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Guard: Attack-Resilient Adaptive Load
Balancing in Distributed Streaming Systems

Anas Daghistani, Mosab Khayat, Muhamad Felemban, Walid G. Aref, Arif Ghafoor

Abstract—The performance of distributed streaming systems relies on how even the workload is distributed among their machines.
However, data and query workloads are skewed and change rapidly. Therefore, multiple adaptive load-balancing mechanisms have
been proposed in the literature to rebalance distributed streaming systems according to the changes in their workloads. This paper
introduces a novel attack model that targets adaptive load-balancing mechanisms of distributed streaming systems. The attack reduces
the throughput and the availability of the system by making it stay in a continuous state of rebalancing. This paper proposes Guard,
a component that detects and blocks attacks that target the adaptive load balancing of distributed streaming systems. Guard uses
an unsupervised machine-learning technique to detect malicious users that are involved in the attack. Guard does not block any user
unless it detects that the user is malicious. Guard does not depend on a specific application. Experimental evaluation for a high-intensity
attack illustrates that Guard improves the throughput and the availability of the system by 85% and 86%, respectively. Moreover, Guard
improves the minimum availability that the attacker achieves by 325%.

Index Terms—Attack-Resilient, Malicious Activity, Adaptive Load Balancing, Distributed Streaming Systems
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1 INTRODUCTION

DATA generated every second is rapidly increasing daily.
This is due to the ubiquity of smart devices and the

Internet of Things (IoT), e.g., smartphones, smart watches,
health monitors, traffic sensors, and connected vehicles.
Moreover, social networks generate a huge amount of data,
e.g., 500 million tweets are created daily [1]. This growth of
data has led to the spread of new services, e.g., smart homes,
autonomous vehicles, traffic control, social network analy-
sis, and online video games. Supporting these services has
raised the demand on developing real-time, efficient, and
scalable systems for processing queries. The current scale
of the data being generated cannot be handled by using
centralized environments. Therefore, multiple distributed
streaming systems have been developed to provide scalable
and real-time processing solutions. Hence, there is an in-
creasing number of applications that are being implemented
using these systems. Examples include Storm [2], Twitter
Heron [3], and SparkStreaming [4].

The performance of a distributed streaming system is
directly affected by how balanced the workload among its
machines. Data and query workload of distributed stream-
ing systems can change rapidly. In addition, generally the
distribution of data and queries is skewed. This skewness

• A. Daghistani, M. Khayat are with the Department of Computer Engi-
neering, Umm Al-Qura University, Makkah, Saudi Arabia and the Elmore
Family School of Electrical and Computer Engineering, Purdue Univer-
sity, West Lafayette, IN. E-mail: ahdaghistani, maakhayat@uqu.edu.sa

• A. Ghafoor is with the Elmore Family School of Electrical and Com-
puter Engineering and Purdue’s Center for Education and Research in
Information Assurance and Security (CERIAS), Purdue University, West
Lafayette, IN.E-mail: ghafoor@purdue.edu

• M. Felemban is with the Center for Intelligent Secure Systems and the De-
partment of Computer Engineering, King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia. E-mail: mfelemban@kfupm.edu.sa

• W. Aref is with the Department of Computer Science and Purdue’s Center
for Education and Research in Information Assurance and Security (CE-
RIAS), Purdue University, West Lafayette, IN. E-mail: aref@purdue.edu

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12 14 16
Time	(Min)

No	Attack Attack
Th

ro
ug
hp

ut
(T
ho

us
an

d	
Tu

pl
es
\S
ec
)

Attack	Start

Fig. 1. The effect of an attack on a distributed streaming system

changes with time and user interest. The use of static
load-balancing techniques does not make the system fully
utilize its machines, which can lead to low throughput
and high response time. Therefore, various approaches have
been proposed to adaptively balance the load in distributed
streaming systems according to data and query workload,
e.g., STAR [5], Tornado [6], Ameoba [7].

Although using adaptive load-balancing techniques sig-
nificantly improves the performance of distributed stream-
ing systems, such techniques make the system vulnerable to
attacks. Attacks on the adaptive load-balancing techniques
mainly target the availability of the system. To illustrate,
attacks on availability can be initiated using the knowledge
that the system uses an adaptive load-balancing technique
to redistribute workload across the machines based on the
changes in the workload [8]. In distributed streaming sys-
tems, many applications demand a querying system that
returns answers in a timely manner to utilize the informa-
tion at the right time. Attackers can target specific locations
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with their queries to force the system to waste its processing
power by engaging in a continuous state of load-balancing.
Hence, delaying the answers in these applications can lead
to misleading information. For example, law enforcement
officers can predict criminal activities by querying Twitter
data in real-time [9], [10], which can affect their patrolling
schedule. In such cases, attackers could intentionally de-
grade the performance of the system, which can lead to
delivery of outdated information resulting in erroneous
decision making process.

Figure 1 illustrates a timeline of the throughput of a
distributed streaming system with adaptive load-balancing.
The results are collected while running Apache Storm [2]
and SWARM adaptive load-balancing technique [11] on
6 Amazon EC2 instances. These instances are divided to
form one cluster that consists of 41 virtual machines. Please
refer to Section 5.2 for more details on the cluster setup.
The system processes a real workload from Twitter and
serves one million continues queries. Section 5.1 shows
more details about the application and the dataset used
for the experiment. The adaptive load-balancing has been
targeted by an attack starting from Minute 5. Notice that
the attack reduces the minimum throughput by 70%. The
main objective of the techniques in this paper is to block the
attacks and make the throughput of the system as close as
possible to the throughput when there is no attack.

This paper describes a new type of attacks that forces
adaptive load-balancing mechanisms of distributed stream-
ing systems into a continuous state of rebalancing. Fur-
thermore, this paper proposes Guard, a component that
detects and responds to malicious attacks on adaptive load-
balancing mechanisms of distributed streaming systems.
The paper introduces new features that are collected to
characterize the behavior of the users and their relationships
with hotspots. Guard collects the features with minimal
overhead. Guard adopts an unsupervised machine learning
technique that uses the collected features to detect and
block the attack. Moreover, it allows Guard to differentiate
between malicious and legitimate hotspots. Guard detects
and blocks malicious users even when they coordinate in
performing a single attack on the system. The design of
Guard does not block users until it is certain that they are
malicious. Guard is general in the sense that it does not
depend on a specific adaptive load-balancing mechanism
nor a specific distributed streaming system. Guard requires
minimal changes to the original code of the application.

The rest of this paper proceeds as follows. Section 2 ex-
plains the way adaptive load-balancing mechanisms redis-
tribute the workload. Section 3 presents the attack model on
adaptive load-balancing mechanisms. Section 4 introduces
Guard, its collected features that model the users, its de-
tection mechanism, and its response mechanism. Section 5
studies the performance of Guard under various attack
scenarios. Section 6 discusses the related work. Section 7
concludes the paper.

2 ADAPTIVE LOAD-BALANCING IN DISTRIBUTED

STREAMING SYSTEMS

Typically, the workload of distributed streaming systems is
skewed and is changing continuously. Therefore, static par-
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Fig. 2. Adaptive load-balancing in a spatial distributed streaming system

titioning is not suitable for distributing the workload among
the system’s machines. This has led to the development
of adaptive load-balancing mechanisms that achieve higher
throughput and lower response time. STAR [5], Tornado [6],
Ameoba [7], [12], SWARM [11], PKG2 [13], PKG5 [14], and
PS2Stream [15] are examples of adaptive load-balancing
mechanisms that are used in distributed streaming systems.

