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Figure 1: Visual comparison of Ohio highway traffic incident distributions approximated by 0.3% data samples retrieved by STULL

(left) and STORM (right) in 40 milliseconds or less, against the exact map (middle) at 100% data, with 32 shades of gray (colorbar).

Both using 0.3% sample data, the STORM heatmap indicates hotspots are mainly located on the west side of Ohio’s highway

network, whereas the STULL heatmap shows hotspots across the state and better resembles the exact map.

ABSTRACT

Online sampling-supported visual analytics is increasingly impor-
tant, as it allows users to explore large datasets with acceptable
approximate answers at interactive rates. However, existing online
spatiotemporal sampling techniques are often biased, as most re-
searchers have primarily focused on reducing computational latency.
Biased sampling approaches select data with unequal probabilities
and produce results that do not match the exact data distribution,
leading end users to incorrect interpretations. In this paper, we pro-
pose a novel approach to perform unbiased online sampling of large
spatiotemporal data. The proposed approach ensures the same prob-
ability of selection to every point that qualifies the specifications of
a user’s multidimensional query. To achieve unbiased sampling for
accurate representative interactive visualizations, we design a novel
data index and an associated sample retrieval plan. Our proposed
sampling approach is suitable for a wide variety of visual analytics
tasks, e.g., tasks that run aggregate queries of spatiotemporal data.
Extensive experiments confirm the superiority of our approach over
a state-of-the-art spatial online sampling technique, demonstrating
that within the same computational time, data samples generated
in our approach are at least 50% more accurate in representing
the actual spatial distribution of the data and enable approximate
visualizations to present closer visual appearances to the exact ones.
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1 INTRODUCTION

Online sampling-supported Visual Analytics (VA) allows users to ex-
plore large volumes of data at interactive rates when it is not feasible
to retrieve and render the whole dataset interactively. This is done
through continuous retrieval and visualization of retrieved samples
that approximate the distribution of the underlying dataset being
queried, also known as incremental visualization [21]. As users
wait for samples to accumulate over time, the sample size increases,
which improves the accuracy of the inferred data pattern; this allows
users to trade wait time for accuracy [46]. Therefore, to ensure
effective incremental analyses, it is crucial that the progressively
retrieved sample is representative of the entire dataset and is not
biased. Biased sampling approaches, by definition, sample data with
unequal probabilities [37], generate data patterns that deviate from
the original dataset, and can lead users to erroneous conclusions
(See Figure 1 for an example). To ensure trustworthy and reliable
data exploration for VA systems, unbiased sampling is critical.

Incremental visualization requires low retrieval latency to support
progressive sampling. In cases using incremental visualization of
spatiotemporal data, prevalent spatial sampling approaches [12, 47]
have slow retrieval times as they use tree-based spatial indexes (e.g.,
R-Tree [24]) and iteratively traverse trees from the root to leaf,
which often leads to unacceptably high retrieval latency, especially
in cases where partial trees reside on disk. A state-of-the-art spatial
online sampling approach, STORM [61], applies sample buffers to
tree-based indexes and uses these buffers to substitute high-latency
tree traversals. However, this approach focuses on the efficiency of
sample retrieval, without fully resolving the sample bias problem.

In this paper, we present SpatioTemporal Unbiased onLine sam-
pLing (STULL), a novel unbiased online sampling approach that
supports incremental visualization and interactive exploration of
large spatiotemporal data. Motivated by the advantages of sample
buffers, STULL proposes a carefully designed sample buffer-based
data indexing and sample retrieval plan to ensure that each data point
satisfying the user-specified multi-dimensional query has an equal
probability of being sampled. In particular, unlike state-of-the-art
spatial online sampling approach [61], our unbiased guarantee is
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unaffected by the intrinsic spatial distribution pattern of the data.
With our approach, incrementally updated visualizations can not
only achieve higher accuracies at the same sample size but also
present closer visual appearances to the exact visualizations. In
addition to visual quality, STULL retrieves samples as efficiently as
state-of-the-art approaches (e.g. [61]), and allows users to control
the number of points sampled through incremental updates. Through
STULL, VA systems can provide unbiased approximate answers to
queries for more accurate spatiotemporal visual analytics without
adversely impacting the computational performance of the interac-
tive data exploration. Furthermore, STULL supports sampling both
stored data and streaming data, making it suitable for visual analytic
environments that leverage both types of data, such as social media
analytics tools [9, 54].

Our experiments confirm the effectiveness and efficiency of
STULL in producing unbiased samples for large spatiotemporal data
queries. Compared to the state-of-the-art online spatial sampling
approach [61] on historical data, in the same computational time,
STULL improves the approximate spatial accuracy by at least 50%
when sampling less than 5% of the original dataset. Using our ap-
proach, approximate visualizations reduce visual differences from vi-
sualizations encoding the exact answers. For streaming data, STULL
takes less than 500ms on average to index incoming streaming data
(1000⇠4000+ tweets per second [39]) for answering queries, well
below the response time thresholds for interactive visualization [35].

Our contributions include the following:

• a novel, unbiased online sampling approach for VA systems
to incrementally present approximate yet reliable interactive
analyses,

• theoretical guarantees on the unbiased property of our pre-
sented approach.

2 VISUAL ANALYTICS AND SAMPLING BIAS

Unbiased sampling requires that each record satisfying the query
specification has the same probability of being selected [37]. Con-
versely, a sampling approach is considered biased if the probability
of each individual record being selected is not equal.

Sampling bias can distort patterns of data and render data ex-
ploration ineffective and inaccurate [20]. For instance, a common
aggregation task in crime analysis is to identify spatial hotspots
where the most incidents occur. Data samples retrieved by unbiased
approaches should approximate the hotspot patterns regardless of
sample sizes; biased approaches may be skewed towards locations
outside of the true hotspots and may create false hotspots.

Furthermore, such erroneous interpretations can accumulate
throughout the sense-making process. VA systems often support the
interactive exploration of data, following the information seeking
mantra [58]: “Overview first, zoom and filter, then details on de-
mand.” This practice is common in geospatial analysis, where users
often start the exploration by examining data patterns across the
overall geographic extent, and then identify locations of interest for
further investigation. However, if sampling is biased toward specific
geographic regions, the visual display at the overview level could
already be misleading. As a result, it would then exacerbate the
biased selection of relevant regions for further exploration.

