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 Introduction: ML and DB

• Machine Learning (ML) has been successful in many application domains

• Two recent trends of research in the area of Database Systems (DB):

4

DBMS Engine

ML1 MLnML2

ML for DB

ML System

DB Engine

DB for ML

• Machine Learning for Database Systems (ML for DB)
• Replace core components of a Database System (e.g., query optimizer, 

Indexes, DB administration) with Machine Learning techniques
• Achieve better performance

• Less space requirement

• Database Systems for Machine Learning (DB for ML)
• Extend database system techniques to support efficient ML workloads



• Database Index: Provide efficient access to data

• Popular index structure is: B+-tree

• Given search key, B+-tree identifies the storage location of the 

tuple that contains the search key

• Can view the B+-tree as a function: B+-tree(key)

that takes a key as input and returns the order of key’s 

tuple inside the table
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• Can one use ML techniques to guide data indexing? 

• Can we learn the function: 

• B+-tree(key) → Location of tuple in table?

• Can we replace the B+-tree with an ML model?

• “Index as a model”

• ML_Model (key) predicts the storage location of the key

• Searching executes potentially in O(1) time

• → “Learned Index”
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Promising → Faster lookup time and smaller storage

7
[18]Stratos Idreos and Tim Kraska. 2019.  From Auto-tuning One Size Fits All to Self-designed and Learned Data-intensive Systems (Tutorial). 
In Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. 2054–2059. 
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 Introduction: Initial Results

Initial performance results (approximate) of a learned index
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Machine Learning and data indexing interact in two possible ways:

Indexing the Learned Models 
• Given a collection of ML models, e.g., object recognition models (Cats, Dogs, Trains, etc.), 

and an input object, say o

• Identify the class of o (cat vs. dog, etc.)

• Instead of executing all models and identifying which has the highest matching score

• Can we index the learned models to speed up the matching process?

Learning the Index
• Given a key value, say k, and an ordered array of key values

• Build an ML-based model that helps predict the location of k in the ordered array
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No problem. Shall we just follow the metrics, first go over the two focus (learning the index & indexing learned), then immutable & 
mutable workload, thirdly fixed data layout & dynamic data layout, and finally data type? YES --Got it! Thanks, I will add slides for 
other dimensions.

Dimension 1: Indexing the Learned Models vs. Learning the Index

1

 Taxonomy of Learned Indexes

2
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• Collection of spatiotemporal sequences, e.g., heart pulse 
rates, stock market trends over time, handwritten drawing 
on a tablet, object movement trajectory

• Index shown in the context of handwritten text

• Divide each spatiotemporal sequence into basic alphabet 
symbols

• Because of the variability, there is a need for training to 
recognize similar, but not exactly the same, patterns

• Model each alphabet symbol in the spatiotemporal 
sequence using local spatiotemporal features along the 
trajectory of the sequence 

• Time
• Velocity
• Direction
• Acceleration
• Aspect ratio, . . . 
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[1]Walid Aref, Daniel Barbará, and Padmavathi Vallabhaneni. 1995. The Handwritten Trie: Indexing Electronic Ink. SIGMOD Rec.24, 2 (May 1995), 
151–162.   https://doi.org/10.1145/568271.223811

 The Handwritten Trie: Indexing Electronic Ink [SIGMOD’95] Introduction
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• Left-to-right Hidden Markov Models are suitable for 
representing spatio-temporal sequences

• Instead of building a Hidden Markov Model for each entire 
sequence, we build an HMM for each alphabet symbol in the 
spatiotemporal sequence

• Need to segment each spatio-temporal sequence into 
alphabet symbols

• Train the left-to-right Hidden Markov Model using multiple 
samples of the alphabet symbols

• Construct a trie structure over the learned alphabet symbols

13

[1]Walid Aref, Daniel Barbará, and Padmavathi Vallabhaneni. 1995. The Handwritten Trie: Indexing Electronic Ink. SIGMOD Rec.24, 2 (May 1995), 
151–162.   https://doi.org/10.1145/568271.223811

 The Handwritten Trie: Indexing Electronic Ink [SIGMOD’95] Introduction

Core Idea • Indexing the learned Hidden Markov Models
• Trie Structure over learned alphabet symbols

Alphabet 
Symbols
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 The Handwritten Trie: Indexing Electronic Ink Mechanism



• The Handwritten Trie: Indexing Electronic Ink is one of the earlier 

works to index the models.