Existing adaptive load-balancing mechanisms from the
literature differ in the types of applications that they support
and the models used for measuring their workload. These
mechanisms distribute the workload depending on the dis-
tinctive key features of the applications they serve, e.g.,
spatial regions, text topics, or hash values. They are common
in the way they rebalance their workload by repartition-
ing the responsibilities of each machine according to the
changes in data and query workloads. All the mechanisms
monitor the workload of each machine in the system by
computing a score, for each machine, that represents the
amount of data and query workload that is processed. The
rebalancing is achieved by moving some responsibilities
of the machine with the highest workload to the machine
with the lowest workload. Other mechanisms move the
workload to a subset of under-loaded machines instead
of only the lowest machine. Most distributed streaming
systems support continuous queries, and return their results
to the users in real-time. Continuous queries are queries that
get registered and stored in the system for a period of time
that is predetermined by the user. Every time a new tuple
arrives, the system checks if this tuple qualifies as a result
for any of the registered continuous queries. Moving parts
of the workload of a machine includes moving some of its
continuous queries.

Figure 2 gives an example of how an adaptive load-
balancing mechanism redistributes the workload of a spatial
distributed streaming system. The distinctive key feature
of this application is its spatial dimension. Consequently,
the adaptive load-balancing mechanism divides the whole
space (USA map) into spatial partitions among five ma-
chines: m1, m2, m3, m4, and m5. Figure 2 illustrates that
m1 is responsible for one partition only. This partition
includes a city that gains increased user interest because
of an event. This creates a hotspot that requires more pro-
cessing from m1 because of the increased query and data
workload on this city. In this scenario, the adaptive load-
balancing mechanism identifies that m1 is overloaded while
m5 has the lowest workload. Therefore, the adaptive load-
balancing mechanism divides m1’s partition, which con-
tains the hotspot into two partitions based on the workloads
of m1 and m5. One of the partitions is moved to m5 to
evenly distribute the workload between the two machines.
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Fig. 3. Example of attack model on a distributed streaming system that contains three machines.

As long as the system is unbalanced, the adaptive load-
balancing mechanism continues partitioning and moving
workloads across machines.

3 ATTACK MODEL

The goal of adaptive load-balancing mechanisms in dis-
tributed streaming systems is to maintain a high level
of availability. In this paper, we consider a new type of
attacks that aims to limit the availability of distributed
streaming systems. The essence of the attack is to force
the load-balancing mechanism into a continuous state of
re-balancing. In particular, an attacker can trigger numer-
ous rebalancing operations by submitting a carefully de-
signed sequence of queries that results in creating malicious
hotspots. In addition to reducing the system throughput and
availability, this type of attacks can divert the system from
serving real major events. This attack model is similar in
concept to the stealthy Denial of Service (DoS) attack model
presented in [16].

To carry out an attack, the attacker needs to sample
the data points looking for the next attack region, which
entails observing an increase in data tuples on regions where
data hotspots can emerge. We assume that the attacker has
a limited computational power and cannot receive/digest
all the data points received by the distributed streaming
system. The attacker creates an overlay grid over the spatial
region. We represent the grid using an n ⇥ n array (cells)
denoted by G, where gij represents the number of sampled
points in the region associated with the cell. The size of each
cell can be chosen based on the attackers resources. A small
cell size provides a more accurate view of the next attack
region. Assume that R is the rate at which the attacker can
submit queries. Let � represents the time interval used by
the attacker to move its attack to a different attack region.
In other words, � represents the time taken by the attacker
to create the next malicious hotspot. Note, � is computed as
� = Q/R, where Q is the total number of malicious queries
submitted by the attacker. The attacker creates the array G
every � seconds. Let G be the array created in the previous
interval. The attacker’s goal is to find the cell that contains a

potentially emerging data hotspot and to register malicious
queries that creates a malicious hotspot which triggers un-
necessary load balancing. Emerging data hotspots can be
detected by finding the difference between the cells in G
and G. We denote the location of the next attack region at
time k with hk, which corresponds to the cell that observes
that maximum increase in data tuples. Formally, hk can be
found by solving the following equation:

hk = argmax
gij

|gij � gij | (1)

The cost of the attack can be expressed as a sum of two
terms. The first term, CG, corresponds to the cost (time) of
sampling the data stream and populating G. The second
term, Chk , represents the time for computing hk. Formally,
we model the cost of the attack as the following:

Cost = CG(�,�) + Chk(�, n) (2)

where � is the sampling rate of data tuples from the stream.
Note, small � implies more frequent attempts to create
malicious hotspots that can trigger more unnecessary load
balancing operations. This unwanted behavior can lead to
more sever degradation in the performance of the system.
However, frequent attempts require more computational
power from the attacker. Large value of n leads to more
accurate estimation of emerging hotspots. However, larger
n increases the required computational power for Chk and
increases the memory storage required to hold G and G.

To illustrate dynamics of an attack, consider the fol-
lowing scenario in Figure 3. Initially, there are 5 regis-
tered continuous queries (Q1, Q2, Q3, Q4 and Q5) that are
distributed among three machines, m1, m2, and m3, as
illustrated in Figure 3(a). Assume that this query distribu-
tion among three machines is balanced. In this attack, the
attacker can access the data stream that is processed by the
system by means of continuous queries. From the supported
queries, the attacker can conveniently learn about the data
attributes (dimensions) used in partitioning/balancing the
data in the system. For example, if the system serves queries
about Twitter data, attackers can speculate that the data
dimensions would include spatial attributes (latitude and
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longitude), textual attributes (topics, and hashtags), among
others. After gathering the necessary information, the at-
tacker needs to identify and focus the malicious queries to
the location of the attack region that increases the cost in
Equation 2.

For example, in Figure 3(b), the attacker submits four
malicious continuous queries (in red) to m1, which serve
the attacking region. Each malicious query is submitted
once and is required to be checked against every new
overlapping data tuple. As a result, the system detects
that m1 becomes overloaded, and decides to rebalance the
workload by migrating Q2 and one of the malicious queries
to m2 (Figure 3(c)). Thus, the attacker successfully creates
a malicious hotspot that triggers a rebalance operation
by submitting malicious queries. The effectiveness of the
malicious hotspot can be increased by choosing a key that
overlaps with large amount of data. For example, in a spatial
application, inquiring about different restaurants in Chicago
has a higher probability for creating a hotspot than querying
about restaurants in the middle of an ocean.

Next, the attacker terminates the malicious continuous
queries as shown in Figure 3(d). In this case, the system has
to migrate Q2 back to m1 to restore the balanced state. Note,
this attack results in triggering two rebalance operations.
If both migrated queries were malicious at Figure 3(c), the
system would still be in a balanced state when the attacker
terminates the queries. Moving on, the attacker submits
four more queries in Figure 3(e) that in turn result in one
more rebalance operation shown in Figure 3(d). As long
as the attacker continues to succeed in creating malicious
hotspots, the system persists in wasting its processing cycles
by engaging in continous rebalancing. Similarly, this attack
can be performed by submitting snapshot queries instead
of continuous queries. However, the successful creation
of malicious hotspots requires submitting a large number
of snapshot queries with a high rate. Therefore, creating
malicious hotspots by submitting snapshot queries requires
consuming higher amounts of resources from the attacker
side than by submitting continuous queries. In contrast, it
is easier to detect the attack that sends a large number of
queries with a high rate.

