
©Silberschatz, Korth and Sudarshan8.1Database System Concepts

Chapter 8&9: Object-Based Databases
■ Need for Complex Data Types
■ Object Oriented Database Systems

é The Object-Oriented Data Model
é Object-Oriented Languages
é Persistent Programming Languages
é Persistent C++ Systems

■ Object-Relational Database Systems
é Nested Relations
é Complex Types and Object Orientation
é Querying with Complex Types
é Creation of Complex Values and Objects

■ Comparison of Object-Oriented and Object-Relational
Databases

©Silberschatz, Korth and Sudarshan8.2Database System Concepts

Need for Complex Data Types

■ Traditional database applications in data processing had
conceptually simple data types
é Relatively few data types, first normal form holds

■ Complex data types have grown more important in recent years
é E.g. Addresses can be viewed as a

Ø Single string, or
Ø Separate attributes for each part, or
Ø Composite attributes (which are not in first normal form)

é E.g. it is often convenient to store multivalued attributes as-is,
without creating a separate relation to store the values in first
normal form

■ Applications
é computer-aided design, computer-aided software engineering
é multimedia and image databases, and document/hypertext

databases.

©Silberschatz, Korth and Sudarshan8.3Database System Concepts

Object-Oriented Data Model

■ Loosely speaking, an object corresponds to an entity in the E-
R model.

■ The object-oriented paradigm is based on encapsulating code
and data related to an object into single unit.

■ The object-oriented data model is a logical data model (like
the E-R model).

■ Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.

©Silberschatz, Korth and Sudarshan8.4Database System Concepts

Object Structure

■ An object has associated with it:
é A set of variables that contain the data for the object. The value of

each variable is itself an object.
é A set of messages to which the object responds; each message may

have zero, one, or more parameters.
é A set of methods, each of which is a body of code to implement a

message; a method returns a value as the response to the message
■ The physical representation of data is visible only to the

implementor of the object
■ Messages and responses provide the only external interface to an

object.
■ The term message does not necessarily imply physical message

passing. Messages can be implemented as procedure
invocations.

©Silberschatz, Korth and Sudarshan8.5Database System Concepts

Messages and Methods

■ Methods are programs written in general-purpose language
with the following features
é only variables in the object itself may be referenced directly
é data in other objects are referenced only by sending messages.

■ Methods can be read-only or update methods
é Read-only methods do not change the value of the object

■ Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, one to read and
the other to update the attribute
é e.g., the attribute address is represented by a variable address

and two messages get-address and set-address.
é For convenience, many object-oriented data models permit direct

access to variables of other objects.

©Silberschatz, Korth and Sudarshan8.6Database System Concepts

Object Classes

■ Similar objects are grouped into a class; each such object is
called an instance of its class

■ All objects in a class have the same
é Variables, with the same types
é message interface
é methods
The may differ in the values assigned to variables

■ Example: Group objects for people into a person class
■ Classes are analogous to entity sets in the E-R model

©Silberschatz, Korth and Sudarshan8.7Database System Concepts

Class Definition Example
class employee {

/*Variables */
string name;
string address;
date start-date;
int salary;

/* Messages */
int annual-salary();
string get-name();
string get-address();
int set-address(string new-address);
int employment-length();

};
■ Methods to read and set the other variables are also needed with

strict encapsulation
■ Methods are defined separately

é E.g. int employment-length() { return today() – start-date;}
int set-address(string new-address) { address = new-address;}

©Silberschatz, Korth and Sudarshan8.8Database System Concepts

Inheritance

■ E.g., class of bank customers is similar to class of bank
employees, although there are differences
é both share some variables and messages, e.g., name and address.
é But there are variables and messages specific to each class e.g.,

salary for employees and credit-rating for customers.
■ Every employee is a person; thus employee is a specialization of

person
■ Similarly, customer is a specialization of person.
■ Create classes person, employee and customer

é variables/messages applicable to all persons associated with class
person.

é variables/messages specific to employees associated with class
employee; similarly for customer

©Silberschatz, Korth and Sudarshan8.9Database System Concepts

Inheritance (Cont.)

