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The proliferation of mobile phones and location-based services has given rise to an explosive growth in spatial
data. To enable spatial data analytics, spatial data needs to be streamed into a data stream warehouse system
that can provide real-time analytical results over the most recent and historical spatial data in the warehouse.
Existing data stream warehouse systems are not tailored for spatial data. In this article, we introduce the STAR

system. STAR is a distributed in-memory data stream warehouse system that provides low-latency and up-to-
date analytical results over a fast-arriving spatial data stream. STAR supports both snapshot and continuous
queries that are composed of aggregate functions and ad hoc query constraints over spatial, textual, and
temporal data attributes. STAR implements a cache-based mechanism to facilitate the processing of snapshot
queries that collectively utilizes the techniques of query-based caching (i.e., view materialization) and object-
based caching. Moreover, to speed up processing continuous queries, STAR proposes a novel index structure
that achieves high efficiency in both object checking and result updating. Extensive experiments over real
datasets demonstrate the superior performance of STAR over existing systems.
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1 INTRODUCTION

With the proliferation of GPS-equipped mobile devices and social media services, there has been
an explosive growth in the spatial data sizes. Numerous users of social media upload posts on
Twitter or Facebook using their smartphones, giving rise to a fast-arriving spatial data stream. This
spatially annotated data contains valuable information, and it is beneficial for spatial data analytics.
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For instance, consider a marketing manager who wants to know the popularity of some product
in various regions so she can decide whether to adjust the advertising strategy. She can issue an
ad hoc aggregate query that returns the frequencies grouped by region of the newly uploaded
posts on social networks that mention the product. As another example, consider a manager of
a food delivery company who wants to improve the company’s delivery service by adjusting the
distribution of deliverymen in different regions at different times of the day. To do so, he can issue
aggregate queries that return the number of orders and deliverymen grouped by region and time.
Techniques already exist for processing aggregate queries over data warehouses. However, most
of these techniques are for batch-oriented systems that operate over static datasets [35] and are
not suitable for handling highly dynamic data streams.

To reduce the gap between data production and data analysis, a data stream warehouse sys-

tem (DSWS) [25, 30, 48, 53] provides real-time analytics over data streams. A DSWS efficient-
lyingests data and enables online analytical processing over the streamed data. It allows users to
issue continuous queries that monitor changes in the streamed data, as well as snapshot queries
that report the current or past status of the warehoused data.

Although spatial data is explosive, research on distributed DSWSs that offer native spatial data
stream analytics is still lacking. Most existing distributed systems, e.g., References [4–6, 21, 63] fo-
cus on developing spatial data management systems over static datasets, but they are not designed
for streamed data and do not support continuous or snapshot ad hoc aggregate queries over spa-
tial data streams. Existing distributed spatial data stream systems, e.g., References [16, 45], do not
support ad hoc aggregate queries. Besides, they only support continuous but not snapshot queries.
BBoxDB [49] is a distributed system to store multidimensional data. BBoxDB Streams [50] is devel-
oped on top of BBoxDB that supports both snapshot and continuous queries on multidimensional
data. However, BBoxDB Streams does not consider aggregate queries that are essential to a DSWS.
Moreover, though supporting multidimensional data, BBoxDB Streams does not offer functions
to process the spatial, temporal, and textual data attributes collectively, thus making it difficult to
extend BBoxDB Streams to support aggregate queries with ad hoc constraints on spatial, temporal,
and textual data attributes.

It is challenging to develop a DSWS that supports both snapshot and continuous ad hoc queries
over spatial data streams. First, the fast arrival speed of streamed spatial data imposes high de-
mand on system performance, of which the accompanying workload will overwhelm a centralized
system. It calls for a distributed solution with an effective workload partitioning scheme that is
tailored for the workloads of processing objects and analytical queries. Second, there exist notable
differences in the mechanisms for processing snapshot and continuous ad hoc aggregate queries.
Processing snapshot queries requires an efficient caching strategy that uses the cached data to
answer the queries without having to recheck numerous indexed objects. In contrast, processing
continuous queries requires an efficient indexing mechanism that categorizes and groups the con-
tinuous queries and incurs small update overheads over the streamed data.

In this article, we introduce STAR, an in-memory cache-based Spatial Data Stream Warehouse
for spatial data analytics over spatial data streams. STAR supports both snapshot and continu-
ous aggregate queries that can have constraints over spatial, textual, and temporal data attributes.
STAR supports algebraic aggregate functions, e.g., Count , Avд, and Sum in addition to a holistic
aggregate functionTopK . Currently, STAR does not support the spatial join operation that we plan
to consider in future work. We develop a cache-based mechanism to facilitate the processing of
snapshot queries that collectively utilizes query-based caching (i.e., view materialization) as well
as object-based caching. Moreover, to speed up processing continuous queries, STAR employs new
indexing techniques to facilitate the processing of various types of queries. Finally, STAR adopts a
workload partitioning method that achieves data locality and load balance. This article extends our
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published conference paper [14]. We improve it extensively by adding optimizations of processing
continuous queries, which is realized by proposing a novel index to categorize continuous queries
with various predicates.

In particular, STAR has the following novelties:

• STAR supports a rich set of aggregate queries over spatial data streams. STAR supports both
snapshot and continuous queries that are composed of algebraic orTopk aggregate functions
and ad hoc query constraints over spatial, textual, and temporal data attributes.
• STAR implements a cache-based mechanism for the efficient processing of snapshot ad hoc

aggregate queries. The cache-based mechanism collectively utilizes the techniques of query-
and object-based caching. Query-based caching considers spatial and textual attributes to de-
fine views for aggregate functions, and it selects and maintains a set of views in-memory to
speed up query processing. Object-based caching is complementary to query-based caching
when a query cannot be answered using the materialized views only. We develop an ap-
proximation algorithm for the object-based caching that provides competitive solution with
theoretical bounds.
• To efficiently process continuous ad hoc aggregate queries, STAR features a novel index that

categorizes the queries with various predicates and reduces the amount of queries to be
checked for streamed objects.
• STAR adopts an effective and efficient workload partitioning strategy that is tailored to work-

loads that process objects, snapshot and continuous queries, as well as achieves load balance
and data locality.

We evaluate STAR on Amazon EC2 with real spatial data. STAR achieves excellent performance
for both snapshot and continuous queries and outperforms the best baseline systems by up to 5×
and 1.5×, respectively.

2 RELATED WORK

Data Stream Warehouse Systems. Based on the architecture, existing distributed warehouse
systems can be classified into three types: (1) Systems that extend a database system with the abil-
ities of fast data ingestion and real-time data evaluation [24, 26, 53], (2) systems that extend a data
stream processing system with the ability of exploring historical data [8, 40, 48], and (3) systems
that extend a distributed analytics framework, with the abilities of fast data ingestion and real-
time data evaluation [18, 37, 52]. However, existing distributed warehouse systems do not provide
native support for spatial data stream, and they are difficult to optimize for aggregate operations
over the spatial data stream.

Some work exists for developing centralized stream warehouse systems over spatial data.
Gorawski and Malczok [27] present an index structure to store spatial data in a stream warehouse.
Lins et al. [41] and Giampi et al. [17] consider the problem of exploring streamed spatio-temporal
data, and they propose a new data structure of views to achieve this. Feng et al. [22] propose solu-
tions for exploring events from streamed geotagged tweets. These systems do not provide native
support for aggregate queries with spatial, textual, or temporal constraints as STAR does. Moreover,
these systems are centralized systems, while STAR is distributed.

Systems for Spatial Data. A host of systems has been proposed for exploring spatial data. We
categorize them as systems for static spatial data and systems for streamed spatial data.

