delete
P from the current answer (Step 3a in Figure 1) and report
P as a negative update to the user (Step 3b in Figure 1).
Notice that if P was not in the previously reported answer,
we do not have to process or send P to the user (Case IV).

3.2 Uncertainty in GPAC
One of the goals of GPAC is to provide a fast and up-

to-the-moment answer to continuous queries over spatio-

Procedure Q.UpdateCriteriaI(Tuple P )
Begin

1. Q.Update(P )

2. For all moving objects M ∈ Q.Answer

• If NOT Q.satisfy(M)

(a) Send the Negative output M− to user.

(b) Delete M from Q.Answer.

End

Figure 2: Updating query information in GPAC
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Figure 3: Uncertainty in moving queries.

temporal streams. However, this goal is hindered by the
fact that spatio-temporal streams are not materialized on
secondary storage. The basic GPAC algorithm stores only
the tuples that satisfy the query predicate Q. Such imple-
mentation may result in having uncertainty areas in Q. We
define the uncertainty area of a query Q as the spatial area
that may contain potential moving objects that satisfy Q,
with Q not being aware of contents of this area. Uncer-
tainty areas in GPAC may result in erroneous query result.
We distinguish among three cases for producing uncertainty
areas within the basic GPAC framework:
1. New query. Initially, there are no outstanding queries
in the system. Thus, continuously arrived data streams are
neither processed nor stored. Once a query Q is submitted
to the system, we cannot provide a fast answer to Q, sim-
ply because there is nothing currently being stored in the
database. In this case, all the area covered by Q is consid-
ered an uncertainty area. Later on, moving objects update
their locations and the answer of Q is progressively built.
2. Moving queries. Figure 3 gives example uncertainty

areas that result from moving range queries. Figure 3a rep-
resents a snapshot at time T0 where point P is outside the
area of query Q. Thus, P is not physically stored in the
database. At time T1 (Figure 3b), Q is moved to cover a
new spatial area. The shaded area in Q represents its un-

certainty area. Although P is inside the new query region,
P is not reported in the query answer, simply, because P
is not stored in the database. At T2 (Figure 3c), object P
moves out of the query region. Thus, P is never reported at
the query result, although it was physically inside the query
region in the interval [T1, T2].
3. Stationary queries. Figure 4 gives an example uncer-

tainty area in stationary k-nearest-neighbor queries (k = 2).
At time T0 (Figure 4a), the query Q has P1 and P3 as its
answer. P2 is outside the query spatial region, thus P2 is
not stored in the database. At T1 (Figure 4b), P1 moves far
from Q. Since Q is aware of P1 and P3 only, we extend the
spatial region of Q to include the new location of P1. Thus,
an uncertainty area is produced. Notice that Q is unaware
of P2 since P2 is not stored in the database. At T2 (Fig-
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ure 4c), P2 moves out of the new query region. Thus, P2

never appears as an answer of Q, although P2 should have
been part of the answer in the time interval [T1, T2].

Handling uncertainty in GPAC. GPAC does not han-
dle the uncertainty area that results from newly submitted
queries. Continuous queries are issued to run for hours and
days. Thus, having a warm-up period for a few seconds does
not affect neither the accuracy nor the efficiency of the query
result. However, uncertainty areas that result from station-
ary or moving queries are crucial and are treated by GPAC.
The following section gives the complete GPAC algorithm
for handling uncertainty in stationery and moving queries.

3.3 Anticipating the Query Answer in GPAC
In this section, we modify the basic GPAC algorithm given

in Section 3.1 to avoid having uncertainty areas in both sta-
tionary and moving queries. The main idea is to antici-

pate the change in the query spatial region and cache all
moving objects that lie inside the anticipated area in an
in-memory structure called Q.Cache. A conservative ap-
proach for determining the anticipated area is to expand the
query region in all directions with the maximum possible dis-
tance that a moving object can cover between any two con-
secutive updates. Such conservative approach completely
avoids uncertainty areas. Once a query changes its spatial
region, we probe Q.Cache for all objects that lie inside the
new spatial region. Thus a fast answer of Q is retrieved.
Notice that with the conservative approach, the change of
the query spatial region is guaranteed to be completely in-
side the anticipated area. To realize GPAC with caching,
we equip each query Q with the following: (1) A variable
Q.CacheArea that contains the boundary of the anticipated

area. (2) The data structure Q.Cache that keeps track of
all moving objects within Q.CacheArea. (3) The function
Q.InCacheArea() that takes an input tuple P and outputs
true if P lies inside Q.CacheArea.