This attack can be also used towards data exfiltration.
In particular, an adversary can create a malicious hotspot
in a region to which he/she does not have an access per-
mission. The load-balancing mechanism is oblivious to the
access-control mechanism. The load-balancing mechanism
redistributes the data and queries by moving some of them
to another machine. Meanwhile, the adversary can perform
eavesdropping attack (sniffing or snooping) on the network
to exfiltrate the data.

The attack can be performed by submitting malicious
queries from one machine (user) or multiple machines
(users). In the case one user attack, it is easier to detect the
attacker because this user has activity that is much higher
than normal users. On the other hand, the total activity of
the attack can be hidden by initiating a coordinated and
distributed attack where every participating malicious user
contributes a little to the attack. Consequently, the activity of
malicious users becomes similar to the activity of legitimate
users. However, collectively, this group of users perform a
distributed malicious attack that is harder to detect.
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Fig. 4. Architecture of Guard and its connections with the distributed
Streaming System

4 GUARD: ATTACK DETECTION AND RESPONSE

There are many challenges when designing a defense mech-
anism that prevents the type of attacks explained in the
previous section. In general, characterizing the behavior
of normal traffic while coping with changes due to some
unusual events is a challenge. These changes in the behavior
might be abnormal but still can be legitimate and should not
be considered an attack since it is the nature of human to
get attracted to unusual events (genuine hotspots). To solve
this issue of detecting attacks in this context, it is essential
to engineer a set of features that can differentiate between
benign and malicious behaviors in the feature space. These
features should take into consideration the dynamic nature
of streaming systems. Thus, these features should consider
the current behavior of users as well as the past behavior
and use such information in the attack detection process.
Moreover, the absence of training data sets prevents trans-
ferring knowledge while modeling the malignant behavior.
Therefore, this rules out the option of using any supervised
machine learning techniques. These challenges steer us to-
ward designing Guard as an unsupervised machine learning
system that detects malignant behavior in real-time without
the need of any training data. The novelty of Guard lies in
its features that hold a fading memory about the behavior
of users as groups as well as individuals as discussed in
Section 4.2.

4.1 Architecture

Guard is our proposed solution to detect and respond to
attacks that aim to affect the performance of distributed
streaming systems through deceiving their adaptive load-
balancing mechanisms. Guard is composed of two compo-
nents that are illustrated in Figure 4 in a blue striped pattern.
Guard’s first and main component is a unit that contains all
the detection and response processes. The second compo-
nent, termed, Hotspot Sensor, is located inside every executor
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machine of the distributed streaming application. Hotspot
Sensors sense that a hotspot has triggered the rebalancing
mechanism, and collect raw information about the hotspot’s
queries. Then, Hotspot Sensors send the hotspot’s raw infor-
mation to the main component for analysis.

Guard has a generic design in the sense that it does not
require changes to the load-balancing mechanism. Guard
requires the following changes to the original code of the
distributed streaming application: 1) redirecting the query
stream to be sent to the main component of Guard, 2) adding
the Hotspot Sensors to every executor machine, 3) calling the
Hotspot Sensors before rebalancing, and giving them access
to the partition containing the hotspot, and 4) whenever re-
balancing happens, moved information should be encrypted
to prevent data exfiltration.

Guard’s detection mechanism is triggered periodically
every detection round to check if the system is under attack.
A short detection round introduces higher overhead on the
system but it reduces the time to stop an attack as soon as
one happens. However, Guard requires the detection round
to be long enough to allow the adaptive load-balancing
mechanism to identify more than one hotspot during the
detection round and re-balance the workload accordingly.
For example, the detection round in our experiments is one
minute, and it allows having a maximum of three hotspots
to be re-balanced.

Guard maintains two counters, namely RoundID and
HotspotID. RoundID is a global ID number that uniquely
identifies a detection round. Each new query is tagged with
the detection RoundID. Gaurd increments RoundID once a
detection round ends. HotspotID is a global ID number that
uniquely identifies the next hotspot that triggers the adap-
tive load-balancing mechanism to redistribute the workload.
HotspotID is initialized to 1 and it is incremented by one
every time a hotspot’s raw information is received from
Hotspot Sensors.

As illustrated in Figure 4, Guard’s main component is
composed of multiple processes. The Query Receiver receives
every query request in the query stream, e.g., newly is-
sued snapshot queries, requests to register new continuous
quires, and requests to terminate old continuous quires. The
Query Receiver attaches to every query request the current
RoundID and a UserID. The UserID is an identification for
the user’s machine that submitted the query request. The IP
address of the machine submitting a query request is used
as the UserID for the request. The Query Receiver passes the
queries to the Real-Time Feature Engineering and the Query
Forwarder. The Real-Time Feature Engineering is the process
that builds the feature space in real-time by collecting and
analyzing raw information from the Query Receiver and
the Hotspot Sensors. At the end of every detection round,
the Real-Time Feature Engineering finalizes the features and
passes them to the Unsupervised Attack Detector. This detec-
tor is the main process that finds if there is an attack on
the system and detects the malicious users involved in the
attack. This detector uses an unsupervised machine learning
technique to cluster users based on their behaviors, their
interactions with each other, and their relationships with the
created hotspots. It uses a rule-based technique to decide if
there is a cluster involved in an attack on the load-balancing
mechanism of the system. The detector stores malicious user

IDs in a hash table, called Blocked Users. The Query Forwarder
forwards the queries that it gets from the Query Receiver to
the routing machines of the distributed streaming system.
However, it only forwards user queries that are not in the
Blocked Users hash table. The Query Forwarder distributes the
query messages among the routing machines by sending
them in a round-robin fashion.

4.2 Real-Time Feature Engineering

Guard’s unsupervised detection technique relies on a set of
features representing the users of the system. These features
are engineered to define a space that enables separating
normal users from the malicious ones. Guard collects mea-
surements of these features periodically every detection
round as a tumbling window [17]. Guard maintains the
features in a hash table with UserID as the key. Table 1 lists
all the features used by Guard, along with a brief description
of each feature. We categorize these features into two groups
according to the source of the data used to measure them:
features from raw queries and features from Hotspot Sensors.

The first set of the features is engineered from the queries
requested from the system. These queries are forwarded to
the feature-engineering process by the Query Receiver. Guard
measures these features as statistics for each user in a given
detection round. These features are calculated by counting
the number of new requested queries and the number of
terminated queries for each user.

The second set of features is engineered from the in-
formation collected by the Hotspot Sensors. These sensors
collect information about the users who have queries in the
partition that contains the hotspot. Subsequently, the sensors
forward the collected information to the Real-Time Feature
Engineering that uses the data to generate hotspot-related
features. Collecting information about hotspots by Hotspot
Sensors is explained in Section 4.2.1

Most of the significant features are hotspot-related fea-
tures. These features are designed to enable separating
normal users from both single- and multi-user coordinated
attacks. For example, measuring the number of times the
user’s queries appear in hotspots that triggers rebalancing
is useful to detect single-user attacks. On the other hand,
Guard utilizes the engineered features Hotspot Seq and
Hotspot Seq new in Table 1 to reduce the distance among
users involved in a multi-users coordinated attack. Their
numbers are compressed representations for the sequence of
hotspots in which the user appears. Every time the queries
of the user appear in a hotspot, the HotspotID is added
to the previous value of Hotspot Seq. Hotspot Seq new is
calculated in a similar way but it only gets updated if at
least one of the queries is requested during the same round
of the hotspot. These features allow observing similarities
among users according to their behavior of causing load
rebalancing.