(1) Systems for static spatial data [4, 5, 21, 42, 51, 58, 58, 63, 66, 67]. Most systems are exten-
sions to popular data analytics frameworks, which allow users to write UDFs (user-defined func-

tions) for deploying an analytical job: SpatialHadoop [21], Hadoop-GIS [4], Parallel-Secondo [42],
MD-HBase [51], and ST-Hadoop [5] extend the Hadoop framework; Simba [63], SpatialSpark [66],
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LocationSpark [58], and GeoSpark [67] extend the Spark framework. They extend Hadoop or Spark
with the operations to support spatial queries, e.g., range and kNN query, over a large scale of spa-
tial data. STAR differs from these systems in at least three aspects: (1) STAR operates over data
streams, while they consider a static dataset with few or no updates. (2) STAR is optimized for
ad hoc aggregate queries, while they mainly consider object-finding queries. (3) Apart from op-
erations on spatial attributes, STAR supports operations on textual attributes, while they focus
only on operations over spatial attributes. LocationSpark [58] adopts a caching strategy that main-
tains frequently accessed data in-memory for object-finding queries. However, it does not support
caching query results for aggregate queries, which is the main focus of STAR.

(2) Systems for streamed spatial data [1, 3, 10, 11, 13, 16, 33, 39, 44, 45, 57, 59, 60, 64, 68]. The
problem of querying spatial data streams has been studied extensively. Many centralized solutions
have been proposed. Some efforts are made to find top-k frequent terms given a spatio-temporal
range [3, 57]. Another line of work considers answering spatio-keyword queries. A spatio-keyword
query has a spatial and a textual argument. An object is in the result of the query if the object
qualifies both arguments [10, 39, 68] or if the object’s similarity is larger than a threshold [33].
Another body of work studies the top-k spatio-keyword query [11, 59, 60] that returns objects
having the top-k highest similarities to the input query. Several distributed systems [1, 13, 16,
44, 45] have been proposed for querying streamed spatial data. However, these systems do not
have native support for aggregate operations over spatial data. In contrast, STAR is optimized
for processing ad hoc aggregate queries, which focuses on computing the aggregate results over
all objects rather than finding individual objects, i.e., STAR treats aggregate queries over spatial
objects as a first-class operation. A preliminary version of this work has been demonstrated [7].

(3) Systems for both static and streamed spatial data [49, 50]. BBoxDB [49] is a distributed store
system for multidimensional data. The authors develop BBoxDB Streams [50] on top of BBoxDB,
which supports both snapshot and continuous queries over multidimensional data. Our work
has some key differences from BBoxDB Streams. First, BBoxDB Streams mainly considers object-
finding queries and the join query, and it does not support aggregate queries that are essential to
a DSWS and are the focus of this article. Second, BBoxDB Streams does not support the collec-
tive processing of spatial, temporal, and textual data attributes, thus making it difficult to extend
BBoxDB Streams to support aggregate queries with ad hoc constraints on these data attributes. In
contrast, STAR is designed to consider spatial, temporal, and textual data attributes, collectively,
and applies effective optimizations on ad hoc aggregate queries. Last, BBoxDB Streams does not
provide indexing mechanisms for continuous queries. In contrast, STAR implements two indexes,
termed the CH-tree and the MT-index, to organize the continuous queries.

View Materialization. Labio et al. [36] and Ross et al. [54] propose exhaustive algorithms to
materialize views in a single machine that takes significantly long time to finish. Many other re-
search focuses on designing greedy algorithms, e.g., References [28, 29, 31, 65], or randomized
algorithms including genetic algorithms, e.g., Reference [32], and simulated annealing algorithms,
e.g., References [19, 20]. Ghanem et al. [23] consider the problem of supporting materialized views
in a data stream management system. They propose a synchronized SQL query language to express
continuous queries over data streams and create continuous query execution plans. However, they
do not support aggregate or analytical queries over these views.

Indexing Continuous Queries. Many indexes exist for continuous queries over relational data
streams, e.g., k-index [62], BE-tree [55], and OpIndex [69]. These indexes do not consider data with
spatial and textual attributes, making them not efficient for our problem. Another line of research
investigates indexes for continuous queries over spatial data streams [10, 12, 15, 43, 60, 61, 68],
which only work for continuous queries that have some spatial constraint. STAR differs in that it
accepts continuous queries that do not have a spatial constraint.
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3 SYSTEM OVERVIEW

First, we introduce the data types and queries supported by STAR. Then, we present STAR’s
architecture.

3.1 Data Types and Queries

Data Types: Each object has primitive and/or extracted or derived attributes. Primitive attributes
store raw streamed data, while the extracted or derived attributes store data that is extracted or de-
rived from the primitive attributes. We assume that the raw data has at least the primitive attributes
loc and time , where loc represents the geographical latitude and longitude, and time represents the
timestamp. The raw data can also have other primitive attributes, e.g., text that contains a set of
terms. STAR integrates a set of tools to extract data from these primitive attributes. For example,
data in Attribute topic can be extracted from text by employing a pre-trained Latent Dirichlet

Allocation (LDA) model [9].
Supported Queries: STAR is optimized to support aggregate queries with arbitrary constraints,

e.g., over loc , text , and time . STAR supports algebraic aggregate functions and a holistic aggregate
function TopK . Algebraic aggregate functions, e.g., Count , can be computed over the disjoint data
partitions, and then the partial results are aggregated to obtain the final aggregate result. In con-
trast, holistic aggregate functions, e.g., TopK , aggregate the entire dataset to obtain the k most-
frequent terms appearing in Attribute text .

STAR supports range and keyword constraints over Attributes loc and text , respectively. STAR

focuses on time-window constraints that consider only the recently streamed data. STAR expresses
these constraints using SQL-like syntax, e.g.,
SELECT aggr_func() FROM stream

WHERE condition(s) GROUP BY attribute(s) [SYNC freq].
aggr_func() is an aggregate function, condition(s) are the constraints, and attribute(s) are the group-
ing attributes. STAR allows users to define a continuous query via the SYNC operator. SYNC freq

indicates that the query result is to be refreshed every freq time, which is inspired by Reference
[23].

Example 1 (Snapshot Aggregate Query). To find the popularity trend for iPhones in Region R
grouped by date, we find the number of tweets mentioning “iPhone” and the average length of
these tweets.
SELECT Count(id), Avg(length), date FROM stream

WHERE loc INSIDE R AND text CONTAINS “iPhone”
GROUP BY date .

Example 2 (Snapshot Aggregate Query). Find the hot topics in the given range in the last 10
minutes.
SELECT Count (id ), topic ,minute FROM stream
WHERE loc INSIDE R AND time AFTER “10 mins ago”
GROUP BY topic ,minute ORDER BY Count (id ) DESC.

Example 3 (Continuous Aggregate Query). Find the most-frequent terms of each topic on the
objects that are within a region R. Continuously produce the result every 1 minute.
SELECT TopK(text), topic FROM stream

WHERE loc INSIDE R GROUP BY topic SYNC 1 minute.

Example 4 (Continuous Aggregate Query). Track the number of customers on each street in a
region every minute.
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Fig. 1. System architecture of STAR.

SELECT Count (id ), streetName ,minute FROM stream
WHERE loc INSIDE R AND time AFTER “10 mins ago”
GROUP BY streetName ,minute SYNC 1 minute.

3.2 System Architecture

Figure 1 gives the system architecture of STAR.
STAR is based on Apache Storm,1 a distributed stream processing framework that provides great

flexibility for extension. STAR can also be built on other stream processing frameworks, e.g., Flink.2

STAR has four main component types: parser, router, worker, and aggregator.
Parser. The parser takes as input the streamed spatial objects and the queries from users. It

parses the primitive attributes of each object and generates the extracted ones. Then, it transforms
a user’s SQL query into a predefined data structure in STAR. The parsed queries are sent to the
router.

Router. The router is responsible for workload partitioning. It maintains a global index to facil-
itate partitioning the workload.

Worker. The worker processes objects and queries. It builds in-memory object and query in-
dexes. The worker performs the following operations: (1) On receiving an object, say, o, the worker
insertso into the object index. Then, it checks the continuous-query index to find the queries whose
results are affected due to o’s arrival. If any query qualifies, then the worker sends the updated re-
sults to the aggregator. (2) On receiving a snapshot query, say, qs , the worker leverages the cached
data to answer qs by checking whether the maintained query cache structures can be used. Other-
wise, it checks the indexed objects to answer qs . The results are sent to the aggregator. (3) On re-
ceiving a continuous query qc , the worker registers qc into an in-memory continuous-query index.