The conservative caching approach requires only the
knowledge of the maximum object speed, which is typically
available in moving object applications (e.g., moving cars
in road network have limited speeds). This is in contrast
to all validity region approaches (e.g., the safe region [27],
the valid region [37], and the No-Action region [36]) that re-
quire the knowledge of the locations of other objects. This
information is not available in our case since GPAC is aware
only of objects that satisfy the query predicate. Thus, va-
lidity region approaches are not applicable in the case of
spatio-temporal streams.

Figures 5 and 6 give the pseudo code of GPAC when
caching is employed as a means to avoid uncertainty areas.
The changes in the basic GPAC algorithm are limited to
the following: (1) When the focal point of a moving query

Procedure Q.ReceiveTupleII(Tuple P )
Begin

1. If query Q is moving and P is the focal point

(a) Q.UpdateCriteriaII(P ) (Figure 6)

(b) return

2. if Q.satisfy(P ) AND P /∈ Q.Answer

(a) Add P to Q.Answer

(b) Send the Positive update P to the user

(c) If P ∈ Q.Cache

• delete P from Q.Cache

(d) If Q.IsDynamic()

• Q.UpdateCriteriaII(P ) (Figure 6)

(e) return

3. If (!Q.satisfy(P )) AND (P ∈ Q.Answer)

(a) Delete P from Q.Answer

(b) Send the Negative tuple P− to the user

(c) If Q.InCacheArea(P )

• Insert P in Q.Cache

(d) If Q.IsDynamic()

• Q.UpdateCriteriaII(P ) (Figure 6)

(e) return

4. If Q.InCacheArea(P )

(a) If P /∈ Q.Cache

• Insert P in Q.Cache

(b) return

5. If P ∈ Q.Cache

• delete P from Q.Cache.

End

Figure 5: Pseudo code of GPAC with caching.

moves, we update the new Q.CacheArea. Then, we go over
all the objects in Q.Cache to determine whether any of them
become part of the query answer (Step 2 in Figure 6). Also,
for moving objects that are out of the new query region, we
check whether they need to be moved into Q.Cache or not
(Step 3b in Figure 6). (2) When the input P is inside the
query area but was not in the previously reported answer,
we check if P is stored in Q.Cache. In this case, we delete P
from Q.Cache (Step 2c in Figure 5). (3) When the input P
is not inside the query region but was in the old answer, we
check if the new value of P lies in the query region. In this
case, we add P to Q.Cache (Step 3c in Figure 5). (4) If P is
neither inside the query region nor in the previous query an-
swer, we maintain the status of P with respect to the query
region (Steps 4 and 5 of Figure 5).

3.4 Scalability of GPAC
In this section, we discuss the effect of large number of ob-

jects/queries and the size of the cache area on the scalability
of GPAC.

Large number of objects. The infinite nature of data is
a common problem to all traditional data streams where the
incoming data is truly massive and is beyond the systems ca-
pabilities to store. GPAC avoids this problem by employing



Procedure Q.UpdateMovingQueryII(Tuple P )
Begin

1. Update Q.Criteria and Q.CacheArea based on P

2. For all moving objects M in Q.Cache

• If Q.satisfy(M)

(a) Move M from Q.Cache to Q.Answer

(b) Send the Positive update M to the user

• If NOT Q.InCacheArea(M)

– Delete M from Q.Cache

3. For all moving objects M ∈ in Q.Answer

• If NOT Q.satisfy(M)

(a) Send the Negative tuple M− to the user

(b) if Q.InCacheArea(M), move M from
Q.Answer to Q.Cache, else, delete M
from Q.Answer.

End

Figure 6: Updating query information in GPAC

with caching

predicate-based windows where incoming tuples that do not
satisfy any query predicate are discarded. Similarly, once a
stored tuple does not satisfy the query predicate any more,
that tuple is immediately expired from the system. Thus,
stored tuples are limited only to those tuples that satisfy
query predicates.

Large number of queries. GPAC algorithms and oper-
ators are concerned with evaluating one outstanding contin-
uous query with an incoming spatio-temporal stream. Being
encapsulated into physical operators provide the flexibility
that GPAC can be plugged into any scalable framework that
employs a shared execution paradigm as a means to achieve
scalability, e.g., NiagaraCQ [7], PSoup [6], or SINA [19]. The
main idea behind shared execution is to abstract the opera-
tion of evaluating a set of concurrent continuous queries into
a join between objects and outstanding queries. GPAC can
be plugged in these frameworks as the basic operator to join
each query with the incoming objects.