Sampling bias also impairs incremental visualization. Incremen-
tal VA systems progressively improve upon approximate answers
through three main stages [3]: early, mature and definitive. An-
swers presented in the early stage can reflect the exact answers,
helping users evaluate whether or not their analytic activities are
on track. The results of the mature stage can approximate exact
answers with acceptable errors and are useful for time-critical tasks.
Finally, the definitive stage approximates answers that do not change
significantly and can address analytic tasks that require smaller error
margins. However, with the same sample size, answers constructed

from biased samples are often further from the exact answers than
their unbiased counterparts. Thus, biased sampling hinders the ad-
vent of each stage and prolongs wait time for users. Moreover, users’
trust in approximate answers is an intrinsic challenge of incremental
visualization [43] and sampling bias can exacerbate the trust issue.
For example, one effective visualization technique to help users
become confident in the analytic results is to compute the exact
answers offline so users can compare their selected, approximate
answers against exact ones and redo their analyses if needed [44].
Biased approximate answers can increase the number of times a user
has to redo analyses, decreasing the rate at which they can complete
tasks.

Therefore, for data exploration in VA systems, it is vital for sam-
pling to be unbiased. This ensures that approximate visualizations
can reliably represent the exact answers.

3 RELATED WORK

We organize the state-of-the-art work related to STULL by the
following four topics:

Interactive exploration of large data: In a VA system, an
additional 500-ms computational latency significantly decreased
users’ enthusiasm for exploring data [35]. Here we categorize pop-
ular techniques that enable VA systems to rapidly process data.
First, well-designed data indexes can avoid selecting most query-
irrelevant data, which significantly reduces latency [38, 59]. Sec-
ond, data-cube oriented approaches aggregate the original dataset
into a hierarchical knowledge graph, and retrieving answers from
such a compact graph is efficient for aggregate queries (e.g., im-
Mens [36], Nanocube [33], Hashedcubes [50], TOPKUBE [42],
SmartCube [34]). Third, computational latencies can be reduced by
computational parallelism [17, 28] or hidden by pre-fetching [5, 10].
Finally, unlike the above techniques, which process the whole dataset
to produce exact results but are slow to return results if the data
volume grows exponentially, sampling-based approximate query
processing (AQP) techniques [1, 53, 55] use less data to approxi-
mate the original dataset but are able to process large volumes of
data without performance degradation. This allows VA systems to
quickly process small samples of data and produce error-bounded
answers, regardless of the total data volume [20, 45].

Sampling-based AQP and sampling bias: A broad range of
applications (e.g., Geosciences [57], Ecology [22] and population
census [37]) employ sub-samples of large data to extrapolate char-
acteristics of the whole dataset. These extrapolations often assume
that their input data can equally represent a large geographical dis-
tribution, as biases systematically favor partial data and cause over-
estimation or underestimation of certain data [30]. Research shows
that in logistic regression-based classification problems, inconsis-
tency between the whole dataset and sub-sampled data regarding
the multi-class data distribution reduced the predictability of trained
models [49]. In ecological research, species distribution models
are prone to overfitting, as sample data is biased in favor of regions
where it is easy to collect data [7, 30]. Thus, unbiased sampling
is essential in many domains to better reflect the true state of the
world. To date, unbiased sampling approaches have been widely
investigated [37,60]. For example, unbiased graph sampling [31,64]
considers graph properties (e.g., degree of nodes in social networks)
and designs special sampling strategies to ensure the properties ex-
tracted from the samples are representative of the whole. Our work
focuses on unbiased sampling of spatial data in the online manner,
which requires the low latency of sampling large volumes of data.

Visualization can affect sampling strategies as well. For example,
some spatial visualization tasks might include more data from low-
density areas so that visualizations do not appear to ignore these
regions [52]. As for scatterplots, in order to keep desired information
(e.g., a data outlier) sampled or to avoid overdraw in high-density
areas, some approaches [11, 12, 26, 62] assign each point an uneven
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probability of being selected for rendering. This also occurs in some
spatial data analyses [14] where each point has intrinsic priority in
the sampling procedure (e.g., advertisement ranking). In essence,
the aforementioned sampling approaches use intentional bias to
preserve desired visual properties, whereas our approach focuses on
visualization scenarios that retain the distribution of the underlying
data and support interactive exploration of large data.

Online sampling and incremental visual analytics: Online
sampling approaches [25, 51] select data in a continuous way so
that VA systems can produce immediate outputs and incrementally
refine them. Here we review three common types of methods sup-
porting users to conduct progressive analyses. First, users’ demands
for analytical accuracy were typically expressed as certain statistical
measurements to configure the number of needed samples (e.g., Con-
fidence Interval [15, 21, 25, 43]). Second, randomness is crucial to
data sampling, which inevitably causes analytical results generated
in previous executions to have some degree of numerical difference
from those in subsequent executions. Consequently, users have dif-
ficulty choosing trustworthy answers. A series of visual analytics
approaches [29, 44, 56] were developed to help users reduce un-
certainty and determine the best answers. Finally, in addition to
mathematical measurements, online sampling processes can also
factor in users’ perception and measure approximate answer accu-
racy in terms of perceived information [2, 63]. In this paper, we
focus on sampling bias, which hinders visual analytic activities. Our
approach samples spatiotemporal data in an unbiased way and will
therefore reduce the inaccuracy of approximate answers.