Aggregator. The aggregator collects the partial results from the workers and computes the
final result. It maintains an index to store the partial results for each query. When receiving a
notification that a new query has arrived, it stores the query ID and waits for the results from
workers. For a snapshot query, after receiving all the partial results, the aggregator computes and

1http://storm.apache.org/.
2https://flink.apache.org/
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outputs the final result immediately. For a continuous query, the aggregator outputs the result
according to the result’s refresh-rate specified by the query.

4 CACHE-BASED QUERY PROCESSING

STAR offers a cache-based mechanism for answering snapshot aggregate queries. It combines
query- and object-based caching.

4.1 Query-based Caching

Query-based caching facilitates processing snapshot queries by materializing a set of views based
on historical queries. It maintains a selected set of views per worker. View selection is a classical
problem in data warehousing, and it has been extensively studied [28, 29, 46]. However, in STAR,
we investigate whether views defined for spatial and textual attributes can optimize processing ag-
gregate queries over spatial data streams. STAR is the first to utilize materialized views to optimize
spatial data analytics. Materializing stream-based views may induce significant overhead, and it
deserves more consideration. STAR materializes the following views into memory: (1) Views for
algebraic aggregate functions and (2) views forTopK aggregate functions. The former is similar to
those for relational databases, while the latter is not investigated in the view selection literature.
For the first type of views, STAR has a new load-aware view materialization algorithm and intro-
duces the notion of domination among views that is defined based on the load, and that improves
the effectiveness of the classic greedy algorithm by more than 50%, according to our experiments.
For the second type of views, STAR has an approximate solution that maintains a summary struc-
ture with a performance guarantee.

4.1.1 Views for Algebraic Aggregate Functions. The result of an algebraic aggregate function
can be computed as follows: (1) Partition the input into disjoint subsets, (2) compute the aggre-
gate result for each subset, and (3) aggregate the partial results. For simplicity, we illustrate using
Aggregate Function Count . However, the proposed techniques can be extended easily to support
other algebraic aggregate functions, e.g., Avд and Sum. The reason is that a view is essentially a
set of key-value pairs, and the views forCount and other algebraic aggregate functions only differ
in the way of computing value for each disjoint subset of objects.

Example. Figure 2 gives an example of views. In Figure 2(a), q1 returns the number of objects
for each city, and it has a range constraint that covers Cells 1 and 2. The views maintained in
Cells 1 and 2 are two sets of key-value pairs. Only the cells covered by the query need to maintain
this view. To answer q1, we merge the views in Cells 1 and 2 and scan the objects in the other
overlapped cells to compute the result. Figure 2(b) gives two views for the queries that have a
keyword constraint. To answer q2 and q3, STAR produces the corresponding view as output.

Worker Overhead for Processing Snapshot Queries. We define the overhead of a worker
for processing snapshot queries in Definition 4.1.

Definition 4.1 (Worker Overhead). The overhead for processing snapshot queries for a worker,
say, wi , during a certain time period can be estimated as follows:

Li = c1

∑

o∈O
n1 (o,V ) + c2

∑

q∈Qs

(n2 (q,V ) + n3 (q,O )), (1)

where O is the set of spatial objects that has arrived to wi in this time period, Qs is the set of
snapshot queries handled by wi , V is the set of materialized views stored in wi , n1 (o,V ) is the
number of views updated for o, n2 (q,V ) is the sum of the sizes of the views checked for q, n3 (q,O )
is the number of indexed objects checked for q, c1 is the average cost of updating a view, and c2 is
the average cost of processing a snapshot query.
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Fig. 2. Views for the queries.

Note that the load of a worker is composed of the processing overheads of both snapshot and
continuous queries. Definition 4.1 gives the overhead of processing the snapshot queries. We will
discuss the processing of the continuous queries in Section 5.

Domination. Observe that when a set of views is materialized, selecting another view to be
materialized may result in a bigger load. Consider a candidate view vc and a set of materialized
views S , L(S ∪ {vc }) − L(S ) < 0, where L(.) is computed using Equation (1). Although STAR

can benefit from materializing a new view vc by gaining efficiency in answering a set of queries,
this benefit can be outweighed by the burden of maintaining the new view. We define domination

between views to capture this.

Definition 4.2 (Domination). Given two views va and vb , va is dominated by vb iff (1) Q (va ) can
be answered using vb , where Q (va ) represents the set of queries that can be answered using va ,
and (2) L({vb }) < L({va ,vb }).

Based on this definition, when a view, say, vc , is selected for materialization, the views domi-
nated by vc are removed from the candidate views for materialization.

Generating Candidate Views. Another problem is how to generate the set of candidate views.
We insert every query q into a quad-tree [56] and find the largest quad-tree node (denoted by nq )
that is covered by q’s query range. Then, the view defined over the objects in nq that can help
answer q will be added to the list of candidate views. This strategy is based on the domination
definition. The rationale for it is to reduce the number of candidate views.

Load-aware View Materialization. STAR selects recursively the view that has the largest
benefit per unit space. The benefit of a view w.r.t. a set of materialized views S is computed by:

B (v, S ) = max(L(S ) − L(S ∪ {v}), 0), (2)

where L(S ) is the worker overhead due to S (Equation (1)). The benefit of a viewv per unit space is
B (v, S )/nv . The main operation in this algorithm is finding the view that has the maximum benefit
per unit space, and thus it has a time complexity ofO (n2), wheren is the number of candidate views.
It runs at most C iterations, where C is the memory capacity for the materialized views, and it is
a system-defined parameter. Thus, the time complexity of the algorithm is O (Cn2).

4.1.2 Views for theTopK Aggregate Function. The result of an algebraic aggregate function can
be computed by aggregating the partial results for each subset of the data. However, this technique
does not work for the TopK aggregate function, as it needs to compute over the complete dataset.
Due to the fast arrival of the streamed objects and the large vocabulary size, it is not practical to
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maintain an accurate view for a TopK query. We propose to maintain a summary structure as a view
that contains a few key-value pairs. To save memory space, we do not employ techniques that have
dynamic summary size, e.g., Reference [57]. Instead, we maintain a SpaceSaving summary [47] that
estimates the frequency of any term t with additive error ϵn usingO (1/ϵ ) memory space, where n
is the number of objects. For a parameter m that is specified based on the available memory size,
the SpaceSaving summary maintains at most m counters. m is set automatically by the system,
or it is provided by a system administrator. When a new term t arrives, SpaceSaving summary
checks if t has been maintained in the summary and increments t ’s counter. Otherwise, let tm be
the term having the least frequency in the summary, t replaces tm and increases the counter by 1.
To answer a TopK query, the summary can output the k terms having the largest counters. A term
t is guaranteed to be among the top-k most-frequent terms if C[t] − ϵt > Ck+1, where Ck+1 is the
(k + 1)-th largest counter.

Theorem 4.3. For a TopK query, by using O (1/ϵ ) memory space, SpaceSaving summary guaran-

tees that terms having frequency larger than (1 − ϵ )Fk are included in the result, where Fk is the

frequency of the kth most-frequent term.

Proof. Assume that the SpaceSaving summary maintains n
ϵ Fk

counters that take O (1/ϵ ) mem-
ory space. Then, the maximal possible overestimation error will be ϵFk . Therefore, all the terms
included in the result have frequencies that are larger than (1 − ϵ )Fk . �

According to Theorem 4.3, the SpaceSaving summary provides guarantees on the accuracy of
the result for a TopK aggregate function. In the case that a query has ad hoc constraints, STAR

maintains multiple SpaceSaving summaries, one for each subset of data that is partitioned accord-
ing to the constraints. Agarwal et al. [2] have proven that the guarantee in Theorem 4.3 still holds
when merging multiple SpaceSaving summaries.