Cache area. The cache area enlarges the query size and
hence more input tuples need to be stored. However, this in-
crease in size is limited and can be neglected in many cases.
For example, consider a square range query with side length
x. A conservative cache area would increase the side length
to be x + d where d is the maximum distance an object can
travel between any two consecutive updates. The ratio of

area increase would be (x+d)2−x
2

x2
. A typical query region

would be orders of magnitude of d, i.e., x = md. Thus, the

ratio of increase is 2md
2+d

2

m2d2 = 2m+1
m2 , which can be approx-

imated to 2
m

. In a typical scenario, m can be in the order
of tens, which results in a slight overhead in the query size.
For example, consider a square range query with side length
2 miles that monitors the traffic in a downtown area. If ob-
jects are moving with speed 25 miles/hour while updating
their locations every 30 seconds, then the maximum trav-
eled distance for each object is d = 1/8. This will result in
increasing the query area by only 12.5%. Similarly, for the
same setting, a query about objects within 3 miles suffers
only an 8.5% increase in size. Notice that the overhead in
having a cache area is reduced by the increase in the area of

the original query.

4. INSTANCES OF GPAC
In this section, we develop two instances of GPAC,

namely, for continuous spatio-temporal range queries and
continuous k-nearest-neighbor queries. Other instances of
GPAC (e.g., reverse nearest-neighbor [3], group nearest-
neighbor queries [24], and time-parameterized queries [32])
can be developed in a similar way.

4.1 Spatio-temporal Range Queries
Q.Answer is represented by a hash table. Q.Cache is

represented as a linked list that is sorted on the distance
from the moving object to the boundary of the query region.
The functions Q.satisfy() and Q.InCacheArea() represent
a test of object P inside the rectangular region of Q and the
cache area, respectively. The function Q.IsDynamic() al-
ways returns false for stationary queries and true for moving
queries. This is because static range queries never change
their spatial regions.

4.2 Spatio-temporal k-nearest-neighbor
Q.Answer and Q.Cache are represented by a linked list

that is sorted on the distance from the moving object
to the query focal point. The functions Q.satisfy() and
Q.InCacheArea() represent a test of object P inside the
circular region of Q and the cache area, respectively. The
circular region has the focal point as its center and the dis-
tance to the furthest k point as its radius. The function
Q.IsDynamic() always returns true for both stationary and
moving queries.

5. PIPELINED SPATIO-TEMPORAL
QUERY OPERATORS

We encapsulate GPAC algorithms for continuous range
queries and continuous k-nearest-neighbor queries into the
pipelined query operators GPAC-IN and GPAC-kNN, respec-
tively. The pipelined operators are implemented inside
the PLACE (Pervasive Location-Aware Computing Envi-
ronments) server [20, 21]. A typical SQL query submitted
to the PLACE server may have the following form:

SELECT select clause

FROM from clause

WHERE where clause

GPAC-IN in clause

GPAC-kNN knn clause

The in clause may have one of the following two forms:

• Static range query (x1, y1, x2, y2), where (x1, y1) and
(x2, y2) represent the top left and bottom right corners
of the rectangular range query.

• Moving rectangular range query (′M ′, ID, xdist, ydist),
where ′M ′ is a flag indicates that the query is moving,
ID is the identifier of the query focal point, xdist is the
length of the query rectangle, and ydist is the width
of the query rectangle.

Similarly, the knn clause may have one of the following
two forms:



Figure 7: Greater Lafayette, Indiana, USA.

• Static kNN query (k, x, y), where k is the number of
the neighbors to be maintained, and (x, y) is the center
of the query point.

• Moving kNN query (′M ′, k, ID), where ′M ′ is a flag
indicates that the query is moving, k is the number of
neighbors to be maintained, and ID is the identifier of
the query focal point.

As will be discussed in Section 6, pushing the operators
GPAC-IN and GPAC-kNN to the bottom of the execution query
plan always achieves the best performance. However, hav-
ing the spatio-temporal operators at the bottom or at the
middle of the query evaluation pipeline requires that all the
above operators be equipped with special handling of nega-

tive tuples. The NILE query processor [10] handles negative

tuples in pipelined operators as follows: Selection and Join

operators handle negative tuples in the same way as posi-

tive tuples. The only difference is that the output will be
in the form of a negative tuple. Aggregates update their ag-
gregate functions by considering the received negative tuple.
The Distinct operator reports a negative tuple at the out-
put only if the corresponding positive tuple is in the recently
reported result. For more details about handling the nega-

tive tuples in various query operators, the reader is referred
to [9].