■ Place classes into a specialization/IS-A hierarchy
é variables/messages belonging to class person are

inherited by class employee as well as customer
■ Result is a class hierarchy

Note analogy with ISA Hierarchy in the E-R model

©Silberschatz, Korth and Sudarshan8.10Database System Concepts

Class Hierarchy Definition
class person{

string name;
string address:
};

class customer isa person {
int credit-rating;
};

class employee isa person {
date start-date;
int salary;
};

class officer isa employee {
int office-number,
int expense-account-number,
};

...

©Silberschatz, Korth and Sudarshan8.11Database System Concepts

Example of Multiple Inheritance

Class DAG for banking example.

©Silberschatz, Korth and Sudarshan8.12Database System Concepts

Multiple Inheritance
■ With multiple inheritance a class may have more than one superclass.

é The class/subclass relationship is represented by a directed acyclic graph
(DAG)

é Particularly useful when objects can be classified in more than one way,
which are independent of each other
Ø E.g. temporary/permanent is independent of Officer/secretary/teller
Ø Create a subclass for each combination of subclasses

– Need not create subclasses for combinations that are not possible in
the database being modeled

■ A class inherits variables and methods from all its superclasses
■ There is potential for ambiguity when a variable/message N with the

same name is inherited from two superclasses A and B
é No problem if the variable/message is defined in a shared superclass
é Otherwise, do one of the following

Ø flag as an error,
Ø rename variables (A.N and B.N)
Ø choose one.

©Silberschatz, Korth and Sudarshan8.13Database System Concepts

More Examples of Multiple Inheritance

■ Conceptually, an object can belong to each of several
subclasses
é A person can play the roles of student, a teacher or footballPlayer,

or any combination of the three
Ø E.g., student teaching assistant who also play football

■ Can use multiple inheritance to model “roles” of an object
é That is, allow an object to take on any one or more of a set of types

■ But many systems insist an object should have a most-specific
class
é That is, there must be one class that an object belongs to which is

a subclass of all other classes that the object belongs to
é Create subclasses such as student-teacher and

student-teacher-footballPlayer for each combination
é When many combinations are possible, creating

subclasses for each combination can become cumbersome

©Silberschatz, Korth and Sudarshan8.14Database System Concepts

Object Identity

■ An object retains its identity even if some or all of the values
of variables or definitions of methods change over time.

■ Object identity is a stronger notion of identity than in
programming languages or data models not based on object
orientation.
é Value – data value; e.g. primary key value used in relational

systems.
é Name – supplied by user; used for variables in procedures.
é Built-in – identity built into data model or programming

language.
Ø no user-supplied identifier is required.
Ø Is the form of identity used in object-oriented systems.

©Silberschatz, Korth and Sudarshan8.15Database System Concepts

Object Identifiers

■ Object identifiers used to uniquely identify objects
é Object identifiers are unique:

Ø no two objects have the same identifier
Ø each object has only one object identifier

é E.g., the spouse field of a person object may be an identifier of
another person object.

é can be stored as a field of an object, to refer to another object.
é Can be

Ø system generated (created by database) or
Ø external (such as social-security number)

é System generated identifiers:
Ø Are easier to use, but cannot be used across database systems
Ø May be redundant if unique identifier already exists

©Silberschatz, Korth and Sudarshan8.16Database System Concepts

Object Containment

■ Each component in a design may contain other components
■ Can be modeled as containment of objects. Objects containing;

other objects are called composite objects.
■ Multiple levels of containment create a containment hierarchy

é links interpreted as is-part-of, not is-a.
■ Allows data to be viewed at different granularities by different

users.

©Silberschatz, Korth and Sudarshan8.17Database System Concepts

Object-Oriented Languages

■ Object-oriented concepts can be used in different ways
é Object-orientation can be used as a design tool, and be

encoded into, for example, a relational database
★ analogous to modeling data with E-R diagram and then

converting to a set of relations)
é The concepts of object orientation can be incorporated into a

programming language that is used to manipulate the
database.
Ø Object-relational systems – add complex types and

object-orientation to relational language.
Ø Persistent programming languages – extend object-

oriented programming language to deal with databases
by adding concepts such as persistence and collections.