Feature x12 in Table 1 is important to differentiate be-
tween the behavior of normal users and malicious users in
relation to hotspots. It represents the weighted number of
user’s queries found in any hotspot that triggers rebalancing
during the current round. The weight of a query depends on
the time it is requested. Queries requested in older rounds
have lower weight. Let Qt be the number of users’ queries
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TABLE 1
A brief description of the features used by Guard.

ID Feature Name Description
x1 New Queries Number of requested queries by the user during the current round
x2 Deleted Queries Number of deleted queries by the user during the current round
x3 LRB Involvement Number of hotspots that have triggered Load Re-Balancing during the current round and that

contain at least one of the user’s queries
x4 LRB Contribution Number of user’s queries found in any hotspot that has triggered re-balancing during the current

round
x5 Hotspot Seq Sum of HotspotIDs that the user has been involved in during the current round. This number is a

compressed representation for the sequence of hotspots that the user has been involved in
x6 - x10 Historical features Similar to x1 - x5 but with a time fading function that captures the measurements of previous rounds
x11 Hotspot Seq New Sum of HotspotIDs that the user has been involved in during all rounds with queries requested in

the same round as the hotspot creation round
x12 LRB Weighted Contribution Similar to x4 but it is calculated using weights of queries based on how old they are. Queries

requested in older rounds have lower weights
x13 LRB Queries Rate The percentage of weighted user’s queries found in hotspots that triggered re-balancing during the

current round (x12) out of the faded number of all user’s queries that have been requested during
recent rounds (x6)

x14 Avg(LRB Queries Rate) The average of x13 values of the user, for all the rounds that have a value different than zero

found in hotspots during the current round t. Let t � i be
the ith round before t. Feature x12 is calculated using the
following equation:

Feature x12 = Qt +
Qt�1

2
+

Qt�2

4
+

Qt�3

8
+

Qt�4

16
(3)

Notice that the rounds used in Equation 3 are limited to the
most recent five rounds to reduce the network overhead.
Moreover, queries of older rounds have a small weight be-
cause their denominator increases exponentially. Therefore,
if queries of older rounds are used in Equation 3, their
weights do not have a big effect on the value of Feature x12.
Equation 3 uses a weighting method similar to the fading
method that is explained in the next paragraph. Hence,
Feature x13 in Table 1 is computed by dividing x12 by the
faded number of new queries (x6).

Features x1 to x5, x12, and x13 in Table 1 are mea-
surements for the current detection round. The remaining
features in Table 1 are historical features that capture the
measurements of the previous rounds. The historical fea-
tures x6 to x10 are designed to have a fading effect that
signifies recent behavior over older behavior. The fading
is applied by halving the measurement of the previous
round and adding it to the current round’s measurement.
The purpose of the historical features is to increase the
robustness of the users’ representation by including their
behavior in previous rounds. Feature x11 is an accumulated
number. Feature x14 is an averaged number over all rounds
that the user is involved in their hotspots. Feature x14 is
useful to detect abnormal behaviors. It is important to view
Feature x14 over previous rounds to examine whether the
abnormality persists or it is just noise.

The last step performed in the feature engineering pro-
cess is feature normalization. This step is essential to prepare
the features for Guard’s Unsupervised Attack Detector by
ensuring equal ranges for the features. Guard uses min-max
normalization [18] to transform the features to the range
from 0 to 1. The normalized features are passed to the
Unsupervised Attack Detector as a multi-dimensional array.

x0 =
x�min(x)

max(x)�min(x)
(4)

4.2.1 Collecting Raw Information about Hotspots

For every hotspot, Hotspot Sensors create a summary that
includes UserIDs of the users that have queries in partitions
containing the hotspot and a list attached to every UserID.
As mentioned in Section 4.1, Guard attaches to every query
a RoundID to determine the round of when the query is
requested. The attached list breaks down the count of the
user’s queries that are found in the hotspot based on the
queries’ RoundIDs. The attached list includes the count of
the queries that are requested during the latest five rounds
only. Therefore, users who request all their hotspot queries
in rounds older than five have an empty list. Limiting the
number of rounds to five is chosen to reduce the overhead
of sending large summaries. Moreover, the count of queries
that are older than five rounds do not have significant effect
on the features that are calculated based on this list, as
discussed in Section 4.2.

Guard’s main component maintains the true current
RoundID, as shown in Section 4.1. However, every Hotspot
Sensor maintains its own current RoundID that gets updated
based on the RoundID of the newest query that the Hotspot
Sensor reads. Therefore, Guard does not add any overhead
to the system to synchronize Guard’s main component and
all Hotspot Sensors. The summary gets filtered while being
sent to the Real-Time Feature Engineering to include only the
five most recent rounds based on the Hotspot Sensor’s local
current RoundID. While receiving the summary, the Real-
Time Feature Engineering discards the information of extra
rounds based on the true current RoundID.

4.3 Unsupervised Attack Detector

Guard’s Unsupervised Attack Detector is triggered periodi-
cally at the end of every detection round. The detector learns
how to separate malicious users from normal users in an
unsupervised manner, i.e., without the need to be trained
with a pre-labeled data. The Unsupervised Attack Detector
clusters users based on their behavior and interaction using
the K-Means++ algorithm [19]. K-Means is a well-known
unsupervised clustering technique [20] that partitions n data
points into a desired number of clusters (K). The centroids
of these clusters, i.e., initially, the K means are assigned
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Algorithm 1: attackDetector(Users Features U )

1 Cluster SC = All Users(U ) . Suspicious Cluster
2 Cluster[2] C
3 do
4 C = K-Means++(SC , 2) . Cluster SC into 2
5 if ALQR(C[0]) > ALQR(C[1])
6 SC = C[0]
7 else
8 SC = C[1]
9 end

10 sd = StandardDeviation(SC .Hotspot Seq New)
11 while sd is large
12 Cluster N = All Users(U ) � SC . Normal Cluster
13 if ALQR(SC) > ALQR(N )⇥�
14 if SC involved in hotspots during current round
15 if SuspiciousClustersList.contains(SC)
16 BlockedUsers.addUsersOf(SC)
17 else
18 SuspiciousClustersList.add(SC)
19 end
20 else
21 No Attack
22 end
23 else
24 No Attack
25 end

randomly, then they are adjusted iteratively according to
the available data. Subsequently, the data points can be
clustered according to their distances from the K centroids.
K-Means++ is an implementation of the traditional K-Means
with a fast technique to choose the seeds, i.e., the initial cen-
troids that, on average, can produce more accurate results
compared to other K-Means implementations.