6. EXPERIMENTAL RESULTS
In this section, we give experimental evidence that encap-

sulating GPAC algorithms with appropriate cache size into
physical pipelined query operators outperforms high level
implementations. Mainly, the experiments in this section
are divided into two categories:

• Pipelined operators. This set of experiments com-
pare the high level implementation of GPAC with the
encapsulation of GPAC algorithms in pipelined query
operators.

• Properties of GPAC. In this set of experiments, we
study some properties of GPAC, namely dealing with
high data rates and various spatio-temporal selectivi-
ties.

All the results in this section are based on a real im-
plementation of GPAC algorithms and operators inside
our prototype database engine for spatio-temporal streams,
PLACE [20, 21]. PLACE extends the Nile [10] stream-
ing database management system to handle spatio-temporal
streams. We run PLACE on Intel Pentium IV CPU 2.4GHz
with 512MB RAM running Windows XP. Without loss of
generality, all the presented experiments are conducted on
stationary and moving continuous spatio-temporal queries.
Similar results are achieved when employing continuous k-
nearest-neighbor queries.

We use the Network-based Generator of Moving Objects [4]
to generate a set of moving objects and moving queries in
the form of spatio-temporal streams. The input to the gen-
erator is the road map of Greater Lafayatte (a city in the
state of Indiana, USA) given in Figure 7. The output of the
generator is a set of moving points that move on the road
network of the given city. Moving objects can be cars, cy-
clists, pedestrians, etc. Any moving object can be a focal of
a moving query. Unless mentioned otherwise, we generate
110K moving objects as follows: Initially, we generate 10K
moving objects from the generator, then we run the genera-
tor for 1000 time units. At each time unit, we generate new
100 moving objects. Moving objects are required to report
their locations every time unit T . Failure to do so results in
disconnecting the moving object from the server.

Although, it is appealing to have a conservative cache, a
large cache size may encounter high overhead while main-
taining objects inside the cache area. Thus, for the rest of
the experiments, we use the cache size 75% of the conser-

vative cache area. In most cases, a cache size of 75% would
have similar performance as that of the conservative cache.
Notice that a conservative cache is designed for the most
speedy moving object. Most likely, the query focal object is
not that object of maximum speed.

6.1 GPAC Operators in a Pipelined Query
Plan

In this section, we compare the implementation of GPAC
at the application level with the encapsulation of GPAC
inside query operators.

6.1.1 Pipeline with a Selection Operator
Consider the query Q:“Continuously report all trucks that

are within MyArea”. MyArea can be either a stationary or
moving range query. A high level implementation of this
query is to have only a selection operator that selects only
the “trucks”. Then, a high level algorithm implementa-
tion would take the selection output and incrementally pro-
duce the query result. However, an encapsulation of GPAC
into the GPAC-IN operator allows for more flexible plans.
Figure 8a gives a query evaluation plan when pushing the
GPAC-IN operator before the selection operator. The follow-
ing is the SQL presentation of the query.

SELECT M.ObjectID
FROM MovingObjects M
WHERE M.type = ”truck”

GPAC-IN MyArea

Figure 9 compares the high level implementation of the
above query with pipelined GPAC-IN operators for both sta-
tionary and moving queries. The selectivity of the queries
varies from 2% to 64%. The selectivity of the selection op-
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Figure 8: Pipelined GPAC operators.
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Figure 9: Pipelined operators with SELECT.

erator is 5%. Our measure of comparison is the number of
tuples that go through the query evaluation pipeline. When
GPAC is implemented at the application level, its perfor-
mance is not affected by the query selectivity. However,
when GPAC-IN is pushed before the selection, it acts as a
filter for the query evaluation pipeline, thus, limiting the
tuples through the pipeline to only the progressive updates.
With GPAC-IN selectivity less than 32%, pushing GPAC-IN

before the selection greatly affects the performance. How-
ever, with selectivity more than 32%, it would be better to
have the GPAC-IN operator above the selection operator.