• Another early work about indexing the models using R-Tree-like 

structure in the context of indexing HMMs for music retrieval can be 

found in [ISMIR’02]
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 Indexing the Learned Models: Summary Discussion

[2] Jin, Hui, and H. V. Jagadish. "Indexing Hidden Markov Models for Music Retrieval." In International Conference on Music Information Retrieval 
(ISMIR). 2002.
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[22]Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.The case for learned index structures. In Proceedings of the 2018 
International Conference on Management of Data. ACM, 489–504.
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The Case for Learned Index Structures [SIGMOD’18] Introduction

• Introduced the idea that “Indexes are models” 
• Replace traditional database indexes by learned models

• Approximate the Cumulative Distribution Function (CDF) of the 
underlying (sorted) data

• Proposed Recursive Model Index (RMI), a multi-stage ML model

• Combine simpler ML models
• The first stage model will make an initial prediction of the CDF for a 

specific key

• The next stage models will be selected to refine this initial prediction

• Proposed Learned Index Structures: Range Index, Point Index, and 
Existence Index
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 The Case for Learned Index Structures  [SIGMOD’18] Mechanism



• Limitations:

• Focus on in-memory read-only workloads

• The structure of RMI is static

• Does not support updates (e.g., insertion, deletion)

• Many follow up works extend on this paper

19

 The Case for Learned Index Structures  [SIGMOD’18] Discussion
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Given a Learned Index, can we support updates?
Why are updates hard?
- The learned index takes significant time to train
- New data will require retraining because it changes the order of the data

Classify learned indexes based on the ability to support updates:

Immutable Learned Index: 
• Does not support inserts, updates, or deletes

Mutable Learned Index:
• Supports inserts, updates or deletes

21

Dimension 2: Immutable vs. Mutable Learned Indexes

1

 Taxonomy of Learned Indexes

2



• focus

• updatable or static

• fixed data layout or arranged by model

• data type

• model structure
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[4]  Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, and David 
Lomet. SIGMOD 2020. ALEX: An Updatable Adaptive Learned Index. arXiv preprint arXiv:1905.08898(2019).
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 ALEX: An Updatable Adaptive Learned Index [SIGMOD’20] Introduction

Target Learned Index (Stable & Dynamic Workload)

Objectives
Implement dynamic, updatable learned index to handle 

dynamic workload

Core Idea

• Adaptive RMI as Model Hierarchy

• Linear Regression Model as Node

• Gapped Array or Packed Memory Array as Node Layout
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 ALEX: An Updatable Adaptive Learned Index [SIGMOD’20]  Mechanism
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 ALEX: An Updatable Adaptive Learned Index [SIGMOD’20]  Mechanism



• Limitations:

• Adversarial workload when data is skewed

• ALEX does not support duplicate keys of secondary indexes

• Requires concurrency control to handle updates with concurrent lookups

• How to check sorted order during insertion in gapped array (linear search?)

26

 ALEX: An Updatable Adaptive Learned Index [SIGMOD’20]  Discussion
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• One of the earliest distribution-aware spatial indexes can be found in:

• [47] Babu, G. Phanendra. "Self-organizing neural networks for spatial data." 

Pattern Recognition Letters 18, no. 2 (1997): 133-142.

• Can ML models replace and act in place of a multi-dimensional index?

• Yes, ML models can act in place of a multi-dimensional index, e.g., an R-Tree
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 Background
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 Challenges for Learned Multidimensional Indexes Introduction

• Sorting/ordering of multi-dimensional data:

• No obvious sort order for multi-dimensional data

• Error correction mechanism in case of misprediction:

• Difficult to define an error correction mechanism in case of mispredictions

• Choice of the ML model:

• Which ML models to choose?

• Layout of the data:

• How to store the data?

• Affect range query time and model accuracy
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• Proposal:
• Step-1:  Project the multi-dimensional data points into one-dimensional space

• Successively sorting and partitioning points along a sequence of dimensions into equally-sized cells

• Produces a layout that is efficient to compute and learnable 

• Comparing with Z-order which is difficult to learn

• Step-2: Uses a trained CDF model (e.g., RMI) to predict the physical location of the point
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 Sagedb: A Learned Database System Mechanism

Data points

 
Ordered data 
points in 1D

[21]Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding, Ani Kristo,Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.Sagedb: A learned database system. (2019).