Algorithm 1 lists the pseudocode for Guard’s unsuper-
vised attack detection mechanism. The detection mechanism
is triggered every time the Real-Time Feature Engineering
component passes the normalized features of the users to
the detection mechanism. Guard creates a cluster, termed
the Suspicious Cluster (SC) that initially includes all the
users with their normalized features. Guard clusters SC
into two clusters using the K-Means++ algorithm, where
its K is equal to 2, and it uses the Euclidean distance.
The anomalous behavior of attackers can be detected in a
variety of normal behaviors that are not predictable with a
particular training set, and this prevents the applicability of
using supervised machine learning techniques. The behav-
ior of normal users is always changing due to the dynamic
workload of real-time streaming applications. For example,
the normal behavior of users during a worldwide event is
different than when there is only a local event. Worldwide
events can lead to higher activity rates of data, queries, and
hotspots.

After SC is divided into two clusters, one of them con-
tains only normal users while the other cluster requires fur-
ther investigation. To differentiate between the two clusters,
Guard uses a feature (ALQR) for clusters to measure the col-
laborative intention of the cluster’s users to create hotspots
with their new queries. ALQR of a cluster is computed by

calculating the average for the Avg(LRB Queries Rate) of
the users in the cluster. Feature Avg(LRB Queries Rate) is
explained in Section 4.2. ALQR of a cluster is the cluster’s
average for its users’ percentage of weighted queries that are
found in hotspots over all queries requested during recent
rounds. Recall that queries being requested in older rounds
have lower weights.

To identify the cluster that requires further investigation,
Guard computes ALQR of each of the two clusters that K-
Means++ produces. For a cluster to have a small ALQR,
it means that the users of this cluster do not intend to
create hotspots with their new queries. Hence, the cluster
that has smaller ALQR contains normal users. Therefore,
Guard updates SC to be the cluster with the larger ALQR.
Subsequently, Guard calculates the standard deviation for
the Hotspot Seq New feature of SC’s users. The standard
deviation measures the similarity of SC’s users in their
involvement in the same hotspots. Having a small standard
deviation (near zero) indicates that SC’s users has been
involved many times in the creation of the same hotpots.
On the other hand, a large standard deviation means that
not all of the users in SC are coordinating to create hotspots.
When SC’s standard deviation is large, SC needs to be
clustered again using K-Means++ as before. Re-clustering
continues until the standard deviation becomes near zero. If
re-clustering continues until the standard deviation reaches
exactly zero, it ensures that all the users in the final SC
are involved in the exact hotspots and no normal users
are blocked by mistake. However, this might make Guard
block portion of the malicious users during one round while
leaving the remaining to be blocked in a future round. This
can happen when malicious users target a spot where a
genuine hotspot is already going to form. The hotspot might
get created fast, even before all coordinated malicious users
contribute to its creation.

Multiple re-clusterings can be required in some situa-
tions when the behavior of malicious users is similar to
some normal users and more than one group represent the
behavior of normal users. In these situations, having K-
Means++ to produce two clusters results in having normal
users in one of them and a mix of normal and malicious
users in the other cluster. The best K parameter for the
K-Means cannot be known beforehand because it changes
continuously as a result of the changes in the real-time
workload and the change in the behavior of users. To
overcome this issue, Guard recursively re-clusters the users
into two clusters, where every time one of the clusters can
be excluded because it contains only normal users.

After the detection algorithm exits the recursive cluster-
ing phase, SC contains the users that might be malicious.
Guard creates a new cluster (N) that contains all the users
except the ones that are in SC. Therefore, N contains only
normal users. ALQR of N is computed to represent the aver-
age behavior of normal users in relation to hotspots. Unlike
the query activities of normal users, a large percentage of
malicious users’ query activities are found in hotspots. Thus,
ALQR of a cluster containing malicious users is larger than
ALQR of normal users. � is a constant factor that represents
the allowed distance from the average behavior of normal
users (ALQR(N)), so that a user is considered a normal user.
When ALQR(N) times � is larger than ALQR(SC), it means
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that the behavior of the users in SC is within the allowed
distance from the average behavior of normal users. Thus,
users of SC are normal and there is no attack. Otherwise, it
is still possible that SC contains malicious users. However,
there is a risk to falsely consider some normal users as
malicious when � is small. Notice that ALQR of the cluster
that contains the malicious users increases each time tese
users create a malicious hotspot. Therefore, the attacks are
eventually blocked regardless of the value of �. Empirically,
we find that setting the value of � around 3 is a good rule
of thumb.

The next check performed on SC is to check whether or
not its users are involved in a hotspot during the current
detection round. If they are not involved, then there is
no attack. Otherwise, SC is confirmed to be a cluster of
suspicious users. Guard either adds SC to the Suspicious
Clusters List or confirm that its users are malicious if the
exact cluster is added before to the Suspicious Clusters List
in a previous round. The users who are confirmed to be
malicious are added to the Blocked Users hash table. If
any cluster in the Suspicious Clusters List does not become
suspicious again by a specific number of detection rounds,
it gets removed form the list. A different random removal
time is attached to every cluster in the Suspicious Clusters
List. The lower limit for the randomly generated removal
time should allow at least 5 detection rounds to pass. The
attack is guaranteed to fail when it does not harm the
system by creating consecutive hotspots with a long time
between between their creation. The upper limit for the
randomly generated removal time should be a long time
that guarantees the failure of attacks. For example, the
detection round lasts for 1 minute in our experiments, while
the removal time is generated randomly between 5 and 30
minutes. If the attacker waits for 30 minutes between the
creation of consecutive malicious hotspots, the system does
not stay in a continuous state of rebalancing and the attack
fails. This randomization makes the detection mechanism
resilient for the attack to bypass because it makes it harder to
predict the assigned removal time for malicious users in the
Suspicious Clusters List. Also, it ensures that the Suspicious
Clusters List is always short and fast to search. Adding a
cluster to the Suspicious Clusters List before blocking its users
gives Guard the ability to ensure that all the users of this
cluster coordinate to launch the attack. Therefore, Guard can
significantly reduce the possibility of blocking normal users
by mistake with other malicious users.

4.4 Response to Malicious Users

Guard responds to malicious users by simply blocking their
new query requests from reaching the distributed streaming
application. Guard’s Unsupervised Attack Detector adds the
IDs of malicious users that are detected to the Blocked Users
hash table. Every time the Query Forwarder receives a new
query request, it verifies that the sender of the request is not
in the Blocked Users hash table before forwarding the request
to the distributed streaming application. Furthermore, new
queries received from blocked users are discarded.

Old continuous queries of the blocked users eventually
expires and get removed from the system. Therefore, Guard
does not remove old queries of the blocked users. The attack

affects the system only when it removes old queries and
adds new ones to make the system in a continuous state of
rebalancing. Therefore, the system recovers after rebalanc-
ing its workload that includes old queries of blocked users.
Not removing blocked users’ old queries allows Guard to
work with any distributed streaming applications. The effect
of the old queries of blocked users on the system might
be reduced by developing a mechanism that triggers all
executor machines to immediately remove these queries.
The feasibility to develop this mechanism depends on the
application’s implementation and whether the benefits of
finding and removing the queries justifies the added over-
head.

5 EXPERIMENTS

The proposed work is realized as a proof-of-concept in
Apache Storm [2] and SWARM [11] in the form of its
adaptive load-balancing mechanism in the context of spatial
data streams.