©Silberschatz, Korth and Sudarshan8.18Database System Concepts

Persistent Programming Languages

■ Persistent Programming languages allow objects to be created
and stored in a database, and used directly from a programming
language
é allow data to be manipulated directly from the programming language

Ø No need to go through SQL.
é No need for explicit format (type) changes

Ø format changes are carried out transparently by system
Ø Without a persistent programming language, format changes

becomes a burden on the programmer
– More code to be written
– More chance of bugs

é allow objects to be manipulated in-memory
Ø no need to explicitly load from or store to the database

– Saved code, and saved overhead of loading/storing large
amounts of data

©Silberschatz, Korth and Sudarshan8.19Database System Concepts

Persistent Prog. Languages (Cont.)

■ Drawbacks of persistent programming languages
é Due to power of most programming languages, it is easy to make

programming errors that damage the database.
é Complexity of languages makes automatic high-level optimization

more difficult.
é Do not support declarative querying as well as relational databases

©Silberschatz, Korth and Sudarshan8.20Database System Concepts

Persistence of Objects

■ Approaches to make transient objects persistent include
establishing
é Persistence by Class – declare all objects of a class to be

persistent; simple but inflexible.
é Persistence by Creation – extend the syntax for creating objects to

specify that that an object is persistent.
é Persistence by Marking – an object that is to persist beyond

program execution is marked as persistent before program
termination.

é Persistence by Reachability - declare (root) persistent objects;
objects are persistent if they are referred to (directly or indirectly)
from a root object.
Ø Easier for programmer, but more overhead for database system
Ø Similar to garbage collection used e.g. in Java, which

also performs reachability tests

©Silberschatz, Korth and Sudarshan8.21Database System Concepts

Object Identity and Pointers

■ A persistent object is assigned a persistent object identifier.
■ Degrees of permanence of identity:

é Intraprocedure – identity persists only during the executions of a
single procedure

é Intraprogram – identity persists only during execution of a single
program or query.

é Interprogram – identity persists from one program execution to
another, but may change if the storage organization is changed

é Persistent – identity persists throughout program executions and
structural reorganizations of data; required for object-oriented
systems.

©Silberschatz, Korth and Sudarshan8.22Database System Concepts

Object Identity and Pointers (Cont.)

■ In O-O languages such as C++, an object identifier is
actually an in-memory pointer.

■ Persistent pointer – persists beyond program execution
é can be thought of as a pointer into the database

Ø E.g. specify file identifier and offset into the file
é Problems due to database reorganization have to be dealt

with by keeping forwarding pointers

©Silberschatz, Korth and Sudarshan8.23Database System Concepts

Storage and Access of Persistent Objects

■ Name objects (as you would name files)
é Cannot scale to large number of objects.
é Typically given only to class extents and other collections of

objects, but not objects.
■ Expose object identifiers or persistent pointers to the objects

é Can be stored externally.
é All objects have object identifiers.

■ Store collections of objects, and allow programs to iterate
over the collections to find required objects
é Model collections of objects as collection types
é Class extent - the collection of all objects belonging to the

class; usually maintained for all classes that can have persistent
objects.

How to find objects in the database:

©Silberschatz, Korth and Sudarshan8.24Database System Concepts

Persistent C++ Systems

■ C++ language allows support for persistence to be added without
changing the language
é Declare a class called Persistent_Object with attributes and methods

to support persistence
é Overloading – ability to redefine standard function names and

operators (i.e., +, –, the pointer deference operator –>) when applied
to new types

é Template classes help to build a type-safe type system supporting
collections and persistent types.

■ Providing persistence without extending the C++ language is
é relatively easy to implement
é but more difficult to use

■ Persistent C++ systems that add features to the C++ language
have been built, as also systems that avoid changing the
language

©Silberschatz, Korth and Sudarshan8.25Database System Concepts

Persistent Java Systems

■ ODMG-3.0 defines extensions to Java for persistence
é Java does not support templates, so language extensions are

required
■ Model for persistence: persistence by reachability

é Matches Java’s garbage collection model
é Garbage collection needed on the database also
é Only one pointer type for transient and persistent pointers

■ Class is made persistence capable by running a post-processor
on object code generated by the Java compiler
é Contrast with pre-processor used in C++
é Post-processor adds mark_modified() automatically

■ Defines collection types DSet, DBag, DList, etc.
■ Uses Java iterators, no need for new iterator class

©Silberschatz, Korth and Sudarshan8.26Database System Concepts

Chapter 9: Object-Relational Databases

■ Nested Relations
■ Complex Types and Object Orientation
■ Querying with Complex Types
■ Creation of Complex Values and Objects
■ Comparison of Object-Oriented and Object-Relational

Databases

©Silberschatz, Korth and Sudarshan8.27Database System Concepts

Object-Relational Data Models

■ Extend the relational data model by including object orientation
and constructs to deal with added data types.

■ Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

■ Preserve relational foundations, in particular the declarative
access to data, while extending modeling power.

■ Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan8.28Database System Concepts

Nested Relations

■ Motivation:
é Permit non-atomic domains (atomic º indivisible)
é Example of non-atomic domain: set of integers,or set of

tuples
é Allows more intuitive modeling for applications with

complex data
■ Intuitive definition:

é allow relations whenever we allow atomic (scalar) values
— relations within relations

é Retains mathematical foundation of relational model
é Violates first normal form.

©Silberschatz, Korth and Sudarshan8.29Database System Concepts

Example of a Nested Relation

■ Example: library information system
■ Each book has

é title,
é a set of authors,
é Publisher, and
é a set of keywords

■ Non-1NF relation books

©Silberschatz, Korth and Sudarshan8.30Database System Concepts

1NF Version of Nested Relation

■ 1NF version of books

flat-books

©Silberschatz, Korth and Sudarshan8.31Database System Concepts

4NF Decomposition of Nested Relation

■ Remove awkwardness of flat-books by assuming that the
following multivalued dependencies hold:
é title author
é title keyword
é title pub-name, pub-branch

■ Decompose flat-doc into 4NF using the schemas:
é (title, author)
é (title, keyword)
é (title, pub-name, pub-branch)

©Silberschatz, Korth and Sudarshan8.32Database System Concepts

4NF Decomposition of flat–books

©Silberschatz, Korth and Sudarshan8.33Database System Concepts

Problems with 4NF Schema

■ 4NF design requires users to include joins in their queries.
■ 1NF relational view flat-books defined by join of 4NF relations:

é eliminates the need for users to perform joins,
é but loses the one-to-one correspondence between tuples and

documents.
é And has a large amount of redundancy

■ Nested relations representation is much more natural here.

©Silberschatz, Korth and Sudarshan8.34Database System Concepts

Complex Types and SQL:1999

■ Extensions to SQL to support complex types include:
é Collection and large object types

Ø Nested relations are an example of collection types
é Structured types

Ø Nested record structures like composite attributes
é Inheritance
é Object orientation

Ø Including object identifiers and references
■ Our description is mainly based on the SQL:1999 standard

é Not fully implemented in any database system currently
é But some features are present in each of the major commercial

database systems
Ø Read the manual of your database system to see what it

supports
é We present some features that are not in SQL:1999

Ø These are noted explicitly

©Silberschatz, Korth and Sudarshan8.35Database System Concepts

Collection Types
■ Set type (not in SQL:1999)

create table books (
…..
keyword-set setof(varchar(20))
……

)
■ Sets are an instance of collection types. Other instances include

é Arrays (are supported in SQL:1999)
Ø E.g. author-array varchar(20) array[10]
Ø Can access elements of array in usual fashion:

– E.g. author-array[1]
é Multisets (not supported in SQL:1999)

Ø I.e., unordered collections, where an element may occur multiple
times

é Nested relations are sets of tuples
Ø SQL:1999 supports arrays of tuples

©Silberschatz, Korth and Sudarshan8.36Database System Concepts

Large Object Types

■ Large object types
é clob: Character large objects

book-review clob(10KB)
éblob: binary large objects

image blob(10MB)
movie blob (2GB)

■ JDBC/ODBC provide special methods to access large objects in
small pieces
é Similar to accessing operating system files
é Application retrieves a locator for the large object and then

manipulates the large object from the host language

©Silberschatz, Korth and Sudarshan8.37Database System Concepts

Structured and Collection Types

■ Structured types can be declared and used in SQL
create type Publisher as

(name varchar(20),
branch varchar(20))

create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

é Note: setof declaration of keyword-set is not supported by SQL:1999
é Using an array to store authors lets us record the order of the authors

■ Structured types can be used to create tables
create table books of Book

é Similar to the nested relation books, but with array of authors
instead of set

©Silberschatz, Korth and Sudarshan8.38Database System Concepts

Structured and Collection Types (Cont.)