4.1.3 Using Views for Processing Queries. STAR organizes views using a quad-tree. Each node in
the quad-tree maintains a set of materialized views (the empty set is also possible for some nodes).
To explain the procedure of processing a query, say, q, we start with a simplified case when q’s
query range matches a quad-tree node, say, ns . If ns is a leaf node, then we select the most cost-
efficient view(s) in ns to answer q, or we access the objects in ns if these view(s) do not exist. When
ns is a non-leaf node, we compare the costs of using ns and using the child nodes of ns to answer
q and choose the one that has the smaller cost. STAR uses Equation (1) to compute the cost. If one
of the child nodes nc is also a non-leaf node, then we recursively compare the costs of using nc

and using nc ’s child nodes. Specifically,

L(q,ns ) =
⎧⎪⎨
⎪
⎩

cost (ns ), if ns is a leaf

min(cost (ns ),
∑

nc ∈ns .childr en L(q,nc )), otherwise.

This recursive computation is efficient, because we maintain the sizes of the materialized views and
the number of objects in each node. Then, we access either the materialized views or the objects,
accordingly to compute the result.

Next, we explain the case when the query range is not a quad-tree node. The overall procedure
is identical to processing the simplified case, except that we cannot utilize the views of a node
that is not covered by the query range. For nodes that are partially overlapped, we need to access
objects in them to compute the query result. Figure 3 gives an example query that overlaps multiple
quad-tree nodes. Nodes may overlap the query by a side or by a corner, e.g., nodes with slash
pattern and with horizontal line pattern, respectively. The overhead may be large when many
partially overlapped nodes exist with many objects in them. To reduce query time, we propose to
cache objects in the next subsection.
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Fig. 3. A query range overlaps multiple quad-tree nodes.

4.2 Object-based Caching

We present the idea of caching the bordering objects that works seamlessly with the materialized
views. The main idea is to cache the objects in the borders of a node that overlap the query range so
we only need to access the cached objects rather than the entire object set in the node to answer a
query. We propose an approximation algorithm to decide a set of cached objects to optimize query
processing with theoretical guarantees.

Definition 4.4 (Caching Region). For a quad-tree node np that partially overlaps queries, there
are two types of caching regions for np . A side caching region of np is a rectangle inside np that
has one side being set as a border line of np . A corner caching region of np is a circular sector
inside np whose center is a corner point of np and has the angle being equal to 90 degrees.

Figure 4 gives example caching regions. The smaller gray node has two candidate side caching
regions that have a height equal to the shorter or longer bidirectional arrow, respectively. The
larger gray node has two candidate corner caching regions that have a radius equal to the shorter
or longer bidirectional arrow, respectively. For one quad-tree node, we maintain at most eight
caching regions, i.e., four for the sides and the other four for the corners. For a query q that covers
a side of a node nc (but not the full node region), only the closest side caching region of nc to q
can be used (the overlapped area should be inside the caching region, otherwise, we do not use
the cache). For a query q′ that covers a corner of a node nc (again, not the full node region), we
select among the closest corner caching region and the two closest side caching regions. We use
the one that has the smallest number of cached objects among the ones covering the overlapped
area. Next, we define the Object Caching Problem.

Definition 4.5 (Object Caching Problem). Given a set of spatial objectsO , a set of snapshot queries
Qs , and a quad-tree T organizing the materialized views, the Object Caching problem is to decide
a caching region (can be empty) for each border or corner of the nodes in T . We aim to maximize∑

q∈Qs

∑
np ∈Np

( |Onp
| − |Oc |) subject to the constraint that the total number of cached objects is

smaller than B, where Np is the set of partially overlapped nodes for q, Onp
is the set of objects in

np ,Oc is the set of objects in the caching region that are used for answering q, and B is the memory
capacity for caching.

Theorem 4.6. The Object Caching problem is NP-hard.

Proof Sketch. This can be proved by reducing from the Knapsack problem. �

Load-based Greedy Algorithm. We introduce a greedy algorithm to determine the caching
regions. We need to decide caching regions for a node that overlaps queries. The optimal solution
is based on the overlapped area with queries. Considering a set of partially overlapped queries Q
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Fig. 4. Caching regions of a node for queries.

and the overlapped area being A, a caching region r that covers A can accelerate the processing of
each query inQ . The overall load improvement will be ΔL = c2

∑
q∈Q (n−nr ) based on Equation (1),

where n and nr denote the number of objects in the node and in r , respectively. Figure 4 gives an
example of caching regions. Both q1 and q2 partially overlap the smaller gray node. If we build
a caching region with the height being equal to the shorter bidirectional arrow, then we can
reduce the running time of q1. If the height of the caching region equals to the longer bidirectional
arrow, then both q1 and q2 can be accelerated. Based on this observation, we propose a greedy

algorithm that decides the caching regions in descending order of ΔL(R,r )
nr

, where R denotes the
current set of caching regions, and ΔL(R, r ) denotes the load improvement after adding r . When
adding r into R, we delete the caching regions that are covered by r .

Theorem 4.7. The load improvement of the caching regions R produced by the greedy algorithm

is at least 63% of that of the optimal solution using the same amount of space as R.

Proof. The proof is based on the observation that

ΔL({r1, r2},R) ≤ ΔL(r1,R) + ΔL(r2,R),

which can be easily extended to ΔL(G,R) ≤ ∑r ∈G ΔL(r ,R), where G denotes a set of caching
regions.

Let R be the set of caching regions produced by the greedy algorithm, ΔL(R) be the load im-
provement of R, and θR be the memory used by R. Assume that the optimal solution using θR units
of memory space produces R∗, and the load improvement of R∗ is ΔL(R∗).

Consider that during the running of the greedy algorithm, Caching Region Rk has been selected,
and Rk consumes k units of memory space. Rk has the load improvement

∑k
i=1 bi , where bi is the

load improvement of adding the ith unit of memory space. Observe that the load improvement of
the set R∗ ∪ Rk is at least ΔL(R∗), i.e., the load improvement of R∗ with respect to Rk is at least
ΔL(R∗) −∑1≤i≤k bi : ΔL(R∗,Rk ) ≥ ΔL(R∗) −∑k

i=1 bi .
According to this earlier observation, we deduce that

ΔL(R∗,Rk ) ≤
∑

r ∈R∗
ΔL(r ,Rk ). (3)

There exists a caching region rt ∈ R∗ satisfying ΔL(rt ,Rk )/θrt
≥ ΔL(R∗,Rk )/θR ≥ (ΔL(R∗) −∑k

i=1 bi )/θR , where θrt
is the memory space of rt . Otherwise, inequality 3 will not hold.

The load improvement per unit space of the caching region rд selected by the greedy algorithm

with respect to Rk is at least ΔL(rt ,Rk )/θrt
, and thus it is at least (ΔL(R∗) − ∑k

i=1 bi )/θR . By dis-

tributing the benefit of rд over each of its unit memory spaces, we getbk+j ≥ (ΔL(R∗)−∑k
i=1 bi )/θR ,

for 0 < j ≤ θrд
, where θrд

is the memory used by rд . The above equation applies to each caching
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region that is selected by the greedy algorithm. Thus,

ΔL(R∗) ≤ θRbj +

j−1∑

i=1

bi , for 0 < j ≤ θR . (4)

Multiplying the jth equation by ( θR−1
θR

)θR−j and adding all the equations, then
∑θR

i=1 bi/ΔL(R∗) ≥
1 − 1/e ≈ 0.63. �

Theorem 4.7 provides a theoretical bound on the performance of the greedy algorithm. Notice
that the savings achieved from having caching regions are orthogonal to the query-based caching,
i.e., maintaining materialized views. Thus, having caching regions can reduce query time even
without using query-based caching.

Maintaining Caching Regions. Due to insertions of new objects, the memory constraints
for the caching regions may get violated. To handle this issue, STAR adopts an eviction policy that
removes the Least Recently Used (LRU) caching region. It keeps removing these caching regions
in the LRU order until the memory constraint is satisfied.