5.1 Application and Dataset

The application is a location-aware publish-subscribe. The
input stream is geotagged tweets from Twitter. Users can
subscribe to get tweets in a specific spatial range by submit-
ting continuous range queries. A tweet is geo-tagged by a
point in the space. A tweet qualifies a user’s query if the
tweet lies inside the query’s spatial range. The continuous
queries are stored in an R*-Tree index [21]. Each tweet
is directed to only one executor machine, and is checked
against all queries using the local R*-Tree.

A real dataset from Twitter is used in the experiments.
The dataset is of size 140 GB and it contains one Billion
geotagged tweets in the US. The tweets are collected from
January 2014 to March 2015. To form a continuous and
infinite spatial data stream, the 1 Billion tweets are streamed
repeatedly from the beginning each time they finish. The
query workload is synthesized from Twitter’s dataset to
compose continuous range queries. The focal points of the
queries are determined using the locations of real tweets.

5.2 Cluster Setup

Experiments are performed on 6 Amazon EC2 instances. Ev-
ery instance runs Apache Storm 1.0.0 over Ubuntu 18.04.2.
The Nimbus of Storm and a Zookeeper server [22] are in-
stalled in one of the instances that is of type m5.xlarge with
4 vCPU and 16 GB of memory. The remaining five instances
are of type m5.2xlarge. Every one of the five instances has
8 vCPU and 32 GB of memory. Every instance is divided
into 8 virtual machines, where each virtual machine has
one vCPU and 4 GB of memory. Hence, they create a total
of 40 virtual machines. The tweets and queries streams are
produced by 10 virtual machines that act as Storm spouts.
One of these virtual machines also runs Guard as it does
not require continuous processing power. The remaining
30 virtual machines are divided as 8 routing machines
(GlobalIndex in SWARM) and 22 Executor machines. The
network bandwidth of the cluster is up to 10 Gbps.
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5.3 Specifications of the Application and the Attacks

Experiments are all performed from a cold start. SWARM
decides if rebalancing is required every 15 seconds. The
duration of Guard’s detection round is one minute. This
allows a maximum of three hotspots to be re-balanced by
SWARM during a detection round. The grid index that
divides the whole space is of size 1000 x 1000. This size
allows small cities in the US to be covered by multiple cells.
The spatial side lengths of queries are 0.16% of the whole
space’s side length (about the size of a university campus).

The system is pre-loaded with one million continuous
queries coming from 110 users. When there is an attack on
the system, 10 of the 110 users are malicious users while
the remaining 100 are normal users. Also, malicious users
are responsible for 100,000 queries when there is an attack
while normal users are responsible for 900,000 queries.
Continuous queries are triggered every time a new tuple
arrives to allow the system to check if this tuple qualifies as
a result for these continuous queries. To prevent saturating
the system and to roll out the adverse effect of increasing
query processing on the throughput, we artificially create
a fix query processing load by registering new continues
queries with a probability equal to the probability of delet-
ing existing continues queries. We execute such behavior for
both classes of users (normal users and malicious users) to
void any potential detection of attackers due to controlling
the query processing load variable. In this setup, the total
activities (registering new queries/second + removing old
queries/second) performed by each class of users (normal
users and malicious users) equals 600 queries/second (i.e.,
300 queries/second + 300 queries/second). At this rate, the
total number of one million continues queries are kept the
same but the queries themselves keep on changing at every
second (due to removing and registering queries with equal
probabilities).

Queries of the normal users are determined based on
the locations of real-tweets as described in Section 5.1. This
creates natural hotspots in the system based on real Twitter
activity. Real-life workloads are often skewed [23]. Normal
Users’ activities are assigned to normal users using a Zipfian
distribution [24], [25], [26], [27]. We configure the Zipfian
distribution to follow the 80/20 rule [28], [29]. This results
in almost 80% of the activities coming from 20% of normal
users. Such workload puts the system in a real-life situation
where it has users with varying activity levels. On the
other hand, malicious users involved in the attack follow a
uniform distribution for their malicious activity to maximize
the attack effect while maintaining low activity rate per user
to match the rate of most of the normal users (the 80% nor-
mal users that has low activity rate). This behavior makes
it hard for detection system to detect attacker by looking at
activity rate alone. To match the attack model we present in
Section 3, malicious users register their queries to a targeted
attack region while removing their older queries from the
previous attack region. Therefore, the rate of the malicious
activity (i.e., 2R) determine how fast malicious hotspots are
created and how fast the attack region changes (i.e., �). The
attacker chooses the location of the next malicious hotspot
based on the locations of a tweets sample taken from the
current data stream.

5.4 Throughput

Figure 5 shows a timeline for the system’s throughput
in terms of thousand tweets processed per second during
every minute. Figure 5 compares the throughput while
there is an attack or no attack on the system. Figures 5(a),
5(b), 5(c), and 5(d) present the effect of the attack on the
system while setting malicious activity rates to 150, 300,
600, and 1200 queries/second, respectively. The attack starts
at Minute 5. The figures present the difference that Guard
makes when there is an attack on the system. Also, they
show how the system recovers from the attack after Guard
detects the malicious users and blocks them. All the graphs
in Figure 5 show a common line representing when there
is no attack and the total normal users’ activity is 600
queries/second. Each sub-figure presents the results when
the malicious activity is replaced by an equivalent increase
in the total normal users’ activity. This is to show the effect
of registering and terminating more queries in the system
and how the system can adapt to the hotspots created by
normal users. Notice that there is a very small decrease in
the throughput when there is an extra-normal activity and
no attack. Hence, it is clear that the reason for decreasing
the throughput is the way malicious users use their extra
activity, not the overhead that comes with the extra activity.

The malicious activity in Figure 5(a) is small. Hence, the
attacker does not succeed most of the time in creating strong
malicious hotspots that force the system in a continuous
state of rebalancing. Note, Guard completely blocks the
attack after the creation of its second successful malicious
hotspot. This complies with the Guard’s design that re-
quires at least two malicious hotspots to be created before
blocking malicious users. Guard places a higher penalty
on blocking legitimate users than on allowing malicious
users to affect the system a little longer before being sure
they are malicious and blocking them. Note that during this
experiment the activity of the malicious users are very small
as compared to the normal users.

Increasing malicious activity to 300 queries/second in
Figure 5(b) shows more successful attack when Guard is
absent. The attack makes the system lose more throughput
most of the time. Guard detects and blocks the attack. The
system recovers after Guard blocks the attack and follows a
similar performance as the one for the experiment without
the attack.

Figure 5(c) shows the results when malicious activity
is 600 queries/second. The increase in malicious activity
decreases the throughput more on the average and results
in lower minimum throughput. Note that during the exper-
iments of Figure 5(c), the activities of malicious users are
similar to those of normal users that have average activity.
In this case, Guard detects and blocks any attack faster
than when the malicious activity is smaller. However, the
attack achieves lower minimum throughput momentarily.
The reason is that a higher malicious activity results in
creating more malicious hotspots during a shorter time
period. Therefore, Guard has the opportunity to collect more
raw information about malicious users and be confident to
identify them.

Figure 5(d) presents the results for the case when the
malicious users issue 1200 queries/second. In this scenario,
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Fig. 5. Timeline showing the effect of the attack on the system’s throughput while varying the malicious activity rate

the activity of malicious users is similar to the activity the
active normal users. Therefore, the attack succeeds during
the whole experiment as the system gets into a continu-
ous state of rebalancing while chasing malicious hotspots.
Guard detects all malicious users and blocks them faster
than any of the attacks that have lower malicious activity
rates. Note, the cost of the attack is higher in Figure 5(d) as
compared to (a) due to the increase in the malicious activity
rate. This increase in R results in reduced �, which increases
the attack cost as discussed in Section 3.