■ Structured types allow composite attributes of E-R diagrams
to be represented directly.

■ Unnamed row types can also be used in SQL:1999 to define
composite attributes
é E.g. we can omit the declaration of type Publisher and instead

use the following in declaring the type Book
publisher row (name varchar(20),

branch varchar(20))

■ Similarly, collection types allow multivalued attributes of E-R
diagrams to be represented directly.

©Silberschatz, Korth and Sudarshan8.39Database System Concepts

Structured Types (Cont.)
■ We can create tables without creating an intermediate type

é For example, the table books could also be defined as follows:

create table books
(title varchar(20),
author-array varchar(20) array[10],

pub-date date,
publisher Publisher

keyword-list setof(varchar(20)))

■ Methods can be part of the type definition of a structured type:

create type Employee as (
name varchar(20),

salary integer)
method giveraise (percent integer)

■ We create the method body separately

create method giveraise (percent integer) for Employee

begin
set self.salary = self.salary + (self.salary * percent) / 100;

end

©Silberschatz, Korth and Sudarshan8.40Database System Concepts

Creation of Values of Complex Types
■ Values of structured types are created using constructor functions

é E.g. Publisher(‘McGraw-Hill’, ‘New York’)
éNote: a value is not an object

■ SQL:1999 constructor functions
é E.g.

create function Publisher (n varchar(20), b varchar(20))
returns Publisher
begin

set name=n;
set branch=b;

end
é Every structured type has a default constructor with no arguments,

others can be defined as required
■ Values of row type can be constructed by listing values in parantheses

é E.g. given row type row (name varchar(20),
branch varchar(20))

é We can assign (`McGraw-Hill’,`New York’) as a value of above type

©Silberschatz, Korth and Sudarshan8.41Database System Concepts

Creation of Values of Complex Types

■ Array construction
array [‘Silberschatz’,`Korth’,`Sudarshan’]

■ Set value attributes (not supported in SQL:1999)
é set(v1, v2, …, vn)

■ To create a tuple of the books relation
(‘Compilers’, array[`Smith’,`Jones’],
Publisher(`McGraw-Hill’,`New York’),

set(`parsing’,`analysis’))
■ To insert the preceding tuple into the relation books

insert into books
values

(`Compilers’, array[`Smith’,`Jones’],
Publisher(‘McGraw Hill’,`New York’),
set(`parsing’,`analysis’))

©Silberschatz, Korth and Sudarshan8.42Database System Concepts

Inheritance
■ Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

■ Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

■ Subtypes can redefine methods by using overriding method in place
of method in the method declaration

©Silberschatz, Korth and Sudarshan8.43Database System Concepts

Multiple Inheritance

■ SQL:1999 does not support multiple inheritance
■ If our type system supports multiple inheritance, we can define a

type for teaching assistant as follows:
create type Teaching Assistant

under Student, Teacher
■ To avoid a conflict between the two occurrences of department we

can rename them
create type Teaching Assistant
under
Student with (department as student-dept),
Teacher with (department as teacher-dept)

©Silberschatz, Korth and Sudarshan8.44Database System Concepts

Table Inheritance

■ Table inheritance allows an object to have multiple types by
allowing an entity to exist in more than one table at once.

■ E.g. people table: create table people of Person
■ We can then define the students and teachers tables as

subtables of people
create table students of Student

under people
create table teachers of Teacher

under people
■ Each tuple in a subtable (e.g. students and teachers) is implicitly

present in its supertables (e.g. people)
■ Multiple inheritance is possible with tables, just as it is possible with

types.
create table teaching-assistants of Teaching Assistant
under students, teachers

é Multiple inheritance not supported in SQL:1999

©Silberschatz, Korth and Sudarshan8.45Database System Concepts

Table Inheritance: Roles

■ Table inheritance is useful for modeling roles
■ permits a value to have multiple types, without having a

most-specific type (unlike type inheritance).
é e.g., an object can be in the students and teachers subtables

simultaneously, without having to be in a subtable student-teachers
that is under both students and teachers