Online sampling of spatial data: Particular sampling tech-
niques build on the special characteristics of spatial data. Olken
et al. [47, 48] presented a suite of spatial sampling methods (e.g.,
RandomPath [48, 61]) that conduct back-and-forth traversals over
typical hierarchical spatial structures (e.g., R-tree [24], Quad-
tree [19]) to retrieve samples. Likewise, similar sampling strategies
have been used for object movement trajectories [13, 16, 32] and
scatterplots [12]. These approaches traverse their index from root to
leaf to obtain one or a few points. The sampling procedure repeats to
retrieve more samples. As a result, the sampling time of these meth-
ods scales as the number of tree traversals increases. This problem
is compounded in cases where the available memory cannot store
trees completely and must save partial trees to disks. Disk I/O is
much more expensive than in-memory access [23]. Consequently, re-
trieving samples from disks cannot satisfy time-critical performance
requirements that are mandatory in online scenarios [35]. However,
in the big data era, it is common to use hard drives as secondary
storage to alleviate memory shortage [61]. To adapt to the hybrid
data storage system that allocates data to both memory and hard
drives, STORM [61] proposed a novel data index that uses sample
buffers to substitute expensive tree traversals. Sample buffers pack
well-selected sample points into disk blocks [4]. Batched disk I/O
operations can quickly load a significant number of disk blocks into
memory. As such, loading these buffers from disks is more efficient
than traditional tree-based approaches. To the best of our knowledge,
STORM is the first approach to employ online sampling of spatial
data [61]. Section 4.1 elaborates details regarding the two sampling
genres. In this paper, we focus on sampling bias arising from the
sampling procedure equipped with sample buffers. Sampling bias
can be avoided either by ensuring equal sampling probability for
each point or by involving remedies to correct the bias. [60]. Our
approach avoids bias by ensuring each point has the same probability
of being selected, and can conduct unbiased sampling of discrete
spatiotemporal data records, while satisfying the latency requirement
for interactivity.

4 STULL

As users issue queries, STULL continuously samples data so that the
VA system can create rapid visualizations and progressively improve

them. During a single incremental update, STULL retrieves sample
points per the spatial and temporal specifications of a particular
query. After receiving samples, the visualization side generates and
updates the visuals. This section introduces the computational details
of STULL. Section 4.1 gives some intuition on the advantage of our
sampling strategy. Sections 4.2, 4.3 and 4.5 detail the scalable data
index design, creation and updating. Section 4.4 provides details of
the sample retrieval procedure with guaranteed unbiasedness.

4.1 Intuition

Efficient sample retrieval is crucial for online sampling. A sampling
plan that randomly selects a subset of points from a collection of
data points is apparently not efficient because the retrieval accesses
all of the points even if users query merely a small part of the
data. A scalable plan involves indexing data and retrieving samples
from the index, as the index can minimize the accessed data to the
subsets specified by queries. Specific to spatial sampling, spatial
indexes ( e.g., R-tree [24] and Quad-tree [19]) are widely used to
organize data in a spatial hierarchy. These trees often store all
the points into leaf cells. The sample retrieval procedure (e.g.,
RandomPath [48, 61]) starts from the tree root, randomly chooses a
child in terms of some metrics (e.g., the point volume belonging to
each child), and recursively picks a child of the chosen cell until it
reaches a leaf from which a point is selected. The same procedure
repeats until the desired number of points is collected. This type
of approach produces samples that represent the queried data in an
unbiased manner, but the retrieval process is not efficient. First, the
sample retrieval latency increases in proportion to the tree traversal
cost. Second, the cost of traversing trees and selecting data from
leaves can exceed the latency bound specified by interactive data
exploration [35] if the available memory cannot store the whole
index and partial of indexes reside on a disk. In cases where data
indexes are stored on hard drives, loading non-leaf cells and reached
leaves into memory is a lengthy process because each access requires
at least one disk Input/Ouput (I/O) operation and completing all the
I/Os is time-consuming and at least one to two orders of magnitude
slower than in-memory access [23]. To reduce the number of I/Os, an
advanced approach, STORM [61], proposes storing samples satisfying
a query specification in a continuous region on the disk. A batch I/O
operation can sequentially scan the disk region to retrieve samples,
which is faster. In terms of tree-based spatial hierarchy, STORM
allocates a continuous region (known as a buffer [4]) on a disk for
each of its non-leaf cells. Each buffer stores data samples that are
retrieved in advance from the spatial range represented by its linked
cells. Thus, the points stored in a sub-tree root’s sample buffer can
approximate all the data indexed by the sub-tree and act as a sample
set. Likewise, the union of points in the sample buffers belonging to
the root’s children can approximate the data distribution. As such,
progressively merging more relevant buffers can form an online
sampling manner. In summary, the recent buffer-based approach can
retrieve samples rapidly and support VA systems at interactive rates.

Since buffer-based sampling approaches retrieve samples in the
units of buffers, the state-of-the-art fixed-sized design proposed by
STORM [61] in which each buffer has the same number of points
raises bias (Figure 2). In this example, each non-leaf cell has a 500-
point sample buffer. At level 2, collectively, the union dataset of the
orange and green cells has 43.3% points (i.e. 1000+1600

2000+4000 ) satisfying
Q, whereas the sample set that is a combination of their sample
buffers has 45% points (i.e., 250+200

500+500 ) satisfying Q. Therefore, the
samples cannot accurately approximate the dataset.

To avoid this issue, we propose a proportionally-sized design.
In this design, each cell’s buffer caches 100a percent of its data.
The sample buffer is therefore proportional to the cell’s specified
range. In the case when a query relates to multiple cells (Figure 2),
the union of these cells’ buffers will contain exactly 100a percent
of the data being queried. Therefore, the proportionally-sized design
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can approximate the distribution of the queried data without bias
whereas the fixed-sized [61] is contingent on the spatial index itself.
STULL uses the proportionally-sized design so that it can prevent
such issues and ensure that the samples can represent the exact
spatial distribution unbiasedly.

Total: 10,000
    Q: 3000

Sample buffer:
 Q: 150 points

Total: 4000
   Q: 1600

Sample buffer:
 Q: 200 points

Total: 2000
   Q: 1000

Sample buffer:
 Q: 250 points

Figure 2: Sampling bias issue in the fixed-sized sample buffer de-

sign. Q is a query. Each sample buffer has 500 random data points.

Numbers inside each buffer lists the number of points satisfying Q.

Numbers inside each cell list the total number of points in the spatial

range of the cell and the number of points satisfying Q respectively.