5 INDEXING CONTINUOUS QUERIES

Unlike existing spatial data streaming systems [13, 16, 45] that are optimized for continuous range
queries with keyword filtering, STAR deals with aggregate continuous queries with ad hoc con-
straints whose results are a set of key-value pairs. In their setting, each query has a range and key-
word constraints, and spatial indexes, e.g., a quad-tree, are adapted to index the continuous range
queries [10, 13, 16, 45, 68]. However, these adapted indexing techniques are not applicable to STAR,
because the query predicates STAR supports are more complex. Another line of work [55, 62, 69]
proposes indexes for continuous queries on relational data streams. They do not consider queries
with range and keyword constraint as in STAR, making them not efficient for our problem.

The challenges are twofold: First, STAR needs to store and update the query results against the
fast streamed objects. It imposes higher requirements on the efficiency of the index, as we not only
check whether or not a new object satisfies a query, but also need to update the query results in real-
time. Second, STAR needs to handle various types of predicates. Furthermore, for the queries with
temporal constraints that focus on the most recent objects, e.g., a query that wants the aggregate
information of the latest 10 minutes of data, STAR needs to exclude the effect of the outdated
objects from the stored results. STAR implements new indexing mechanisms to address the above
challenges. In Section 5.1, we introduce cost-based hybrid tree index (CH-tree) for STAR to handle
the continuous queries without temporal constraints. In Section 5.2, we present the multi-layer
time-window index (MT-index) for STAR to process the queries with temporal constraints that
works together with the CH-tree.

5.1 Indexing Non-temporal Queries

We introduce a new index, termed the cost-based hybrid tree index (CH-tree), which stores
continuous queries without a temporal constraint. The CH-tree is novel in that it applies to a
variety of query predicates, e.g., spatial and keyword constraints, and it considers the selectivities
of query predicates that enable it to achieve better efficiency over existing indexes proposed for
continuous queries.

A query may have ad hoc constraints on several attributes. The constraints can be represented
as a conjunction of Boolean predicates. Each predicate is a triple P (attr,opt,val ) , where attr is an
attribute, opt is a predicate operator, and val is a set of values. Given an object o, P (attr,opt,val ) (o)
returns true if all the predicates are satisfied and returns false otherwise. For ease of explanation,
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we use the following four types of predicates as representatives: (1) P (x,=,v ) , (2) P (y, ∈,[lb,ub]) ,
(3) P (loc,in,R ) , and (4) P (text,has, {k1,k2, ... }) . Note that the CH-tree applies to other types of predicates.

The main idea of the CH-tree is to categorize the queries based on their predicates and use
the common predicates to group them. However, it is difficult to find the optimal ordering of
the common predicates that can minimize the number of predicates to be checked. Actually, the
problem is NP-hard, as it can be reduced from the set cover problem. Therefore, we introduce a
greedy method that uses a cost model to find a good ordering of the predicates.

Cost model. The cost model takes into consideration three factors: (1) the selectivity of the
predicate, (2) the execution cost of the predicate, and (3) the number of queries that contain
the predicate. Intuitively, for a new object, we want to filter the most irrelevant queries as soon as
possible with small costs. We construct our cost model using sets of historical objects and queries.
We estimate the cost due to a predicate P (attr,opt,val ) by

Cost (P ) = cP
1 · |O | +

∑

o∈O
(cP

2 · |Qo | + cP
3 · |Qv |), (5)

where O is the set of objects, Qo is the set of queries with which P (attr,opt,val ) is satisfied without
a need of verification for an object o, and Qv is the set of queries that require verification; cP

1 is

the average cost of checking Attribute attr of objects for P (attr,opt,val ) , cP
2 is the average cost of

processing the queries without verification, and cP
3 is the average cost of processing the queries

that require verification. To explain the difference betweenQo andQv , consider predicates P (x,=,v )

and P (loc,in,R ) . If we use a hash table to categorize P (x,=,v ) , e.g., v0 is the key and the value is a
list of predicates having x = v0, then Qo is the set of queries that the predicates having x = v0

corresponds to, and Qv = Φ. The reason is that the property of the hash table guarantees that the
returned P (x,=,v ) is true for the new object, so the corresponding queries require no verification.
For P (loc,in,R ) , we use a spatial index, e.g., a quad-tree, to categorize the predicates. For an object
o, let Leaf be the leaf node that o falls into and PLeaf be the set of predicates stored in Leaf , Qv

is the set of queries that PLeaf corresponds to, and Qo = Φ. The reason is that PLeaf may not be
true and requires verification, i.e., checking whether o falls into the query range. It is worth noting
that Qo may be not empty if we store additional information for the leaf nodes that contain such
predicate: P (loc,in,R ) , and R covers the spatial range of the leaf node.

Categorizing the Predicates. Since the costs of predicates depend on the way that they are
categorized, we first introduce the indexing mechanism for each type of predicate, respectively.

P (x,=,v ) : We use a hash table that uses each distinct value of v as the key and maps the key
to the predicates that x equals to the key.
P (y, ∈,[lb,ub]) : We use an interval tree that is built by inserting intervals specified by the pred-
icates. Each tree node has a center point, and the predicates whose intervals overlap it are
stored in that node.
P (loc,in,R ) : We use a quad-tree that is built by inserting ranges specified by the predicates.
The predicates are stored in the leaf nodes that overlap the query range.
P (text,has, {k1,k2, ... }) : We use an inverted index that is built by selecting a representative key-
word as the key for each predicate and inserting the predicates into the list of the corre-
sponding key. For each predicate, we choose the most selective keyword (i.e., the keyword
that has the least frequency in the objects) as the key.

Cost-based Hybrid Tree. We propose a CH-tree to store the continuous queries. We use the
cost model to predefine the ordering of the predicates to be considered when building CH-tree,
which is in ascending order of Cost (P ): the root node (level 1) considers the first predicate, the
nodes at level 2 consider the second predicate, and so on. The queries are stored in the leaf nodes
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and for each non-leaf node N , we categorize the queries based on a selected P (attr,opt,val ) in the
following way:

P (x,=,v ) : If a query q has Predicate P (x,=,v ) , then we pass q to the child node labelled by the
value ofv (if such node does not exist, then we create one). Otherwise, we pass q to a special
child node labelled “none.”
P (y, ∈,[lb,ub]) : If a query q has Predicate P (y, ∈,[lb,ub]) , then we insert the query interval and
query ID into an interval tree that is integrated in N . Each node of the interval tree has a
pointer linking to a child node of N (if the child node does not exist, then we create one).
Then, we pass q to that child node. If q does not have Predicate P (y, ∈,[lb,ub]) , then we pass q
to a special child node labelled “none.”
P (loc,in,R ) : If a query q has Predicate P (loc,in,R ) , then we insert the query range and query ID
into a quad-tree that is integrated in N . Each leaf node of the quad-tree has a pointer linking
to a child node of N (if the child node does not exist, then we create one). Then, we pass q
to that child node. If q does not have predicate P (loc,in,R ) , then we pass q to a special child
node labelled “none.”
P (text,has, {k1,k2, ... }) : If a query q has Predicate P (text,has, {k1,k2, ... }) , then we find the most
selectivity keyword of q and pass q to the child node labelled by that keyword (if such node
does not exist, then we create one). Otherwise, we pass q to a special child node labelled
“none.”

For predicates P (y, ∈,[lb,ub]) and P (loc,in,R ) , we employ an interval tree or quad-tree to catego-
rize the predicates. The update overhead is large when the insertion of a new query incurs node
splitting operations, which will trigger a sequence of update operations on the successor nodes.
For the purpose of reducing the update costs, we decide beforehand the structure of the interval
tree and quad-tree using a set of historical set of queries. After deploying them to the CH-tree, we
do not update their structure when inserting new queries.