é object can gain/lose roles: corresponds to inserting/deleting object
from a subtable

■ NOTE: SQL:1999 requires values to have a most specific type
é so above discussion is not applicable to SQL:1999

©Silberschatz, Korth and Sudarshan8.46Database System Concepts

Table Inheritance: Consistency Requirements

■ Consistency requirements on subtables and supertables.
é Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and teachers)
é Additional constraint in SQL:1999:

All tuples corresponding to each other (that is, with the same values
for inherited attributes) must be derived from one tuple (inserted into
one table).
Ø That is, each entity must have a most specific type
Ø We cannot have a tuple in people corresponding to a tuple each

in students and teachers

©Silberschatz, Korth and Sudarshan8.47Database System Concepts

Table Inheritance: Storage Alternatives

■ Storage alternatives
1. Store only local attributes and the primary key of the supertable in

subtable
Ø Inherited attributes derived by means of a join with the

supertable
2. Each table stores all inherited and locally defined attributes

Ø Supertables implicitly contain (inherited attributes of) all tuples in
their subtables

Ø Access to all attributes of a tuple is faster: no join required
Ø If entities must have most specific type, tuple is stored only in

one table, where it was created
★Otherwise, there could be redundancy

©Silberschatz, Korth and Sudarshan8.48Database System Concepts

Reference Types

■ Object-oriented languages provide the ability to create and refer to
objects.

■ In SQL:1999
é References are to tuples, and
é References must be scoped,

Ø I.e., can only point to tuples in one specified table
■ We will study how to define references first, and later see how to use

references

©Silberschatz, Korth and Sudarshan8.49Database System Concepts

Reference Declaration in SQL:1999

■ E.g. define a type Department with a field name and a field head
which is a reference to the type Person, with table people as
scope

create type Department(
name varchar(20),
head ref(Person) scope people)

■ We can then create a table departments as follows
create table departments of Department

■ We can omit the declaration scope people from the type
declaration and instead make an addition to the create table
statement:

create table departments of Department
(head with options scope people)

©Silberschatz, Korth and Sudarshan8.50Database System Concepts

Initializing Reference Typed Values

■ In Oracle, to create a tuple with a reference value, we can first
create the tuple with a null reference and then set the reference
separately by using the function ref(p) applied to a tuple variable

■ E.g. to create a department with name CS and head being the
person named John, we use
insert into departments

values (`CS’, null)
update departments

set head = (select ref(p)
from people as p
where name=`John’)

where name = `CS’

©Silberschatz, Korth and Sudarshan8.51Database System Concepts

Initializing Reference Typed Values (Cont.)

■ SQL:1999 does not support the ref() function, and instead
requires a special attribute to be declared to store the object
identifier

■ The self-referential attribute is declared by adding a ref is clause
to the create table statement:

create table people of Person
ref is oid system generated

é Here, oid is an attribute name, not a keyword.
■ To get the reference to a tuple, the subquery shown earlier would

use
select p.oid

instead of select ref(p)

©Silberschatz, Korth and Sudarshan8.52Database System Concepts

User Generated Identifiers

■ SQL:1999 allows object identifiers to be user-generated
é The type of the object-identifier must be specified as part of the type

definition of the referenced table, and
é The table definition must specify that the reference is user generated
é E.g.

create type Person
(name varchar(20)
address varchar(20))

ref using varchar(20)
create table people of Person
ref is oid user generated

■ When creating a tuple, we must provide a unique value for the
identifier (assumed to be the first attribute):

insert into people values
(‘01284567’, ‘John’, `23 Coyote Run’)

©Silberschatz, Korth and Sudarshan8.53Database System Concepts

User Generated Identifiers (Cont.)
■ We can then use the identifier value when inserting a tuple into

departments
é Avoids need for a separate query to retrieve the identifier:
E.g. insert into departments

values(`CS’, `02184567’)
■ It is even possible to use an existing primary key value as the

identifier, by including the ref from clause, and declaring the
reference to be derived
create type Person