4.2 Index Design

STULL indexes data with an ordered list of pyramids that repre-
sents the spatio-temporal segmentation of the data. (Figure 3). The
temporal range of the data, Dt, is first divided into adjacent, non-
overlapping, equal-sized temporal bins, each indexing a subset of the
data that falls into its range. Within each temporal bin, data is further
indexed with a pyramid (e.g., Mars [38]) per its spatial dimensions.
Each pyramid recursively and equally divides the data’s spatial range
into four fixed-sized rectangular sub-ranges until the d 1

a e-th level.
a is the reciprocal of a pyramid’s height. Unlike a Quad-Tree,
each pyramid’s non-leaf cells have sample buffers. These sample
buffers follow the proportionally-sized design to cache 100a per-
cent of points randomly selected from their spatiotemporal ranges.
Therefore, each pyramid level has in total 100a percent of points.
Accordingly, a pyramid has 100

100a = 1
a levels in total.

At the bottom level of a pyramid, leaf cells store all of the data
within their range in a circular array (Figure 3(c)). We divide each
circular array into 1

a segments in terms of the pyramid height, where
each segment contains 100a percent of the data. These segments
will be used to add points into non-leaf cells’ sample buffers (Sec-
tion 4.3) and participate in sample retrieval (Section 4.4). Figure 3(c)
exemplifies the circular array in the leaf with the id “1122” in Fig-
ure 3(b). Since a = 0.25, its circular queue has four segments.

Cells from the non-bottom levels of a pyramid cache randomly
selected samples from their respective ranges in one-dimensional
arrays, termed sample buffers. Collectively, data in the sample
buffers form a sample that approximates the distribution of the
original data (Section 4.4).

4.3 Index Creation

To build the index, STULL first puts each data point in the appropriate
temporal bin. Then, starting from the root level of the pyramid, in
a top-down fashion, we proceed to the appropriate spatially-ranged
leaf cell and insert this point into its circular array, and repeat this
process for all data points. At completion, the circular arrays at the
bottom levels of all pyramids will contain the entire data set.

Next, in each pyramid, STULL adds points to sample buffers at
the non-bottom levels of pyramids. First, each leaf cell randomly
shuffles data in its circular array (Figure 3(c)). Second, a bottom-up
procedure copies segments of data from leaf cell circular arrays into
sample buffers of their ancestor cells. Take one leaf for example, its
circular array has 1

a segments. In clockwise order, the data in the
first segment is copied into the sample buffer of the root level, data

Figure 3: The data index. (a) shows the temporal index beginning

at ts. Each segment in (a) is a temporal bin. Each temporal bin sets

a = 0.25 and uses a four-level pyramid (in (b)) to spatially organize

data. A pyramid leaf uses a four-segment circular array (in (c)) to

store data. Each non-leaf cell has a sample buffer to store data.

in the second ancestor cell on the second level, and so forth, until
the 1

a -th segment is copied. Algorithm 1 shows the pseudo-code of
this procedure.

Algorithm 1: Building sample buffers
input :A list T consisting of temporal bins that need to build

sample buffers
1 for each time bin t in T do

2 empty all sample buffers;
3 for each leaf u of t do

4 random shuffle data in u’s circular array;
5 n the length of u’s circular array;
6 index 0;
7 for i = 1 : 1

a do

8 c the ancestor cell in the i-th level and
belonging to the path from u to the root;

9 b the whole data in the i-th segment of u’s
circular queue;

10 Add b to c’s sample buffer;
11 end

12 end

13 random shuffle all sample buffers;
14 end

4.4 Sample Retrieval

STULL retrieves sample points that satisfy a given query Q in an
incremental way. Suppose a VA system plans to use 100q percent
of data points to generate quick answers and progressively refine
answers with the same number of new points.

In order to keep the sampling result unbiased in the temporal
dimension, STULL retrieves only 100q percent of sample points
from each temporal bin requested per Q, where q denotes the ratio
of points desired by users. The union of samples retrieved from all
of the requested bins is the set of samples the visualization side uses
for visual computation.

Retrieving 100q percent of points from a single temporal bin
takes the following steps. First, STULL randomly picks a pyramid
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level lr to retrieve points. For each of cells spatially overlapping
with Q at the lr level, we retrieve 100q points from its data, which is
equivalent to retrieve q/a percent of data from its sample buffer. In
each incremental update, the retrieval repeatedly retrieves a chunk
of q/a percent of data from sample buffers of eligible cells. The
retrieval on a level continues until either users terminate the incre-
mental retrieval procedure or the sample buffer is exhausted after 1

q
rounds, in which case, we move on to the next level [(lr +1)mod 1

a ].

Suppose lQ is the lowest pyramid level in which a single cell
contains the queried spatial range. There is a (alQ�a) probability
that lr < lQ and consequently the lr level has more points irrelevant
with Q. In such a case, to avoid most of the irrelevant points, we
will simply retrieve samples from the bottom level since it contains
all of the data.

When sampling is on the bottom level, the same steps are con-
ducted on consecutive segments of leaf cells’ circular arrays. In the
case lr � lQ, after the retrieval has obtained points from Level lr to
Level ( 1

a �1), the retrieval begins at the 1
a -th segment. Otherwise,

it starts at the lr-th segment. Similarly to sample buffers, the retrieval
procedure accesses the same q/a portion of points in a segment,
continue, and will exhaust all eligible points after 1/q times. Then,
the index of the next retrieved segment is (lr +1)mod 1

a . Likewise,
the retrieval continues until either users cancel or lr is reached again.

Algorithm 2 describes the whole retrieval procedure in a time bin.

Algorithm 2: Retrieving samples in Temporal Bin t
input :Query Q; q
output :A random sample S with 100q percent of points

1 Determine lQ according to the spatial query range of Q;
2 Initialize empty lists S and G;
3 lr a level randomly chosen between 1 and 1

a ;
4 l lr; u 1;
5 while (u <= 1

q or users didn’t terminate) do

6 if G is empty then

7 if lQ  lr and l < 1
a then

8 G sample buffers of cells that are in the l-th level
and spatially overlapping with Q;

9 else

10 G the l-th segments of cells that are in the leaf
level and spatially overlapping with Q;

11 end

12 end

13 u0 (u mod a
q ) == 0? a

q : u mod a
q ;

14 for each element b in G do

15 s  points satisfying Q and in the
[100(u0�1)q/a%,100u0q/a%] portion of b;

16 S S[ s;
17 Send S to a VA system for visualization;
18 end

19 u u+1;
20 if u mod a

q == 0 then

21 G an empty list;
22 l  1 + (l mod 1

a ) ;
23 if l == l0 then

24 break;
25 end

26 end

27 end

4.5 Index Update

Once new data arrive, STULL updates its data index through finding
temporal bins associated with the new points, adding the points
into leaf cells and following Algorithm 1 to refresh sample buffers
in each associated bin. This updating procedure applies to both
existing data and new streams of data. In general, existing data
(e.g., historical logs) are well collected and curated before the visual
analytics process. Thus, its index update has sufficient time to
conduct before queries, unlike streaming data, which must be timed
carefully. Incoming data streams and their queries span more recent
time ranges (e.g., a monitoring system [38] querying sensor data
collected in the last ten minutes); the update procedure likely adjusts
only the latest few temporal bins, which is therefore fast.

