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ABSTRACT
Recently, Machine Learning (ML, for short) has been successfully
applied to database indexing. Initial experimentation on Learned
Indexes has demonstrated better search performance and lower
space requirements than their traditional database counterparts.
Numerous attempts have been explored to extend learned indexes
to the multi-dimensional space. This makes learned indexes poten-
tially suitable for spatial databases. The goal of this tutorial is to
provide up-to-date coverage of learned indexes both in the single
and multi-dimensional spaces. The tutorial covers over 25 learned
indexes. The tutorial navigates through the space of learned indexes
through a taxonomy that helps classify the covered learned indexes
both in the single and multi-dimensional spaces.

CCS CONCEPTS
• Database Systems → Indexing; • Machine Learning → ML
for Systems.
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1 INTRODUCTION
Due to recent successes in the field of Machine Learning (ML, for
short), two trends of research have emerged in the systems commu-
nity: Systems for ML and ML for Systems. Systems for ML aims at
building large-scale systems for efficient ML workloads. In contrast,
ML for Systems aims at using ML-based approaches to replace core
components of systems for better performance and less space re-
quirement. This tutorial falls under the broad category of ML for
System. More specifically, this tutorial addresses the following ques-
tion: Can one use ML techniques to guide data indexing? Can ML
techniques replace and act in place of a multi-dimensional index?

Database Management Systems (DBMS) are designed to be gen-
eral purpose. This general purpose nature of a modern DBMS does
not consider the specifics of a particular application and data of
the user [21]. In most DBMSs, for efficient data access, an index
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structure, e.g., a B+-Tree is used. As a result, these index structures
are highly optimized but are general-purpose data structures. In
other words, they do not utilize knowledge of the underlying data
distribution in the optimization process of an index. To illustrate,
assume that we have 1 to 5M continuous integer keys. Now, in
order to search a particular key, we can use the key itself (instead
of a B+Tree) as an offset. As a result, the logarithmic complexity of
search operation can be reduced to 𝑂 (1).

By addressing this issue, the first work on “Learned Index” [22]
has changed the perception of DBMS indexing. The key idea behind
the above mentioned work is that “Indexes are models” of the data.
Given a key, say 𝑘 , an index simply predicts the position of 𝑘 in the
dataset. As a result, indexes can be learned. Surprisingly, learned
indexes have demonstrated better search performance and lower
space requirements.

Although the term “Learned Indexes" has been popular very
recently, the idea of using a learning mechanism in data indexing
is not completely new. An example of an earlier index that uses ML
techniques is the handwritten trie that uses hidden Markov Models
on a trie structure to index the learned models [1]. However, this
earlier work focuses on indexing the learned models in contrast to
the more recent trend of learning the index. In this tutorial, we will
cover both trends: (1) Indexing the learned models, and (2) Learning
the index or what is termed the learned indexes.

These initial works have been focused on read-only workloads.
To deal with updates, a new class of updatable adaptive learned
indexes has been proposed, e.g., [4]. It has been demonstrated that a
careful space-time trade-off can lead to an updatable data structure.

In the area of Spatial Database Indexing, support for multi-
dimensional data is required. The R-Tree and its variants, e.g., [2, 12],
and the quadtree and its variants, e.g., [9, 36, 37], are widely studied
and are used extensively in practice. Initial attempts have been
made to replace the R-Tree with a learned counterpart, e.g., [21].
A series of followup works have followed to build learned multi-
dimensional indexes.

Figure 1: The outline of the tutorial (50 minutes).

This tutorial will provide up-to-date coverage of learned multi-
dimensional indexes. The target audience for the tutorial is students,
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academics, researchers and practitioners with basic knowledge on
data structures and algorithms. We assume basic understanding of
fundamental data indexing structures e.g., the B-tree, the R-Tree,
the quadtree, space-filling curves, and the Bloom Filter. The tutorial
is designed to be self-contained in providing all the necessary back-
ground on the concepts related to the "Learned" part of the Index
Structures. The target outcomes of this tutorial are as follows:

• Understanding the limitations of traditionalmulti-dimensional
indexes.

• Understanding the motivation behind developing learned
multi-dimensional indexes.

• Familiarity and up-to-date coverage of the state-of-the-art
learned multi-dimensional index structures.

• Highlighting the research challenges and new opportunities
in the area of learned multi-dimensional indexes.

2 OUTLINE OF THE TUTORIAL
This tutorial consists of two main parts as illustrated in Figure-
1. The first part will contain the overall problem setting and the
learned indexes introduced for the one-dimensional case. The sec-
ond part of the tutorial will cover the existing work on learned
multi-dimensional indexes. We will navigate through the space of
learned indexes using a simple taxonomy that we develop over the
literature on the existing learned indexes. A sample snapshot of the
taxonomy is given below.