When the attacker does not succeed in creating a new
malicious hotspot, the system correctly balances the work-
load in a timely manner and recovers its performance.
Such performance improvement is equivalently achievable
by using Guard for discovering and blocking a successful
attack in a timely manner. Note, the job of Guard is to
detect and prevent an attack that has the potential to succeed
which results in performance degradation exhibited by the
dips in the red curves in Figure 5.

Figure 6 presents the average throughput while varying
the additional activity. The average throughput is com-
puted after running every experiment five times for 30
minutes each. The additional activity is added to the total
normal users activity when there is no attack. In the case
when there is an attack, the additional activity is added
to the malicious users activity. When there is no attack,
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Fig. 6. Average system’s throughput while varying the additional activity

the overhead of registering and terminating more queries
causes a small decrease in the average throughput as the
activity rate increases. When there is an attack and Guard is
absent from the system, the average throughput decreases
as the malicious activity rate increases. The increase in
malicious activity leads to a faster creation of malicious
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hotspots that causes the system to be in a continuous state
of rebalancing. The average throughput decreases by 18%
when the malicious activity is 150 queries/second. When
the malicious activity is 1200 queries/second, the average
throughput decreases by 48%. On the other hand, the attack
in all Guard experiments decreases the average throughput
approximately by 5%. However, when the malicious activity
is 300 queries/second, the average throughput decreases
by 10% because the behavior of malicious users is very
similar to the behavior of average normal users that also
create some genuine hotspots. When malicious users have
a similar behavior to that of normal users, Guard allows
malicious users to create more malicious hotspots to make
sure they are indeed malicious before blocking them. In
other words, when malicious users have a similar behavior
to that of normal users, Guard takes a passive policy to
reduce false-positive by allowing malicious users to stay
in the system while collecting more evidence to justify
blocking them. This passive policy does not harm the
overall performance of the system since it only applies to
the scenarios in which the attackers behave normally to
some extent, thus do not burden the system with extra
malicious hotspots. As discussed in Section 4.3, Guard adds
the attackers to the Suspicious Clusters List the first time
they create a malicious hotspots and wait for them to create
another malicious hotspot to block them. Guard enhances
the average throughput between 14% and 85% when there is
an attack. Note, if the average throughput is computed over
more than 30-minute periods, it increases when the system
has Guard and decrease when Guard is absent. The reason
is that the effect of the small period before Guard blocks the
attack fades with time.

To summarize Figures 5 and 6, Guard succeeds in de-
tecting and blocking the malicious users that are involved
in creating malicious hotspots. In addition, Guard differ-
entiates between malicious and normal users regardless
of which normal user the attacker is imitating. As the
attacker increases the malicious activity, a decreased average
throughput and a lower minimum throughput are observed.
On the other hand, Guard detects and blocks attacks faster
as their malicious activity increases. Therefore, Guard puts
the attacker in a dilemma of not knowing at what rate the
malicious activity should be sent. Recall that the objective
of the attacker is to degrade the system performance by
increasing the malicious activity. However, this increase
results in detecting and blocking the attack faster.

5.5 Availability

The box plot in Figure 7 illustrates the percentage of
system’s availability while varying malicious activity. The
availability is the percentage of data that gets processed
without delay. Since the attack forces the system to a
continuous state of load-balancing, it reduces the system’s
processing power of data. Hence, some data tuples are
delayed or dropped because the data stream delivers data
in real-time and cannot be slowed. Figure 7 shows the
results in a box plot form after running each experiment
five times. The lowest point in the box plot is the minimum
availability achieved during the 30 minutes of all the five
experiments while the highest point corrosponds to the

No Guard Guard

300 600 1200150

Fig. 7. Availability of the system while varying malicious activity

maximum availability. The box is drawn from the lower
quartile (Q1, the median of the lower half of the dataset)
to the upper quartile (Q3, the median of the upper half
of the dataset) with a horizontal line drawn in the middle
to denote the median. Also, the ”x” mark represents the
average availability.

As shown in Figure 7, Guard achieves around 90%
average availability in all experiments. In addition, Guard
reduces the effect of the attack on the availability to be
only for a small period of time as the sizes and positions of
Guard’s boxes indicate. The maximum availability is 100%
in all the experiments because all the experiments start
without the attack for five minutes. We notice that when
Guard is present, the minimum availability is much higher
than when Guard is absent. Moreover, the attack manages
to reach this minimum availability just for a short period of
time. When Guard is absent, Figure 7 shows that the attack
reduces the average and the minimum availability while
increasing its malicious activity. Moreover, the time spent
while the system has a low availability is increased with
attacks that have a higher malicious activity as indicated
by the positions of the boxes in Figure 7. The reason is
that higher malicious activity allows the attack to succeed
in drawing more of the system processing power towards
load-balancing. Guard improves the average availability up
to 86% depending on the rate of the malicious activity. Also,
Guard improves the minimum availability that the attack
achieves by 17% up to 325% depending on the malicious
activity.

5.6 Detection and Recovery

Figure 8 shows the average time for detecting malicious
hotspots and blocking malicious users for various malicious
activity. The time for detecting malicious users depends on
the speed of Guard in detecting malicious hotspots. On
average, Guard detects malicious hotspots in 30 seconds.
As mentioned above, every Guard’s detection round lasts
for one minute. This indicates that Guard always identifies
malicious hotspots during the same detection round, when
the hotspot is created. Figure 8 shows the time it takes Guard
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Fig. 8. Average detection and blocking times while varying malicious
activity
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Fig. 9. Average detection and blocking times while varying the number
of malicious users involved in the attack

to block malicious users starting from their first malicious
hotspot creation. The time to block malicious users relies on
the speed of their successful creation of malicious hotspots.
This is because that Guard requires the raw information of
at least two malicious hotspots to confirm the involvement
of malicious users. When malicious activity is low, the time
between the successful creation of two malicious hotspots
increases. As malicious activity increases, Guard blocks
malicious users quickly. Guard lets malicious users with
low activity rates stay in the system longer. However, their
average effect on the throughput and the availability are
similar to the average effect of malicious users with high
activity rates that get blocked quickly.

Figure 9 shows the average times to detect malicious
hotspots and block the attack while varying the number of
malicious users in the attack. In the figure, the malicious
activity is fixed to 600 queries/second in all experiments.
Hence, the activity of every malicious user decreases as the
number of malicious users involved in the attack increases.
Notice that the average detection time is around 30 seconds
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Fig. 10. Average recovery time after blocking the attack

in all the cases. Moreover, the average time to block the
attack is about two minutes for all cases. The results of Fig-
ure 9 indicate that the detection and blocking times of Guard
is not affected by the number of malicious users involved in
the attack. Hence, Guard’s unsupervised machine learning
detector succeeds in clustering and identifying all malicious
users in the attack, regardless of their number. The rate of
the malicious activity is the main contributor to the variation
in the detecting and blocking times, the availability, and the
throughput.