5 UNBIASED SAMPLING GUARANTEE AND COMPUTA-

TIONAL PERFORMANCE

Unbiased sampling in STULL is guaranteed as a result of the index
and the aforementioned sample retrieval procedure. We provide
the theoretical proof of its unbiased claim as follows. STULL also
guarantees interactive rates, making it suitable for online sampling
and incremental visualization. A formal computational complexity
analysis is detailed in Appendix A.

We prove that STULL conducts unbiased sampling in two steps.
First, we prove that STULL retrieves samples from one temporal bin
without bias, and then prove for cases that use multiple bins.

For one temporal bin (e.g., a t-th bin), the sample retrieval pro-
cedure follows Algorithm 2 to access its pyramid and obtains 100q
percent of points that satisfy Q per visual update. Recalling Al-
gorithm 2, the sample retrieval starts from a random level lr, if
lr >= lQ, and the bottom level otherwise. The procedure in the case
of lr >= lQ is equivalent to the other procedure. Thus, we reduce
the proof of unbiased sampling for just the bottom level. Suppose
CQ is a set of leaf cells that spatially overlap with Q. In each leaf
of CQ, the retrieval process on average accesses l segments of its
circular queue, where l = q/a . For each leaf of CQ, the equivalent
procedure first accesses the lr-th circular queue segment and then
continues fetching data from (lr +1)-th section in a clockwise order
until l segments are accessed. Equation 1 shows that each segment
in the circular queue of a leaf has an equal chance of being selected.
Equation 2 shows that each point satisfying Q in a leaf is also the
same for other points satisfying Q. Therefore, points in each leaf of
CQ are equally likely to be selected.

P(Segment li is chosen) = P(lr = li)+P(lr 6= li)⇥P(lr
belongs to l�1 segments counterclockwise from li)

=
1

1/a
+(1� 1

1/a
)

l�1
1/a�1

= la =
q
a

a = q
(1)

P(Point r is chosen)

= Â1/a
li=1 P(r is in the li-th segment)⇥P(li is chosen)

= Â1/a
l j=1

1
a
⇥q = q

(2)

Second, we prove that sample points retrieved from multiple tem-
poral bins are unbiased as well. Suppose Q requires 100q percent of
points from each temporal bin in a set, TQ. Derived from Equation 2,
a point satisfying Q in the t-th bin is selected with probability q .
Therefore, STULL ensures that each point satisfying Q has the same
selection probability q .

In conclusion, STULL is unbiased in selecting points satisfying a
multidimensional query specification.
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Table 1: Evaluated datasets.

Data Description
Counts

(million)

Memory size

(MB)
Spatial range

Temporal

bin counts

Temporal

bin interval

GEO
[65–67]

human movement data from April, 2011
to August, 2013 5.8 3289 Beijing, CHINA 3 year

OSP Ohio traffic incident data from January 1,
2012 to December 31, 2013 3.2 2279 Ohio, USA 4 6 months

Tweet-
Chicago

tweets in Chicago from April 1, 2013 to
September 30, 2013 9.4 4452 Chicago, IL, USA 6 month

Tweet-
US

tweets across the entire US from January
1, 2018 to March 11, 2018 12.4 4879 USA 11 week

6 EVALUATION

In this section, we present our experiments and results to demonstrate
the effectiveness of STULL.

Implementation: STULL and its two baseline approaches are
built with the Microsoft .Net Framework and Visual C++ [41]. Sec-
tion 3 and Section 4.1 elaborate on our baseline choice.

• STORM [61] is a spatial online sampling approach, using a
sample-buffer equipped R-tree [24] to index data. It uses the
fixed-sized sample buffer design, making non-leaf cells have
the same number of points in their buffers. In our experiments,
STORM used the Boost library API [8] to build a quadratic
R-tree [24], and each of its sample buffers have 1024 points.

• RandomPath is a variant of a spatial sampling approach [48]
that traverses a tree-based spatial index to sample data. In our
implementation, points are grouped into temporal bins, and
each bin uses a Quad-tree [19] to index its points spatially.
Unlike STORM and STULL, there are no sample buffers, and all
of the points are stored merely in leaf cells. In each bin, it
follows the tree-traversal based manner [48] to retrieve samples.
RandomPath produces an unbiased sampling, but is slower in
sample retrieval. Thus, RandomPath is an approach to offline
sampling instead of online sampling.

Data sets. Table 1 lists the test datasets. Spatial distributions
among the datasets are diverse. Hotspots scattered in the OSP case
and concentrate at few locations the in other three.

Environment. We conduct all experiments on a machine with an
Intel(R) Core(TM) i7-4770K CPU at 3.5GHz, 8GB main memory,
and a 256GB solid state drive.

6.1 Numerical Accuracy of Approximate Answers

We quantified one of the advantages of unbiased sampling through
the accuracy of approximate answers expressed in numbers. The
accuracy was measured by Root Mean Square Error (RMSE) [27],
which calculates differences between exact answers and approximate
answers.

Regarding accuracy in the spatial dimension, we queried the
Kernel Density Estimation (KDE) [18] results of the whole data in
the geospace. RMSE was measured on spatial bins with a KDE
value no less than 0.05 on a normalized scale of 0 to 1. Figure 4
shows the accuracy of approximate KDE results, compared to the
exact KDE results. Overall, RMSE values and sample sizes are
inversely correlated. At the same sample size, STORM has the most
significant RMSE values, and the other two are almost the same or
smaller. When the sample size is 5%, STORM’s RMSE value is at
least twice as much as the others; and the difference decreases along
with the increase of sample sizes. Moreover, RMSE values in the
OSP case are the largest at the same sample size, and nearly three
times that of the other three at a particular 5% size.