Figure 2: A sample taxonomy of Learned Index Structures

2.1 Part 1: Learned Index Structures
The chain of work in this particular area has started in 2018 with
the paper titled “The Case for Learned Index Structures" [22]. In this
paper, the key idea is that a one-dimensional index, e.g., the B+-Tree,
can be treated as a learned model. For searching a key, a B+-Tree
simply finds (predicts) the position of the key within a logical sorted
array at the leaf level. If we follow this assumption, by learning
the Cumulative Distribution Function (CDF) of the input data, the
mapping function of an index can be learned. Due to the complexity
of the CDF, a singleMLmodel learned over the complete data cannot
provide the desired accuracy [4]. To address this issue, a Recursive
Model Index (RMI, for short) has been introduced. Several learned
indexes utilize RMI, e.g., AIDEL [23], ASLM [25] and Hybrid-O [34].
A demo on tuning the learned indexes can be found in [29].

Handling dynamic data sets in the context of learned indexes is
challenging. The reason is due to the following. Given a data set, it
takes significant time to train an ML-based model to capture the
CDF of the underlying data set. Given a new insert or update to the
underlying dataset, this in a sense may change the CDF or at least
perturb the distribution of the data and the learned model. Thus,
upon multiple inserts, deletes, and updates, we need to retrain the
model that, in term, reduces the utility of the learned index until
it is retrained again. Updates and inserts in learned indexes have
been addressed in several newly proposed indexes, e.g., [4, 13].

A series of followup works for addressing various aspects of
learned indexes can be found in [7, 8, 17, 27, 30, 38, 40, 42, 43,
43, 44]. In [10], a data-aware index structure is proposed using
interpolation. Hybrid approaches (with helper models) have been
introduced [14, 15, 26]. Reinforcement Learning has been used for
routing query and data in learned indexes [45]. Other related recent
papers that we cover in the tutorial are: [19, 20, 28, 39] as well as a
survey on learned data structures [6]. These as well as other learned
indexes will be covered in Part 1 of this tutorial, and will serve as
the foundation for Part 2 of the tutorial.

2.2 Part 2: Learned Multi-dimensional Indexes
Naturally, researchers have explored how to extend the concept of
learned indexes into the multi-dimensional space. Several works
have explored projecting the multi-dimensional data into the one-
dimensional space as a preprocessing step, and then a learned
index is built over the one-dimensional projection of the data
(e.g., as in [21]. Flood [31] is another learned in-memory read-
optimized index that automatically adapts itself to a particular
multi-dimensional data set and workload. In [16], an interpolation-
friendly multi-dimensional index has been proposed. LISA [24] is a
disk-based learned multi-dimensional index. In [41], the Z-order
space filling curve has been incorporated with the staged learning
model to build a multi-dimensional index. Other recent works are:
[3, 5, 11, 32, 33]. The tutorial will cover these multi-dimensional
learned indexes, and demonstrate how they work and the chal-
lenges they face. Finally, the tutorial will conclude by listing several
open problems for future research.

3 RELATED TUTORIALS
One related tutorial titled “From Auto-tuning One Size Fits All to
Self-designed and Learned Data-intensive Systems (Tutorial)" [18]
has been offered in SIGMOD 2019. Another very closely related
tutorial offered in ICDE 2020 is titled "Machine Learning Meets Big
Spatial Data" [35]. These tutorials address how ML approaches can
be used in place of the various systems components. While these
tutorials are complementary and are related, they are not directly
focused on the recent hot topic of learned indexes that is the topic
of this tutorial.

4 PRIOR TUTORIALS
As it stands, this tutorial has not been offered by the authors in any
other venue, and SIGSPATIAL 2020 will be the first venue where
this tutorial will be offered.

One of the authors, Walid G. Aref, has offered several tutorials
on different yet related subjects in the past. These are listed below:
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(1) Ahmed R. Mahmood and Walid G. Aref, “Query Processing
Techniques for Big Spatial-Keyword Data”, International
Conference on Management of Data (SIGMOD): 1777-1782,
2017.

(2) Mohamed F. Mokbel and, Walid G. Aref, “Location-aware
Query Processing and Optimization”. In the IEEE Interna-
tional Conference on Mobile Data Management (MDM),
Mannheim, Germany May 2007.

(3) Mohamed F. Mokbel and Walid G. Aref, “Location-aware
Query Processing”, In the International Conference on Ex-
tending Database Technology (EDBT), Munich, Germany,
March 2006.

(4) Ihab F. Ilyas and Walid G. Aref, “Rank-aware Query Process-
ing Tutorial”, In the IEEE International Conference on Data
Engineering, Japan, April 2005.

(5) Ihab F. Ilyas and Walid G. Aref. Rank-aware Query Process-
ing Tutorial, the 9th International Conference on Extending
Database Technology (EDBT), Heraklion - Crete, Greece,
Mar. 2004.
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