To avoid degrading the performance of a CH-tree greatly due to changes in the workload and
data distribution, we use a threshold to limit the maximum number of continuous queries that a
CH-tree can store. When a CH-tree is full, we build a new CH-tree to store the new queries, which
is based on a fresh cost model derived from the most recent set of queries and objects. This strategy
performs well when minor changes happen to the workload and data distribution before a CH-tree
becomes full. However, the threshold cannot be too small, otherwise it will result in considerable
index building cost. We set the threshold at an empirical value of 1,000. We leverage a lazy deletion
strategy to delete queries from the CH-tree. When the user drops a query, we do not delete that
query immediately, but set an inactive state to it. We set a threshold for the maximum number
of inactive queries and delete all the inactive queries when the threshold is reached. A CH-tree is
deleted if all of its queries are inactive.

Processing Objects. When receiving an object o, we traverse the CH-tree to find the
queries whose result requires updating. At each non-leaf node, based on the selected predicate
P (attr,opt,val ) , we check Attribute attr of o to find the child node(s) that o should be passed to: (1)
For P (x,=,v ) , we pass o to the child node that is labelled by the value of Attr . (2) For P (y, ∈,[lb,ub])

and P (loc,in,R ) , we check the interval tree or quad-tree to find the child node that o should be
passed to. During the procedure, for the node that o falls in, we check o against its intervals or
ranges and mark the corresponding query ID as “invalid” if o is not in an interval or range. (3) For
P (text,has, {k1,k2, ... }) , we scan text of o and pass o to the child node(s) whose labels are contained
in text . At each level, we also pass o to the special child node labelled “none.” After reaching to a
leaf node, we first filter the queries whose IDs are marked as “invalid.” For the remaining queries
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without predicate P (text,has, {k1,k2, ... }) , we update their results directly. For the query with predicate
P (text,has, {k1,k2, ... }) , we update its result only if o contains all the keywords.

5.2 Indexing Temporal Queries

STAR supports aggregate queries with a time-window constraint, as illustrated in Section 3.1
(Example 4 with the temporal constraint “time AFTER 10 mins ago”). Processing this and similar
queries is challenging, as we not only need to maintain the query results but also need to exclude
the effect of the outdated objects from the results. To address this, we present an MT-index that
works along with the CH-tree by integrating the MT-index into the leaf nodes of the CH-tree.

Each continuous query has a “sync” clause to define its result refresh rate, e.g., every 1 minute.
In STAR, we assume that the length of the refresh interval is always smaller than the time-window
size and the window size is a multiple of the refresh interval. The assumption is not necessarily
true, as we can always split a refresh interval into smaller intervals that can be divided evenly
by the window size and wait to report the result when the refresh interval is reached. For ease
of explanation, we consider the simple case of one query and then generalize to multiple queries.
The MT-index is composed of multi-layer time intervals. Each layer consists of adjacent equal-sized
time intervals. At layer L0, each interval is of size r , where r is the length of the refresh interval.
At layer Li , each interval is of size 2i × r . The highest layer is Lm , wherem = arg maxi 2i ≤ W

r
(W

is the time-window size). The interval at layer Li+1 is built by combining two adjacent intervals at
layer Li . Each interval maintains a partial query result on the objects that arrives within it.

When a new object arrives, we update the partial result in the newest L0 interval. When the
timestamp reaches the end of the newest interval, it indicates that the result refresh interval has
been reached. Before computing the result, we delete the intervals that are not covered by the time-
window and consider whether to conduct merging operations: Starting from layer L0, if the second-
newest interval is not covered by any interval at layer L1, then we merge the two newest intervals
(and the partial results in them) into a new interval at layer L1. Then, we move to the higher layer
and conduct the same operation recursively. The iteration ends if the second-newest interval at the
current layer has been covered or the highest layer is reached. After that, we compute the result
by finding a minimum number of intervals that compose the query time-window and combining
the partial results in them.

Figure 5 gives an example of MT-index and the procedure of processing a query with a time-
window of 5 minutes and 1 minute refresh rate. In Figure 5(a), we use one L0 interval and one
L2 interval, i.e., the gray boxes, to answer the query. In Figure 5(b)), after one minute, the refresh
interval is reached, so we delete intervals that are not covered by the time-window, i.e., the slashed
boxes. In Figure 5(c), we conduct merging operations and build two new intervals at L1 and L2,
and we compute the result using intervals at L0 and L2. In Figure 5(d), another refresh interval is
reached. We delete the outdated interval, and as no merging is required, we compute the result
directly.

Time Complexity. When the refresh interval is not reached, only the newest interval at layer
L0 requires updating, so the time complexity is O (1). When the refresh interval is reached, for
each layer, at most one deletion and merging are conducted. Therefore, the time complexity is
O (
logW /r�).

Extending to General Cases. When there are more than one query, we set W as the largest
time-window size and set r as the largest common divisor of all the query refresh rates that can
be divided evenly byW (in the most extreme case, r is set as 1-min if all the time-windows are in
minutes). We can shift slightly the refresh period of a new query so it can be put into an existing
MT-index. The only difference is that we need to decide the set of queries whose results need
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Fig. 5. The MT-index and a query with a 5-min time-window and 1-min refresh rate.

updating when the timestamp reaches the end of the newest L0 interval. To avoid a very largeW
and small r , we categorize the queries into groups based on the time-window size and maintain
an MT-index for each group of queries.

6 WORKLOAD PARTITIONING

STAR partitions the streaming workload with two main considerations: (1) Data Locality. Records
that are close to each other should be assigned to the same partition. (2) Load Balance. Partitions
should be roughly of the same load.

The load of one worker comprises processing spatial objects, processing queries, and maintain-
ing caches, i.e., materialized views and cached objects. The workload partitioning problem aims at
minimizing the total amount of load. The first constraint is that the memory usage of the indexed
data and the index structures does not exceed the memory capacity of the worker. The second
constraint is that the workers should have balanced load. The Problem is NP-hard [29]. AQWA [6]
is a disk-based system that is based on Hadoop and hence is not well suited for streaming. How-
ever, AQWA’s partitioning algorithm utilizes a kd-tree for spatial workload partitioning problem.
AQWA’s partitioning algorithm is not suitable for the problem at hand, because AQWA only con-
siders the query processing cost, while in our problem, the cache maintenance cost accounts for an
important part of the worker load. Therefore, we propose a new workload partitioning algorithm.

Algorithm overview. We use a quad-tree to partition the workload. The main idea is to con-
struct a quad-tree by recursively partitioning the most loaded node and then assigning leaf nodes
of the quad-tree to workers, aiming to achieve load balance and data locality. The algorithm can
be divided into two phases. In Phase 1, we initialize a quad-tree with one root node and recur-
sively partition the node with the maximum estimated load until the number of nodes is larger
than the required number of partitions. In each iteration, we call a function to estimate the load
of each node and partition the node having the maximum load. We estimate the load of a node by
c1 |O |+c2 |O | · |Qc |+c3 |O | · |Qs |, whereO is the set of objects,Qc is the set of continuous queries,Qs

is the set of snapshot queries, c1 is the average cost of processing an object, c2 is the average cost
of processing continuous queries against the objects, c3 is the average cost of processing snapshot
queries against the objects.

In Phase 2, we assign leaf nodes to different partitions and check if the load balance constraint
can be satisfied. If this is the case, then we output the quad-tree and the partitions. Otherwise,
we partition the leaf node having the maximum load and repeat the above procedure. We have
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two objectives for the assignment of nodes to partitions: (1) We attempt to locate neighboring
leaf nodes into the same partition. The reason is that some queries may overlap multiple adjacent
nodes. Assigning them to different partitions will increase the total amount of load. (2) We attempt
to balance the workload of different workers.

Assigning Nodes to Partitions. This function assigns leaf nodes of the quad-tree to partitions,
aiming to achieve the two design objectives above. To achieve load balance, first, we estimate the
average load each partition should have, which we denote by Lavд . Then, we access the leaf nodes
of the quad-tree in a depth-first manner and assign the leaf nodes to different partitions so the
load of each partition is close to Lavд , and the adjacent nodes in the quad-tree order are assigned
to the same partition.