For accuracy in the temporal dimension, we queried the hourly
distribution of the entire dataset. The density value in each hour was

STULLSTORM RandomPath

0.000

0.015

0.030

0.045

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

GEO

0.000

0.040

0.080

0.120

0.160

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

OSP

0.000

0.015

0.030

0.045

0.060

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

Tweet-US

0.000
0.015
0.030
0.045
0.060
0.075

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

Tweet-Chicago

Figure 4: RMSE measurement of approximate Kernel Density Estima-

tion results. The query requested the entire dataset. Results were

averaged over five runs.

normalized to the scale of 0 to 1. Figure 5 shows RMSE-quantified
accuracy, compared to the exact distribution. We see that at the
same sample size, STORM has the most significant RMSE errors.
At 5%, STULL’s value is averagely 50% less than that of STORM.
Furthermore, the RMSE errors in the OSP case are the largest.
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Figure 5: RMSE measurement of approximate hourly distribution

results. The query pertained to every point in the entire dataset.

Results were averaged over five runs.

6.2 Visual Accuracy of Approximate Answers

To show the impacts of unbiased sampling on the accuracy of ap-
proximate answers expressed in visualizations, we compared them
in the spatial and temporal scenarios respectively.

Figure 6 shows incremental visualization of approximate spatial
heatmaps [40] created by STORM and the unbiased-guaranteed STULL
respectively. Overall, heatmaps of both approaches progressively get
closer to the visual appearances of the exact ones. At a smaller sam-
ple size, both heatmaps have perceptible differences in low-density
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Figure 6: Comparison of spatial heatmaps generated by the two approaches. A number below a heatmap indicates number of sample points

selected for approximate distributions. At the bottom is the gray-scale colormap with 32 shades.

areas since these areas have fewer points selected; When sample
sizes exceed certain numbers, heatmaps of the both approaches dis-
play indiscernible visual appearances. At the same sample sizes,
heatmaps generated by STORM are perceived as presenting more vi-
sual differences from the exact heatmaps than the other; likewise,
STULL uses less samples to generate heatmaps that are indiscernible

from the exact ones in terms of human perception. In the incremen-
tal updates, hotspot (densities values at least 0.5) distributions in
the STULL’s heatmaps keep constant without discernible changes,
whereas hotspots in the STORM cases have noticeable changes when
the sample sizes are smaller, e.g., the heatmap with 1.4% points and
the heatmap with 5.1% points in the OSP case.
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As for the temporal dimension, Figure 7 compares pie charts
encoding the hourly distribution of points selected by STULL and
STORM. Overall, pie charts associated with STULL have less visual
differences from the exact ones than those with STORM. In the OSP
case, point densities between 12 PM and 6 PM extrapolated from the
STORM-supported chart clearly disagree with that of the exact one.
This is also true of the GEO case, where densities between 11 PM
and 6 AM extrapolated from STORM’s chart have obvious discrep-
ancies. STORM also presents light but discernible color differences
between 6 PM and 12 AM in the Tweet-Chicago case and between 1
PM and 5 PM in the Tweet-US case.
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Figure 7: Pie charts showing normalized hourly distribution of the

entire data. Each slice denotes a hour. These approximate charts

are generated with 0.1% points of being selected. The color legend

has 32 color shades. Line charts show the two datasets having closer

visual appearances in the pie chart views. The result is one-time run.

6.3 Latency of Incremental Updates

We measured incremental sample retrieval latency in multiple sce-
narios.

First, a series of experiments were conducted when data indexes
were in-memory. Figure 8 shows the time spent progressively re-
trieving samples for a query that queried the entire data. It shows
that STULL can retrieve a sample of 5% data in less than 250ms, and
the entire dataset is retrieved in 1 to 4 seconds, depending on the
data volume. Both STULL and STORM have almost the same retrieval
latencies, which are overall shorter than RandomPath. On average,
at the same sample size, STULL saved at least 60% of the time used
by RandomPath. Figure 9 presents the same time measurement for a
query requiring partial temporal ranges. It shows that STULL is faster
because it retrieves from partial temporal bins, but STORM indexed
points only in the spatial dimension and needs to access the entire
dataset to filter out points in a temporal sub-range. Figure 10 shows
averaged sample retrieval latency in one incremental update for
queries requiring various spatial ranges. It shows that RandomPath
takes a longer time than the other approaches. At the same sample
size, STULL takes less than 35% of the time used by RandomPath.
Moreover, when queried spatial extents expand, STULL remains
almost the same, whereas RandomPath changes significantly.

Second, as a and q are essential parameters for STULL, we mea-
sured sampling latency under various values of the two. Figure 11
shows averaged sample retrieval time per update under different
number of points retrieved per update. It shows that the average time
per update is almost proportional to the number of points required
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Figure 8: Time measurements (in seconds) to retrieve samples in

an in-memory setting. The query requires the entire data. STULL

has a = 0.25, and RandomPath has at most 4 levels in each of its

Quad-trees. Results are averaged over 5 runs.
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Figure 9: Time measurements (in milliseconds) to retrieve samples

from an in-memory data index. Queried temporal ranges are, 2012 for

OSP, 2011-2012 for GEO, 2013/04-2013/06 for Tweet-Chicago, and

2018/01/01-2018/02/04 for Tweet-US. STULL has a = 0.25. Results

are averaged over five runs.
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Figure 10: Average time per incremental update. Each incremental

update retrieved 5% points. Numbers below a bar indicate queried

spatial range, 1 for the whole spatial extent, 1/4 for a quarter of the

whole extent, and 1/8 for a one-eighth. For STULL, a = 0.25. Each of

RandomPath’s Quad-trees has at most 4 levels.

in each update. Figure 12 shows sample retrieval latency regard-
ing a . It shows that STULL saves at least 68% of the time used by
RandomPath under the a = 0.25 settings and at least 70% of the
time under the a = 0.125 settings. In addition, the latency of STULL
stays the same or increases no more than 35% if a reduces from
0.25 to 0.125, compared to RandomPath, which increases more.