(name varchar(20) primary key,
address varchar(20))

ref from(name)
create table people of Person

ref is oid derived
■ When inserting a tuple for departments, we can then use

insert into departments
values(`CS’,`John’)

©Silberschatz, Korth and Sudarshan8.54Database System Concepts

Path Expressions

■ Find the names and addresses of the heads of all departments:
select head –>name, head –>address
from departments

■ An expression such as “head–>name” is called a path
expression

■ Path expressions help avoid explicit joins
é If department head were not a reference, a join of departments with

people would be required to get at the address
é Makes expressing the query much easier for the user

©Silberschatz, Korth and Sudarshan8.55Database System Concepts

Querying with Structured Types

■ Find the title and the name of the publisher of each book.
select title, publisher.name
from books

Note the use of the dot notation to access fields of the composite
attribute (structured type) publisher

©Silberschatz, Korth and Sudarshan8.56Database System Concepts

Collection-Value Attributes
■ Collection-valued attributes can be treated much like relations, using

the keyword unnest
é The books relation has array-valued attribute author-array and set-

valued attribute keyword-set
■ To find all books that have the word “database” as one of their

keywords,
select title
from books
where ‘database’ in (unnest(keyword-set))

é Note: Above syntax is valid in SQL:1999, but the only collection type
supported by SQL:1999 is the array type

■ To get a relation containing pairs of the form “title, author-name” for
each book and each author of the book

select B.title, A
from books as B, unnest (B.author-array) as A

©Silberschatz, Korth and Sudarshan8.57Database System Concepts

Collection Valued Attributes (Cont.)

■ We can access individual elements of an array by using indices
é E.g. If we know that a particular book has three authors, we could

write:
select author-array[1], author-array[2], author-array[3]
from books
where title = `Database System Concepts’

©Silberschatz, Korth and Sudarshan8.58Database System Concepts

Unnesting

■ The transformation of a nested relation into a form with fewer (or no)
relation-valued attributes us called unnesting.

■ E.g.
select title, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K as keyword
from books as B, unnest(B.author-array) as A, unnest (B.keyword-

list) as K

©Silberschatz, Korth and Sudarshan8.59Database System Concepts

Nesting

■ Nesting is the opposite of unnesting, creating a collection-valued attribute
■ NOTE: SQL:1999 does not support nesting
■ Nesting can be done in a manner similar to aggregation, but using the

function set() in place of an aggregation operation, to create a set
■ To nest the flat-books relation on the attribute keyword:

select title, author, Publisher(pub_name, pub_branch) as publisher,
set(keyword) as keyword-list

from flat-books
groupby title, author, publisher

■ To nest on both authors and keywords:
select title, set(author) as author-list,

Publisher(pub_name, pub_branch) as publisher,
set(keyword) as keyword-list

from flat-books
groupby title, publisher

©Silberschatz, Korth and Sudarshan8.60Database System Concepts

Nesting (Cont.)

■ Another approach to creating nested relations is to use
subqueries in the select clause.
select title,

(select author
from flat-books as M
where M.title=O.title) as author-set,

Publisher(pub-name, pub-branch) as publisher,
(select keyword
from flat-books as N
where N.title = O.title) as keyword-set

from flat-books as O
■ Can use orderby clause in nested query to get an ordered

collection
é Can thus create arrays, unlike earlier approach

©Silberschatz, Korth and Sudarshan8.61Database System Concepts

Functions and Procedures

■ SQL:1999 supports functions and procedures
é Functions/procedures can be written in SQL itself, or in an external

programming language
é Functions are particularly useful with specialized data types such as

images and geometric objects
Ø E.g. functions to check if polygons overlap, or to compare

images for similarity
é Some databases support table-valued functions, which can return

a relation as a result
■ SQL:1999 also supports a rich set of imperative constructs,

including
é Loops, if-then-else, assignment

■ Many databases have proprietary procedural extensions to SQL
that differ from SQL:1999

©Silberschatz, Korth and Sudarshan8.62Database System Concepts

SQL Functions

■ Define a function that, given a book title, returns the count of the
number of authors (on the 4NF schema with relations books4
and authors).

create function author-count(name varchar(20))
returns integer
begin

declare a-count integer;
select count(author) into a-count
from authors
where authors.title=name
return a=count;

end
■ Find the titles of all books that have more than one author.