6.1.2 Pipeline with a Join Operator
In this section, we consider a more complex query plan

that contains a join operator. Consider the query Q: “Con-

tinuously report moving objects that belong to my favorite

set of objects and that lie within MyArea”. A high level im-
plementation of GPAC would probe a streaming database
engine to join all moving objects with my favorite set of
objects. Then, the output of the join is sent to the GPAC
algorithm for further processing. However, with the GPAC-IN
operator, we can have a query evaluation plan as that of Fig-
ure 8b where the GPAC-IN operator is pushed below the Join

operator. The SQL representation of the above query is as
follows:

SELECT M.ObjectID
FROM MovingObjects M, MyFavoriteCars F
WHERE M.ObjectID = F.ObjectID
GPAC-IN MyArea

Figure 10 compares the high level implementation of the
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Figure 10: Pipelined operators with Join.
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above query with the pipelined GPAC-IN operator for both
stationary and moving queries. The selectivity of the queries
varies from 2% to 64%. As in Figure 9, the selectivity of
GPAC does not affect the performance if it is implemented
in the application level. Unlike the case of selection op-
erators, GPAC provides a dramatic increase in the perfor-
mance (around an order of magnitude) when implemented as
a pipelined operator. The main reason in this dramatic gain
in performance is the high overhead incurred when evaluat-
ing the join operation. Thus, the GPAC-IN operator filters
out the input tuples and limit the input to the join operator
to only the incremental positive and negative updates.

6.2 Properties of GPAC
In this section, we study some properties of GPAC algo-

rithms, namely, dealing with high rates of data arrival and
the spatio-temporal query selectivity.

6.2.1 High Arrival Rates
Figure 11 gives the result of an experiment that deals

with high arrival rates in GPAC for stationary and moving
queries. Spatio-temporal data arrives exponentially with an
arrival rate that varies from 100 tuples per second to 4000
tuples per second. Our measure is the average output delay.
The output delay of a tuple P is the difference from the time
that P enters the system to the time that P has an effect on
the output result. As shown in Figure 11, GPAC algorithms
can afford up to 2000 tuples per second with only one second
in output delay.
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6.2.2 Query Selectivity due to Incremental Evalua-
tion

Unlike the selectivity of traditional queries, the selectivity
of spatio-temporal queries is more sophisticated. Figure 12
gives the result of an experiment that shows the selectivity
of spatio-temporal queries. We run a continuous spatio-
temporal query Q that should have a selectivity that varies
from 10% to 100%. We call this selectivity as the correct

selectivity where it is induced from the spatial area covered
by Q. However, the actual selectivity of the spatio-temporal
query is higher than its correct selectivity. The main reason
is that in spatio-temporal queries, moving objects can go
back and forth and report themselves in the query answer
as multiple positive and negative tuples. Thus, it may hap-
pen that a query with a smaller area produces more output
results than a query with a larger area. For example, con-
sider a query that covers all the spatial area (i.e., selectivity
100%). Such a query would never output negative tuples.
In addition, once all objects are inside the query area, no
output will be produced due to the progressive property.
Consider another query that has a slightly less area. Due
to the area not covered by this query, it may happen that
some tuples go out of the query region and produce negative

tuples. Then, these tuples can move again inside the query
area to produce a set of positive tuples. As a result, a query
with smaller area may produce more output tuples.

7. CONCLUSION
In this paper, we introduced a new family of Generic

and Progressive Algorithms (GPAC, for short) for contin-
uous query evaluation over spatio-temporal data streams.
GPAC is a general skeleton that can be tuned through a set
of methods to behave as various continuous spatio-temporal
queries. GPAC provides online, progressive, and fast re-
sponse to continuous spatio-temporal queries. We described
two versions of GPAC. The first version (with no caching) is
simple to maintain, however, produces inaccurate answers.
In the second version (with caching), we introduce the con-
cept of anticipation, where the query answer can be antic-
ipated beforehand and is cached in a cache structure. We
show how to realize two types of continuous spatio-temporal
queries form GPAC, namely, continuous range queries and
continuous k-nearest-neighbor queries. Moreover, we encap-
sulate GPAC algorithms into physical pipelined query oper-
ators. Pipelined operators are combined with traditional
operators (e.g., selection and join) to provide online, pro-
gressive, and fast response of a wide variety of continuous

spatio-temporal queries. Experimental results determine the
appropriate size of caching in GPAC. In addition, we show
that encapsulating GPAC into pipelined query operators is
an order of magnitude better than implementing GPAC at
the application level. Also, GPAC is stable with high data
arrival rates. For arrival rate of 2000 tuples per second,
GPAC results in only one second delay in the query answer.
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