Workload adjustment. We implement dynamic load adjustment mechanism in STAR to adapt
to the changing workload. When the router detects that the load balance constraint is violated,
it notifies the most loaded worker, say, wo , to transfer part of wo ’s workload to other workers.
We adjust the workload by migrating the cells of the global index to other workers. We expect
that after adjustment, each worker still maintains an adjacent set of cells. The purpose is to reduce
the total amount of load, as some queries and views may overlap multiple adjacent cells. After
receiving notification from the router, Workerwo , having the maximum load, computes the amount
of load that needs to be transferred. Let B be the cells borderingwo .wo sorts B in descending order
of load (д)/size (д), where д ∈ B. For each д ∈ B, wo transfers д to the router, and the router sends
д to another worker that contains cells being adjacent to д. If multiple candidates exist, then the
one having the minimum load is selected. This procedure repeats until the load balance constraint
is satisfied or until wo has finished transferring B to other workers.

7 DATA ORGANIZATION

The objects are categorized over the timeline into a set of time slots, where different time slots
have different granularities. The more recent data has a finer granularity, while the older data has
coarser granularity. The granularity follows an exponential function f (x ) = 2x , where x repre-
sents the lifetime of the data in the system (e.g., #hours). The system periodically checks whether
adjacent time slots can be merged. Two adjacent time slots can be merged when their granulari-
ties are the same. Since users usually focus more on the more recent data, they can tolerate minor
accuracy loss in the old data. The system periodically checks the data size and deletes the oldest
data when the data size exceeds a predefined threshold, which can be efficiently achieved by delet-
ing the oldest time slot(s). This design is good for memory efficiency of STAR and allows efficient
deletion of old data. In each time slot, a quad-tree is employed to index the objects. Objects having
the text attribute are further categorized using an inverted index.

8 EXPERIMENTAL EVALUATION

8.1 Experimental Setup

We deploy STAR on the Amazon EC2 platform using a cluster of 8 c5d.2xlarge instances with 10 G
network bandwidth. Each c5d.2xlarge has eight vCPUs running Intel Xeon Platinum 8000-series
Processors with 3.5 GHz and 16 GB RAM. To simulate the streaming scenario, we deploy Apache
Kafka on another storage-optimized instance i3.4xlarge for emitting streamed data to STAR, which
has 16 vCPUs running Intel Xeon E5 2686 v4 Processor at 2.3 GHz and 122 GB RAM. Apache
Kafka [34] is a popular framework for building real-time data pipelines and streaming applications.

Datasets and Queries. We evaluate STAR using a real dataset Tweets. The Tweets dataset con-
sists of 500 million tweets in America, each of which has the attributes of loc , text , and time . We
use tools to extract derived attributes from loc , text , and time , respectively. Due to lacking of real-
life ad hoc aggregation queries over Tweets, we synthesize both snapshot and continuous queries
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Table 1. Possible Values for Parameters

Parameter Value

Aggregate function Count , TopK ()
Number of constraints 1, 2, 3, 4
Side length of the range 0.05%, 0.1%, 0.2%
Number of keywords 1, 2, 3
Interval length on time 10 min, 20 min, 30 min
Equality value on topic a random value among 50 topics
Sync time 1 min, 5 min, 10 min

based on Tweets for evaluation. To synthesize a query with ad hoc constraints, we synthesize a
constraint on Attribute loc , text , time , and topic (a derived attribute extracted from text ), respec-
tively, each of which is of a different type: a range constraint on loc , a keyword constraint on text ,
an interval constraint on time , and an equality constraint on topic . We also define an aggregation

function and group-by attribute(s). For continuous queries, we define an additional sync time.
Table 1 shows the possible values of each query parameter. TopK () uses a default parameter

k = 10. Each query has a number of constraints that are selected randomly. Range constraint is
created by defining a square whose upper left point is the coordinates of a random tweet in Tweets.
Keyword constraint is created by selecting a set of keywords randomly from Tweets. Interval con-

straint limits the arrival time of the objects, e.g., only the objects that arrived at the system within
10 minutes are considered as results. Equality constraint requires that Attribute topic equals to a
value selected from 50 topics. The parameter value for each constraint is selected randomly from
the values in Table 1.

For both snapshot and continuous queries, we synthesize two types of queries that have dif-
ferent data distributions of group-by attribute(s). We first enumerate all possible combinations of
derived attributes to create the set of group-by attribute(s). For the first type of queries, we select
the group-by attribute(s) from the set randomly. However, in real-life scenario, users are usually
more interested in a small ratio of group-by attribute(s), and users at different positions tend to
have different interested group-by attribute(s). Therefore, we synthesize another type of queries.
We partition the spatial space into 10 × 10 uniform cells, and for each cell, we randomly pick a
group-by attribute(s) from the set of group-by attribute(s), which we call it as pivot. Each query,
based on the cell in which its upper left point resides, has a probability of P using the correspond-
ing pivot as the group-by attribute(s) and 1−P probability using a random group-by attribute(s). In
our experiments, we set P as 0.7. We classify our queries as follows:

QS1-Count, QS1-TopK: Both are snapshot queries. The group-by attribute(s) are randomly selected.
QS1-Count usesCount () as the aggregation function, andQS1-TopK usesTopK () as the aggregation
function.
QS2-Count, QS2-TopK: Both are snapshot queries. The group-by attribute(s) are selected using
the pivot-based method. QS2-Count uses Count () as the aggregation function, and QS2-TopK uses
TopK () as the aggregation function.
QC1-Count, QC1-TopK: Both are continuous queries. The other settings are the same as QS1-
Count and QS1-TopK.
QC2-Count, QC2-TopK: Both are continuous queries. The other settings are the same as QS2-
Count and QS2-TopK.

Workload. The arrival speed of a spatio-textual object is approximately 10 times the arrival
speed of a snapshot or a continuous query. We evaluate our system after the system digests and
processes objects and queries for 10 minutes.
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Fig. 6. Query response time comparison for snapshot queries.

8.2 Evaluation on Snapshot Queries

To evaluate the performance of STAR on processing snapshot queries, we compare STAR with the
following two baselines that are variants of STAR:

Baseline-1. Baseline-1 does not use any cache-based technique. The other techniques used are
the same as STAR.

Baseline-2. Baseline-2 differs from Baseline-1 only in that it uses a classic greedy algorithm to
materialize views for queries without a spatial or keyword constraint.

Note that no existing spatial data stream system is designed to provide native support for ad
hoc snapshot aggregate queries. We will extend representative existing systems for comparison in
Section 8.4. We evaluate the performance by measuring the query response time.

Query Response Time. Query response time is the average time required for answering a
query. To avoid long queuing time in the buffer, we measure query latency by using a moder-
ate input speed of the data stream. We evaluate the performance of our cache-based algorithms:
Q-cache represents using query-based caching and QO-cache represents using both query- and
object-based caching.

Figure 6 gives the experimental results. We observe that both Q-cache and QO-cache show a sig-
nificant performance improvement over the baselines: They are about one magnitude faster than
Baseline-1 when the number of constraints is 1 and 4–9 times faster when there are more than one
constraint; they are 2–3 times faster than Baseline-2. QO-cache has the best performance, which
improves the performance of Q-cache by from 10% to 40%. This is because QO-cache maintains
materialized views and uses cached objects to help process queries, which avoids checking a large
amount of objects. Baseline-1 performs the worst, as it always needs to check the objects to answer
queries. Baseline-2 is at least 1 time faster than Baseline-1, indicating that views without spatial or
textual attributes are also helpful. We also observe that Baseline-2, Q-cache, and QO-cache have
smaller query response time for QS2 queries than for QS1 queries. The reason is that for the un-
even distribution of group-by attribute(s) inQS2 queries, the query-based caching algorithm is more
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Fig. 7. Throughput comparison for continuous queries.

likely to materialize the views having larger benefits, which helps to reduce the query response
time.