Lastly, we measured sample retrieval latency when an index was
stored in hard drives. Figure 13 compares retrieval time between
STULL and RandomPath. When sampling 5% points for the initial
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Figure 11: Averaged sample retrieval latency per incremental update.

The query required the entire data. In the y-axis, batch indicates time

to retrieve the entire dataset, 20 indicates incremental visualization

has 20 updates in total and retrieves 5% point per update; likewise,

100 indicates 1% per update and 100 updates in total. For STULL,

a = 0.25. Results are averaged over five runs.
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Figure 12: Averaged sample retrieval latency per incremental update.

Each incremental update retrieved 2.5% points. 0.25 indicates that

a of STULL is 0.25, and RandomPath’s Quad-tree index has no more

than 4 levels. Likewise, 0.125 indicates a = 0.125, and a Quad-tree

index has at most 8 levels. Results are averaged over three runs.

visual update, at least 62% of the time needed by RandomPath,
averagely 3.2-4.7 seconds, is saved by STULL if it starts the retrieval
at the pyramid root. But in the GEO case, it takes almost the same
time as RandomPath. GEO points are extremely concentrated in a
few leaves. As a result, the time needed for RandomPath to load
points from other leaf cells is negligible.

6.4 Latency on Index Creation and Update

Computational complexity analysis (in Appendix A) shows that
index creation and update are impacted by a . Thus, we conducted
experiments on historical data and streaming data with different
a . Table 2 shows that the average time to index historical logs is
inversely correlated with a . It indicated that latency doubled when
a drops from 0.25 to 0.125. For streaming data, Table 3 shows the
average time to insert new arrivals of 5000 tweets, with the assumed
streaming data arrival rate around 1000⇠4000+ per second [39, 61].
This is a simulated experiment where we randomly select 5000
points from a temporal bin and measure the time required to add
these data into the same bin. The recorded time is a sum of the time
to add data to the pyramid and time to build sample buffers. We can
see that the insertion takes 75% more time in the Tweet-US case and
less than 33% in other cases.

7 DISCUSSION

We validated the importance of the unbiased guarantee for incre-

mental visualization through designing experiments that measured

0
5000
10000
15000
20000
25000
30000

0.0
1
0.0
2
0.0
3
0.0
4
0.0
5
0.0
6
0.0
7
0.0
8
0.0
9
0.1
0

Ti
m

e 
(m

s)

% of Samples

GEO

0
2000
4000
6000
8000
10000
12000

0.0
1
0.0
2
0.0
3
0.0
4
0.0
5
0.0
6
0.0
7
0.0
8
0.0
9
0.1
0

Ti
m

e 
(m

s)

% of Samples

OSP

0

5000

10000

15000

20000

0.0
1
0.0
2
0.0
3
0.0
4
0.0
5
0.0
6
0.0
7
0.0
8
0.0
9
0.1
0

Ti
m

e 
(m

s)

% of Samples

Tweet-Chicago

STULL-Root RandomPath

0
5000
10000
15000
20000
25000

0.0
1
0.0
2
0.0
3
0.0
4
0.0
5
0.0
6
0.0
7
0.0
8
0.0
9
0.1
0

Ti
m

e 
(m

s)

% of Samples

Tweet-US

Figure 13: Latency to retrieve samples from disk-resident indexes for

a query requiring the entire data. Each incremental update obtains 5%

points. STULL-Root refers STULL started retrieval from the pyramid

root in each temporal bin. For STULL, a = 0.25. For RandomPath, each

Quad-tree has at most 4 levels. Results are averaged over three runs.

Table 2: Time measurements (in seconds) using STULL to index data.

Results are averaged over five runs.

GEO OSP
Tweet-

Chicago

Tweet-

US

a = 0.250 76.142 58.461 181.493 163.234

a = 0.125 172.233 206.146 243.323 227.889

Table 3: Time measurements (in milliseconds) for STULL to insert 5000

points into the existing index. Results are averaged over five runs.

GEO OSP
Tweet-

Chicago

Tweet-

US

a = 0.250 218.732 153.103 268.735 190.614

a = 0.125 260.397 203.089 346.852 334.355

numerical and visual accuracy between approximate and exact an-
swers. RMSE results (Figure 4 and Figure 5) show that compared to
STORM, unbiased sampling reduces both spatial and temporal distri-
bution errors by at least 50%, given a sample set of 5% points. The
same accuracies between STULL and RandomPath confirm that our
online-manner approach can ensure the same sampling quality as a
regular unbiased sampling approach. Figure 6 and Figure 7 show
that unlike STORM, approximate spatial heatmaps and approximate
hourly pie charts constructed by unbiased samples have closer visual
appearances to exact answers. Consequently, users have a higher
chance of inferring high-fidelity answers from approximate visu-
als. Improved accuracy on the numerical measurements and visual
effects are vital for incremental visualization in terms of user uncer-
tainty [43, 44]. Users feel uncertain about choosing trustworthy ap-
proximate answers for their decision-making. A common solution to
facilitate user evaluation of the answer reliability is the use of statisti-
cal measurements derived from numerical properties of approximate
answers (e.g., Confidence Interval) [25,43]. STULL can provide sam-
ples that have better performances in such measurements, thereby
helping users reduce uncertainty and obtain confidence in choosing
the best answers. In addition, improved visual accuracy confirms
that unbiased-guarantee incremental visualizations can take fewer
sample points to provide visual answers equivalent to the exact an-
swers. This is crucial to incremental visualization, because users
probably use the visualizations presented in the first few visual up-
dates to check whether the data selection conditions in a query are
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correct or not [21]. Visualizations created from biased samples can
mislead users that they issued wrong queries and need to do some
correction, whereas the query specifications are correct. As a re-
sult, users’ mental efforts to use incremental visualization for data
exploration and decision-making significantly increase.