Step-1

Step-2



• Initial Result:

• R-Tree vs. Learned Multi-dimensional Index on TPC-H data
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[21]Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding, Ani Kristo,Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.Sagedb: A learned database system. (2019).
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 Sagedb: A Learned Database System [CIDR’19] Discussion
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ANN: Artificial Neural Network

 Learned Index for Spatial Queries [MDM’19] Mechanism

ZM-Index:

• Spatial Query Processing: Point and 
range queries

• Uses the Z-order to map the 
multi-dimensional values to the 
one-dimensional space

• Uses a multi-staged model (e.g., RMI) 
for learning

Core Idea

[41]Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for Spatial Queries. In2019 20th IEEE International Conference on Mobile Data Management(MDM). IEEE, 569–574.
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O2
O1

Q

Key = dist(O1,Q) + offset1

ML Model

Predicted 
positionPosition - error

Position + error

3. Local search

dist(O1,Q)

1. Find the closest reference point 
Oi and calculate the scaled value.

2.Model (key)🡪predicted 
position.

Query Processing (Point) 

[3]Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor Queries.. In EDBT. 407–410.

The ML-Index:A Multidimensional, Learned Index for Point, Range,
and Nearest-Neighbor Queries [EDBT’20]

Mechanism

ML-Index:

• Z/Morton order cannot be easily learned by ML 
models.

• Multi-dimensional data should be sorted in an order 
that can be easily learned.

• Partition and transform the data into 
one-dimensional values based on distribution-aware 
reference points.

• Combines the scaled ordering with ML models

Core Idea

Offset Method:

• m reference points Oi are chosen each can be thought as a centroid of the data 
partition Pi.

• The closest reference points of Oi are used to build the partition Pi.

• The minimal distance of a point to the reference points is dl

• Scaled value = offseti + dist(Oi, dl) 

• For reference points O1, O2,…Om and their partitions P1,P2,…Pm,

• r: The maximal distance from Oj to the points in partition Pj

Efficient Scaling
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41[45]Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.2020. Qd-tree: Learning Data Layouts for Big 
Data Analytics. In Proceedings of the2020 ACM SIGMOD International Conference on Management of Data. 193–208.

System Architecture

Learned 
tree

Candidate 
cuts

sample
Learned 
tree

Block IDs

Data Blocks

online

offline

Qd-tree Constructor
Deep RL

Query Router

Data Router

Queries

Data

DB

Qd-tree: Learning Data Layouts for Big Data Analytics [SIGMOD’20] Mechanism

Core Idea

• Minimize the number of blocks/records accessed by a workload
• Generating block-level layouts with excellent I/O performance

• Query-data routing trees (Qd-trees) are neural network-generated 

decision trees that
• Recursively partition the data space into smaller subspaces.

• Use Deep Reinforcement Learning to create Qd-trees 
• Proximal Policy Optimization (PPO)

• For disk-based systems, an important performance metric is:

• The number of data blocks accessed by a query. 

• Problem Statement:

Motivation

Raw Data

Query 
Log

Partition the multi-dimensional data to 
maximize the total number of skipped 

data blocks/ records

Generated 
Data layout



• Experiments over benchmark and real workloads 

• Compared to current blocking schemes:

• Provides physical speedups of more than an order of magnitude

• For data skipping based on selectivity:

• Performs within 2X of the lower bound

42[45]Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.2020. Qd-tree: Learning Data Layouts for Big 
Data Analytics. In Proceedings of the2020 ACM SIGMOD International Conference on Management of Data. 193–208.

Qd-tree: Learning Data Layouts for Big Data Analytics [SIGMOD’20] Discussion
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44[31]Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of 
Data. 985–1000

System Architecture

  Learning Multi-dimensional Indexes [SIGMOD’20] Mechanism

Core Idea

• Proposed index structure: “Flood”

• Read optimized grid-based index over the 
multi-dimensional space

• Co-optimize the data layout and the index 
structure 

• For particular data and query distributions

•  Two components:

• Offline (pre-processing)

• Chooses an optimal layout 

• Creates an index based on that layout

• Online 

• Query execution



45[31]Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of 
Data. 985–1000

  Learning Multi-dimensional Indexes [SIGMOD’20] Mechanism

Flood’s Workflow

• Projection: 

• Identifies the intersecting cells

• Identifies the physical index 
range in each intersecting cell

• Refinement:

• Utilizes the ordering of points 
within each cell to refine each 
physical index range

• Scan and Filter

cell1 cell2 cell3 cell4

Qh

Ql

I2

I1

Cell’s 
physical 
index range

Refined 
physical 
index range

Matched by 
query filter

Not matched 
by query filter

Projection Refinement Scan and Filter 



• Experimental Results:

• Outperforms optimally tuned spatial indexes

• Uses only a fraction of the space comparing with traditional indexes

• Limitations:

• Cannot adapt to skewed query workload

• If dimensions are correlated, 

• Performance and memory usage are affected

46[31]Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of 
Data. 985–1000

  Learning Multi-dimensional Indexes [SIGMOD’20] Discussion
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• Extend the idea of Flood to overcome its limitations

• Jialin  Ding,  Vikram  Nathan,  Mohammad  Alizadeh,  and  Tim  Kraska.  2020. 

Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed 

Workloads. arXiv preprint arXiv:2006.13282(2020).

• Adaptable to changes in workload

• Scales across data size, query selectivity, and dimensionality

• Up to 6× faster 

48[31]Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of 
Data. 985–1000

Tsunami: A Learned Multi-dimensional Index for Correlated Data and 
Skewed Workloads Discussion



• focus

• updatable or static

• fixed data layout or arranged by model

• data type

• model structure
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 The Case for Learned Spatial Indexes [AIDB@VLDB’20] Discussion

● Apply the techniques in Flood to five other multi-dimensional indexes to 

answer spatial range queries. 

○ Fixed-grid, Adaptive-grid, Kd-tree, Quadtree and STR

○

[32]Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding,and Alfons Kemper. 2020. The Case for Learned Spatial Indexes. arXiv preprintarXiv:2008.10349(2020).

Core Idea

Major Insights
● Replace binary search with a learned index within each partition 

○ Improve query execution time by 11.79% to 39.51%

● Filter on 1D using traditional index then refine using learned indexes

○ 1.23x to 1.83x times faster than methods that filter on 2D

● Learned indexes are more effective on queries with low selectivity (e.g. 
0.00001%) but less effective on queries with high selectivity (e.g. 0.1%).
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Leaf Node Layout

• IF-X indexes sort the records in each leaf node 
• Based on the best order using which the interpolation error is minimized.

• Store all required information in the header of the leaf node 

• No additional computation is needed

• The leaf node structure:

• pDim: most predictable dimension which is used as the storage order

[3]Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor Queries.. In EDBT. 407–410.

No of records 
(#)

Max 
error 
(delta)

Prediction 
axis 
(pDim)

Slope
(A)

Base
(C)

Records 
sorted by 
pDim

 Hands-off Model Integration in Spatial Index Structures [AIDB@VLDB’20] Mechanism

Motivation

• In-memory hierarchical trees require:

• Excessive pointer-chasing

• Time for chasing pointers impacts significantly the query execution time

• New approaches to design indexes are encouraged to utilize the modern hardware platforms

Core Idea
• Interpolation Friendly (IF) Indexes: IF-X 

• X is any multi-dimensional index

• Why Linear Interpolation?

• Complex models have a higher capacity to fit the CDF

• But complex models 

• Requires more parameters

• Slower to compute

• Linear interpolation is:

• Simpler 

• Computationally inexpensive

• Can eliminate expensive training process.

Performance

• Query execution time can be reduced by up to 60%

• Memory footprint can be reduced by over 90% 



Taxonomic Metrics

LEARNED 
INDEX

RMI[22]One-d

Multi-d

Immutable

Mutable

Learning the 
Index

One-d

Multi-d

ALEX[4]

CDF Shop[29]

Drift Model[13] IFB-Tree[14]

Doraemon[38]

Pavo[44]

SageDB[21]

ZM-index[41]

ML-index[3]

LISA[24] Hands-off[16]

Qd-tree[45]Flood[31]

Case[32]Learned BF [27]

RSMI[33]

PGM[7]

MADEX[15]

Acc B+ Tree[26]

Tsunami[5]

RS[20]

 Taxonomy of Learned Indexes

SpatioTemporalIndexing 
Learned 
Models

Trie with HMM

Sequential

Handwritten Trie[22]

Music Retrieval[46]

Fiting-tree[10]

R-Tree with HMM

Self-organizing[47]

AIDEL[23] ASLM[25] Hybrid-O[34]

XIndex[39]