8.3 Evaluation on Continuous Queries

We evaluate the performance of our CH-tree and MT-index on processing continuous queries. We
compare them with two state-of-the-art indexes that were proposed for publish/subscribe systems.

OpIndex [69]. OpIndex adopts a two-level partitioning scheme. In the first level, continuous
queries are partitioned into query lists based on a selected pivot attribute. In the second level,
the predicates in each query list are further partitioned into predicate lists based on the predicate
operator. OpIndex does not consider range or keyword constraint, and we transform each range
constraint into two interval constraints and leave the keyword constraint to be checked at the last
step.

RP-trees [70]. RP-trees index partitions the continuous queries into query lists based on a se-
lected pivot attribute. For each query list, it maintains an R-tree, which stores the range constraints
that are specified by the queries. As it does not consider keyword constraint, we check the keyword
constraint at the last step.

We evaluate the performance by measuring throughput, as it is done in previous work on con-
tinuous queries.

Throughput. The throughput is the number of tuples (including objects and queries) a system
can handle when the processing capacity of the system is reached. We measure the throughput of
each method by tuning the input speed of the data stream to be close to its processing capacity.

Figure 7 gives the throughputs of CH-tree, CH-tree+MT (using both CH-tree and MT-index),
OpIndex, and RP-trees for the four groups of queries. CH-tree+MT has the best performance, fol-
lowed by CH-tree, which improves CH-tree by 10%–20%. CH-tree+MT’s throughput is 2–3 times
that of OpIndex and about 1.5 times that of PR-trees. OpIndex has the worst performance, probably
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Fig. 8. Comparison with existing systems (snapshot queries).

due to its poor performance in processing queries with a range constraint. RP-trees index performs
better than OpIndex, as it supports range constraints natively. We also observe that the through-
puts of CH-tree and CH-tree+MT decrease slower than OpIndex and RP-trees’ with respect to
the number of constraints. This is because the cost model in CH-tree can find a good ordering of
predicates so more queries can be filtered in an early stage, thus reducing the processing cost. The
results demonstrate the superior performance of our indexes over state-of-the-art index structures.

8.4 Comparison with Existing Systems

Since existing systems are not optimized to support both snapshot and continuous aggregate
queries over spatial data streams, we compare STAR with them on processing snapshot and con-
tinuous queries separately. We evaluate the performance of each system by running it exclusively
on the cluster.

Comparison with systems over static data. We extend Simba [63] and GeoSpark [67], two
representative distributed spatial data analytics systems, for comparison. Because both Simba and
GeoSpark cannot work on streamed data, to make the comparison feasible, we introduce the fol-
lowing setting: (1) We create a static spatial dataset by preloading STAR, Simba, and GeoSpark
with a static set of tweets. (2) We input the queries with at least one range constraint.

Figures 8(a) and 8(b) show the query response time with respect to the number of constraints.
STAR is about 3 times faster than Simba and GeoSpark. Though Simba and GeoSpark are designed
for spatial data analytics, they are not optimized for aggregate queries with ad hoc constraints. The
results demonstrate the effectiveness of the cache-based algorithms adopted by STAR. To further
compare their performance, we vary the size of the query range to investigate the impact on the
query response time. Figures 8(c) and 8(d) show that STAR has a much smaller query response time,
e.g., in Figure 8(d), the query response time of STAR is smaller than 40% of the response times of
other systems. The running time of all the systems increases with the increase of the query range.
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Fig. 9. Scalability (snapshot queries).

However, the running time of STAR is more stable, which is ascribed to the cached data maintained
in STAR.

Figure 9 gives the result on scalability with the number of workers. STAR is 2–3 times faster
than Simba and GeoSpark, no matter how many workers are used. The results show that STAR

scales well with the system size.
The experimental results demonstrate that STAR outperforms Simba and GeoSpark in process-

ing ad hoc aggregate snapshot queries over a static set of spatial data, although STAR is designed
for streamed data. The main reason is that STAR exploits cache-based algorithms to optimize pro-
cessing ad hoc aggregate queries over spatial data.

Comparison with Tornado. For continuous aggregate queries, we compare STAR with Tor-
nado [45], a state-of-the-art system that supports continuous queries with ad hoc spatial and tex-
tual constraints over spatial data streams. Tornado utilizes FAST [43], an indexing framework to
organize continuous queries. FAST has a spatial pyramid structure similar to a quad-tree and is
equipped with a frequency-aware indexing mechanism for continuous spatio-textual queries. We
extend Tornado to support aggregate continuous queries for spatial data. Tornado only indexes
continuous queries, but not spatial objects (and thus it cannot answer snapshot queries).

Figure 10 gives the experimental results. STAR has larger throughputs than Tornado for all types
of queries. For example, in Figures 10(a) and 10(b), the throughputs of STAR are larger than Tor-
nado by 35%–55%. The difference becomes more significant when increasing the number of query
constraints, e.g., in Figure 10(a), STAR outperforms Tornado by about 55%. This is because the
CH-tree in STAR uses a cost model to determine the ordering of predicates, which can effectively
reduce the cost of checking objects in the presence of multiple query constraints. Figures 10(c)
and 10(d) show the throughputs of STAR and Tornado with respect to the size of the query range.
STAR has a more stable performance than Tornado: The throughput of STAR decreases slower than
Tornado when increasing the size of the query range. This is ascribed to the better filtering effect
of the indexes used by STAR.

Figure 11 gives the result on scalability with the number of workers. STAR achieves larger
throughputs than Tornado, e.g., in Figure 11(a), the throughput of STAR is consistently about
1.5 times that of Tornado. The results demonstrate that STAR outperforms Tornado in process-
ing aggregate continuous queries.

8.5 Workload Partitioning

We evaluate our workload partitioning scheme by comparing it with two partitioning schemes:
STR [38] and AQWA [6]. Figure 12 gives the experimental results. We observe that our partitioning
scheme has the best performance: In Figure 12(a), STAR has about 20% smaller query response time
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Fig. 10. Comparison with Tornado (continuous queries).

Fig. 11. Scalability (continuous queries).

than the others; In Figure 12(b), STAR has about 18% larger throughput than the others. The results
demonstrate the effectiveness of our partitioning scheme.

8.6 Memory

In this set of experiments, we evaluate the impact of the memory constraint on snapshot query
processing and the memory usage of the indexes for continuous query processing.

Figures 13(a) and 13(b) give the results of snapshot query processing. When the memory con-
straint is 1,000 MB, the query response time of QO-Cache is significantly smaller than that of
QO-Cache when the memory constraint is 500 MB. For QS1-Count, QO-Cache (1,000 MB) takes
less than 40% time of QO-Cache (500 MB). For QS1-TopK, QO-Cache (1,000 MB) takes less than
20% time than that of QO-Cache (500 MB). This is expected, because when there is more avail-
able memory, more queries can be answered using query- and object-based caching, which saves
considerable time. The improvement is more prominent for QS1-TopK, because computing top-k
results from scratch is costly.
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Fig. 12. Comparing different partitioning schemes.

Fig. 13. Evaluating the impact of memories on the snapshot query processing and the memories of continu-

ous query indexes.

Figures 13(c) and 13(d) give the memory usage of both the CH-tree and CH-tree+MT for con-
tinuous query processing. The CH-tree+MT occupies about 4 times the memory for the CH-tree.
This is due to the structure of CH-tree+MT, which maintains multiple CH-tree instances.

9 CONCLUSIONS

In this article, we present STAR, a distributed in-memory data stream warehouse system that pro-
vides low-latency and up-to-date analytical results over a fast-arriving spatial data stream. STAR

supports both snapshot and continuous aggregate queries that have ad hoc constraints over spatial,
textual, and temporal data attributes. STAR adopts a cache-based mechanism to facilitate the pro-
cessing of snapshot queries. STAR implements a novel index to categorize the continuous queries,
which outperforms existing indexes in the procedures of checking objects against the indexed
queries and maintaining the query results. Extensive experiments over real datasets demonstrate
the superior performance of STAR over existing systems.
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