select name
from books4
where author-count(title)> 1

©Silberschatz, Korth and Sudarshan8.63Database System Concepts

SQL Methods

■ Methods can be viewed as functions associated with structured
types
é They have an implicit first parameter called self which is set to the

structured-type value on which the method is invoked
é The method code can refer to attributes of the structured-type value

using the self variable
Ø E.g. self.a

©Silberschatz, Korth and Sudarshan8.64Database System Concepts

SQL Functions and Procedures (cont.)
■ The author-count function could instead be written as procedure:

create procedure author-count-proc (in title varchar(20),
out a-count integer)

begin
select count(author) into a-count
from authors
where authors.title = title

end
■ Procedures can be invoked either from an SQL procedure or from

embedded SQL, using the call statement.
é E.g. from an SQL procedure

declare a-count integer;
call author-count-proc(`Database systems Concepts’, a-count);

■ SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan8.65Database System Concepts

External Language Functions/Procedures

■ SQL:1999 permits the use of functions and procedures
written in other languages such as C or C++

■ Declaring external language procedures and functions

create procedure author-count-proc(in title varchar(20),
out count integer)

language C
external name’ /usr/avi/bin/author-count-proc’

create function author-count(title varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/author-count’

©Silberschatz, Korth and Sudarshan8.66Database System Concepts

External Language Routines (Cont.)
■ Benefits of external language functions/procedures:

émore efficient for many operations, and more expressive
power

■ Drawbacks
éCode to implement function may need to be loaded into

database system and executed in the database system’s
address space
Ø risk of accidental corruption of database structures
Ø security risk, allowing users access to unauthorized data

é There are alternatives, which give good security at the cost of
potentially worse performance

éDirect execution in the database system’s space is used when
efficiency is more important than security

©Silberschatz, Korth and Sudarshan8.67Database System Concepts

Security with External Language Routines

■ To deal with security problems
éUse sandbox techniques

Ø that is use a safe language like Java, which cannot be
used to access/damage other parts of the database code

éOr, run external language functions/procedures in a separate
process, with no access to the database process’ memory
Ø Parameters and results communicated via inter-process

communication

■ Both have performance overheads
■ Many database systems support both above

approaches as well as direct executing in database
system address space

©Silberschatz, Korth and Sudarshan8.68Database System Concepts

Procedural Constructs

■ SQL:1999 supports a rich variety of procedural constructs
■ Compound statement

é is of the form begin … end,
émay contain multiple SQL statements between begin and end.
é Local variables can be declared within a compound statements

■ While and repeat statements
declare n integer default 0;
while n < 10 do

set n = n+1
end while

repeat
set n = n – 1

until n = 0
end repeat

©Silberschatz, Korth and Sudarshan8.69Database System Concepts

Procedural Constructs (Cont.)

■ For loop
é Permits iteration over all results of a query
é E.g. find total of all balances at the Perryridge branch

declare n integer default 0;
for r as

select balance from account
where branch-name = ‘Perryridge’

do
set n = n + r.balance

end for

©Silberschatz, Korth and Sudarshan8.70Database System Concepts

Procedural Constructs (cont.)
■ Conditional statements (if-then-else)

E.g. To find sum of balances for each of three categories of accounts
(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000
then set l = l + r.balance

elseif r.balance < 5000
then set m = m + r.balance

else set h = h + r.balance
end if

■ SQL:1999 also supports a case statement similar to C case statement
■ Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_stock condition
declare exit handler for out_of_stock
begin
…
.. signal out-of-stock
end

é The handler here is exit -- causes enclosing begin..end to be exited
é Other actions possible on exception

©Silberschatz, Korth and Sudarshan8.71Database System Concepts

Comparison of O-O and O-R Databases

■ Summary of strengths of various database systems:
■ Relational systems

é simple data types, powerful query languages, high protection.
■ Persistent-programming-language-based OODBs

é complex data types, integration with programming language, high
performance.

■ Object-relational systems
é complex data types, powerful query languages, high protection.

■ Note: Many real systems blur these boundaries
é E.g. persistent programming language built as a wrapper on a

relational database offers first two benefits, but may have poor
performance.

The picture can't be displayed.

End of Chapter