SIndex[42]

BF-Sandwich[30]

SoftFunctional[11]

Benchmarking One-d SOSD[19] Benchmark[28]



54

LISA: A Learned Index Structure for Spatial Data [SIGMOD’20] Mechanism

Core Idea

• Representation of grid cells

• Mapping function:

•  M(spatial keys)         1D mapped values

• Learned Shard Prediction Function:

• SP(mapped value)          Shard Id

• Use ML models to generate searchable data layout in disk 

pages for arbitrary spatial dataset

• Local models:

• Assign pages for all shards and perform intra-shard operations

• Build a disk-based learned multi-dimensional index for spatial 

queries.

• Support updates

Motivation

[24]Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned Index Structure for Spatial Data. SIGMOD(2020)

• Outperforms traditional spatial indexes for range and KNN queries :

• Memory consumption 

• IO cost

Performance
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Effectively Learning Spatial Indices [VLDB’20] Introduction

•  Selecting grid resolution for Z-order for learned multi-dimensional index (e.g. ZM-Index[41]) is difficult:

• Large cells

• More false positives due to many points per cell

• Small cells

• Hard to learn due to uneven gaps in Cumulative Distribution Function (CDF)

Motivation

[33]Jianzhong Qi, Guanli Liu, Christian S Jensen, and Lars Kulik. 2020. Effectively learning spatial indices. Proceedings of the VLDB Endowment13, 12 (2020), 2341–2354.

*[48] J. Qi, Y. Tao, Y. Chang, and R. Zhang. Theoretically optimal and empirically efficient R-trees with strong parallelizability. PVLDB, 11(5):621–634, 2018.

Original 
Space

Rank 
Space

Easily 
Learnable

CDF

• Spatial index based on ordering the data points by a rank space-based transformation*

• Simplify the indexing functions to be learned 

• M(search keys)         disk block Ids (location)

• For scaling to large datasets, proposes: 

• Introduce a Recursive Spatial Model Index (RSMI) (in lieu of RMI)

• Support point, window, and kNN queries

• Support updates

Core Idea



• Recursive Spatial Model Index (RSMI):

• Recursively partitions a dataset

• Partitioning is learned over the distribution of data

• Steps:

• Initially distribute the data into equal sized partitions 

• Use a Space Filling Curve (SFC) to assign Ids to partitions

• Learn the partition Ids using a model M0,0

• Rearrange the data based on the prediction of  M0,0 

• Recursively repartition

• Until each partition can be learned with a simple model

57
[33]Jianzhong Qi, Guanli Liu, Christian S Jensen, and Lars Kulik. 2020. Effectively learning spatial indices. Proceedings of the VLDB Endowment13, 12 (2020), 2341–2354.

0

2 3

p1 p2

p3 p4

1

Point p1 p2 p3 p4

Initial partition Id 0 1 2 3

Model predicted Id 0 1 3 3

Learned partition Id 0 1 3 3

 Effectively Learning Spatial Indices [VLDB’20] Mechanism

RSMI

Discussion

• Window and kNN query results are highly accurate but not exact.

• i.e., over 87% across a variety of settings

• Separate mechanism has been proposed for exact answer.

• Does not support query for spatial objects with non-zero extent
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Outline of the Tutorial

• Introduction and Taxonomy

• Indexing the Learned Models vs. Learning the Indexes

• Static vs. Dynamic Learned Indexes

• Learned One-Dimensional Indexes 

• Learned Multidimensional Indexes  

• Open Problems for Future Research



• Traditional Indexes: 

• Theoretical guarantee on performance
• Well studied and successfully integrated in real systems

• Learned Indexes: 

• Learn search-key distribution with some error correction mechanism
• Better performance with less space requirement

• Hybrid Indexes:

• Optimizing traditional indexes with helping (e.g., ML) models

59
[14]Ali Hadian and Thomas Heinis. 2019. Interpolation-friendly B-trees: Bridging the gap between algorithmic and learned indexes. In 22nd International Conference on Extending Database 
Technology (EDBT 2019).  https://doi.org/10.5441/002/edbt.2019.93
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Some Open Problems

• Efficiently support Inserts/Updates

• Support for other spatial operations, e.g., KNN, spatial join, 

closest pairs

• What types of ML models to use?

• Integrate with real database engines

• Concurrency support

• Develop benchmark for Learned Multidimensional Indexes
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