Specific to geospatial accuracy, STULL is affected mainly by
sample size [37]. However, STORM has one more factor, intrinsic
spatial distributions in the data. In spatially clustered distribution
cases (e.g., GEO), compared to STULL, STORM has light or indis-
cernible visual differences in hotspot areas, but is incompetent in
lower-density areas. On the other hand, in a scattered distribution
case (e.g., OSP), the absence of an unbiased guarantee causes STORM
to extend defective visual appearances to hotspots, e.g., incorrect
hotspot locations. The RMSE value (Figure 4) in the OSP case is
almost ten times that of the concentrated cases. So is the visual effect
in which STORM defectively represented in wider spatial extents in
the OSP case but misrepresented merely sparse ones in the concen-
trated scenes. We believe STORM’s reduced accuracy loss in spatially
concentrated cases is caused by the fixed-size sample buffer. First,
STORM’s spatial index, R-Tree tends to create more cells in high-
density areas, and fewer cells in low-density areas. Accordingly, in
a spatially concentrated case, a majority of cells are associated with
scarce hotspot regions. Since in the fixed-sized buffer design, the
number of points sampled in a region is proportional to the number
of its cells, STORM can retrieve more points in order to characterize
hotspot areas but pay less attention to lower-density areas.
STULL achieves the temporal unbiased property through deter-

mining the number of samples retrieved from each temporal bin
proportional to the total data volume in the bin, which is a widely
used golden rule [13, 32]. Thus, we do not elaborate on it.

Our range of experiments also validate the efficiency of STULL’s
sample retrieval. Experiments (Figure 8, Figure 9, Figure 10) indi-
cate that compared to RandomPath, STULL can reduce latency by
at least 60% to sample 5% of in-memory data per incremental up-
date despite query specification at various geospatial and temporal
scales. As for the case in where data indexes are on disk drives,
STULL and STORM load points from buffers of root cells first and
continue retrieval from buffers of its descendants. This significantly
reduces the number of STULL’s disk I/Os needed for the first visual
update, whereas RandomPath needs to retrieve points from most of
its leaf cells, consequently forcing almost every cell to be loaded
into memory, which results in an extremely slow response. Thus,
RandomPath does not satisfy the critical latency.

Our experiments show that users are able to keep computational

latency per incremental update well under control. Figure 11
shows that STULL successfully controls retrieval time proportional
to the number of points per visual update. In addition, our experi-
ments sequentially accessed temporal bins to obtain samples, which
resulted in higher latency compared to an in-parallel scheme. We
leave STULL’s adoption of parallel techniques to future work.
STULL reduces the data index creation and update workload,

compared to STORM. STULL indexes data spatially using pyramids
for efficiency [39]. We conducted experiments to measure index
creation time and confirmed the superiority of our pyramid-based
approach, which is approximately 10% faster than the R-tree based
STORM. Regarding streaming data, Table 3 shows that it takes less
than 450ms to index 5000 points. Thus, inserting the new data into
the existing data index and retrieving samples from the updated
data index can be completed in approximately less than 500 ms for
the OSP, Tweet-Chicago and Tweet-US datasets and approximately
600ms for the GEO.
STULL is designed for aggregation-based spatiotemporal analyt-

ics that assist end-users in summarizing trends and patterns of data,
e.g., estimating data count per hour or evaluating averaged statistics
of income per neighborhood. Here, we demonstrate aggregation
computation with samples retrieved by STULL and use confidence

intervals [25,37] to estimate the proximity of generated approximate
answers to exact answers. Suppose a query calculates the average
length of tweets posted in the morning. A sample S of n tweets is
retrieved by STULL. The average length of tweets is v̄ = 1

n Âsi2S vi,
vi is the length of the i-th tweet. Let c denotes the standard deviation
of the sample estimate. Thus, the interval [v�2c,v+2c] contains
the exact answer with 95% of the time.

Despite efficient sampling, STULL suffers from inefficient usage

of storage space. STULL’s pyramids contain all points in the bottom
levels, in addition to (1�a) portion of data in non-bottom levels,
whereas Quad-Tree does not have such extra costs. Thus, STULL
maximizes retrieval efficiency at the expense of data storage space.
If data stored at non-bottom levels are not duplicated at the bottom
level, STULL will move from the bottom level to the higher levels,
and retrieve samples from these higher levels. Since higher levels
consist of cells whose spatial ranges are quadratically larger than the
queried range, we could anticipate a 3-fold increase in retrieval time.
Although the duplicated data will take additional storage resources,
our design choice has at least two benefits. First, STULL restricts the
retrieval to a minimum set of spatially relevant data, per Q. Secondly,
when the data index is on disk, retrieving spatially irrelevant data in
the alternative option will cause more disk I/Os.

Another limitation of STULL is that it does not yet fully investigate
a disk-based index. As data volume increases, in-memory data
storage becomes scarce. A hybrid index of both in-memory and
disk-resident data is essential to overcome the memory shortage [6].
For convenient disk-based data storage and retrieval, STORM [61]
uses the fixed-sized design and sets the space usage of a sample
buffer as equivalent to the size of a disk block, resulting in each cell
has the same number of data cached in its sample buffer. Thus, if one
sample buffer is needed, STORM loads the corresponding disk block
into memory, retrieves all data stored in that block, and removes the
block from memory after use. But in STULL, the proportionally-sized
design causes sample buffers to have various sizes. Consequently, it
is common for one sample buffer to involve multiple blocks, with
one of these blocks only partially filled. These partially filled blocks
cause the low disk storage utilization and slow down disk I/O as
well. We leave this to future work.

8 CONCLUSION AND FUTURE WORK

This paper presents an online sampling approach, STULL, which
samples large spatiotemporal data in an unbiased manner. Extensive
evaluations verify that STULL is unbiased and computationally supe-
rior over comparable online sampling approaches. STULL is suitable
for a range of online data exploration including visual analytics and
incremental visualization. Approximate visualizations leveraged by
STULL increase their numerical accuracies and reduce their visual
differences as compared to the exact visualizations, when compared
to approaches without unbiased guarantee.

In the future, we will extend this work by designing a novel
scheme to store our data index on hard drives. The current imple-
mentation has comparable performance for retrieving a small ratio
of points, about 10% in our experiment, from a disk-resident data
index, but is slower if more points are needed. A novel scheme is
expected to resolve this issue.
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