During all experiments, Guard manages to detect and
block all malicious users without falsely identifying any
normal users as malicious. All the experiments demonstrate
that Guard’s detector does not have any false-negatives
or false-positives in identifying malicious users. Although
some normal users are added to the suspicious list in some
of the experiments, they get removed from the list in later
rounds. Therefore, Guard achieves its main objective of
blocking malicious users only when it is certain that they
are malicious.

Figure 10 illustrates the average recovery time that the
system takes after Guard blocks the attack while varying
malicious activity. This average is computed after running
each experiment five times. The recovery time starts from
the time when the system reaches its lowest throughput due
to the attack until it reaches the same throughput of when
there is no attack. Figure 10 shows that the average recovery
time increases with the increase in malicious activity. After
Guard blocks the attack, the malicious queries already re-
ceived stay in the system until they expire. Therefor, higher
malicious activities leave higher number of queries that
consume more resources to rebalance.

5.7 Overhead

Figure 11 illustrates the overhead of Guard’s operations by
showing the average time each operation takes (in microsec-
onds) after running the system for an hour. Guard takes 4
microseconds to collect raw information about a new query
request and to update its user’s features accordingly. In this
way, Guard minimizes the additional overhead with the
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Fig. 12. Overhead of Guard on throughput and execution latency

operations that happen frequently and affect the system’s
performance. Every time a new hotspot is detected by a
Hotspot Sensor, it requires approximately 1600 microseconds
to collect raw information about the hotspot. In other word,
the total latency added by the loop from the Hotspot sensors
to the feature engineering process is about 1.6 millisecond
for a workload of one million continuous queries. The time
to collect hotspot raw information depends on the number
of queries that overlap with the hotspot. Thus, most of the
time is spent to retrieve all queries that overlap with the
hotspot, which depends on the speed of the application
in accessing queries. Recall that in the experiments, the
application uses R*-Tree index. Hence, the bottleneck is not
in Guard itself but in the distributed system protected by
Guard. If the system uses a better indexing scheme, the
latency introduced by Guard can reduce. Notice that this
overhead is incurred only when a hotspot is detected and
the load-balancing technique is invoked to redistribute the
workload. Hence, the overhead of this operation is negligi-
ble as compared to the overhead of redistributing the work-
load. Moreover, this operation is not performed frequently
in a normal situation (no attack). When a Hotspot Sensor
sends the raw information of a new hotspot, Guard spends
278 microseconds on the average to update the features
of the involved users. Guard requires 667 microseconds
on average to prepare all users’ features and to run the
unsupervised attack detector. This operation is performed
by Guard at the end of every detection round.

Figure 12 shows the overhead of Guard in terms of a
decrease in the average throughput and an increase in the
average execution latency of the system. The average is
computed after running the system for 30 minutes with
only normal users (no attack). Notice from Figure 12 that
the overhead incurred by Guard is small. In particular, the
reduction in the average throughput is less than 4% when
there is no attack as noted from Figure 12(a). Similarly,

Figure 12(b) shows that the average execution latency in-
creases by around 3%. These results show that the price of
adding Guard to the system is acceptable given the amount
of damage that an attack can do to an unguarded system as
discussed earlier in Sections 5.4 and 5.5.

6 RELATED WORK

In this section, we present the work related to security
threats in data streaming systems. The related work can be
classified in the following categories: (1) big data streaming
systems, (2) data skewness in streaming systems, and (3)
security threats to streaming systems and load-balancing
mechanisms.

Big data streaming systems have been developed to ef-
ficiently answer queries over data streams, e.g., PLACE [30],
SINA [31], SEA-CNN [32], and Gpac [33]. Several general-
purpose big data systems have been proposed to provide
an infrastructure to scale up the batch and real-time pro-
cessing. General-purpose big data systems are either batch-
oriented or stream-oriented. Examples of batch-oriented
include Hadoop [34] and Spark [35]. Batch-oriented systems
require minutes or even hours to process data and are
not suited for real-time processing. Yahoo S4 [36], Apache
Samza [37], Apache Storm [2], Twitter Heron [3], and Spark
Streaming [38] are examples of stream-oriented systems that
can process data in real-time with latencies ranging between
milliseconds up to few seconds. However, these systems
are not optimized for spatial data processing and do not
support adaptive workload.

Data Skewness has been addressed to improve the
performance of distributed systems. The work in [39] pro-
poses an approach to detect the degree of distribution in
spatial data using box-counting functions. Consequently,
given the degree of skewness, the best partitioning strategy
is obtained using a heuristic sketch. In [40], a key-based
workload partitioning strategy is proposed to rebalance
the workload with minimum migration overhead. The re-
balancing problem is posed as an optimization problem
that considers the skewness and variance of the work-
load. SIMOIS [41] is a distributed join system that reduces
the imbalance of workload skewness by identifying the
set of workload-heavy (hotspots) keys and optimizes the
join query accordingly. The identification of hotspot key is
performed using an efficient exponential counting scheme.
PKG2 and PKG5 [13], [14] are stream partitioning schemes
that evenly distribute the incoming workload for each key
among a limited number of the system’s machines.

There exist several distributed streaming systems with
adaptive load-balancing for processing different types of
workloads. STAR [5] is a distributed streaming warehouse
for spatial data that supports low-latency and up-to-date
data analytical applications by adapting to the workload
changes. SWARM [11] is an adaptive load-balancing mech-
anism for distributed streaming systems that process spatial
data. Tornado [6], [42] is a distributed in-memory stream-
ing system for spatio-textual data that extends Storm. Tor-
nado includes an adaptive indexing layer for dynamic re-
distribution of processes across the system according to
changes in the data distribution and/or query workload.
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PS2Stream [15] is a publish-subscriber system for spatio-
textual data that supports dynamic load adjustments to
adapt to the changes of the workload. Amoeba [7], [12]
introduce a distributed streaming system for general multi-
dimensional workloads with adaptive rebalancing. Unlike
previous work, Guard focuses on addressing security con-
cerns related to load-balancing in distributed streaming
systems. The adaptive load-balancing mechanisms of all
these previous works are vulnerable to the attack modeled
in this paper. Moreover, Guard can be deployed on these
systems to detect and block attacks on their adaptive load-
balancing mechanisms.

Several security threats to distributed streaming and
load-balancing systems have been addressed in the liter-
ature. Existing security mechanisms in big data streaming
systems focus on authentication, access control, and au-
diting [43] to maintain data confidentiality. However, in
big data streaming systems maintaining high availability is
critical. Work related to security attacks that compromise
the availability in streaming and load-balancing systems is
under-explored. In [44], an algorithm, k-choice, is proposed
to balance workload in systems vulnerable to Sybil attacks
that can affect the skewness of query distribution over
the workload. Work in [45] introduces sensitivity attack, a
new type of attacks on data plane systems. In that attack,
a malicious user can articulate a query to ”flip” the ex-
pected behavior of the data plane systems (including load-
balancing systems in streaming systems).

7 CONCLUSION

This paper investigates types of attacks that target the adap-
tive load-balancing mechanisms of distributed streaming
applications. High intensity attacks decrease the throughput
and availability of the system about 50%. This paper intro-
duces Guard, a security system that continuously monitors
the behaviors of the users in the system and their relation-
ships with hotspots. Guard detects and blocks malicious
users that try to make the system in a continuous state
of load-balancing. Guard is general and requires minimal
changes to the distributed streaming systems. Guard uses an
unsupervised machine learning technique to detect groups
of malicious users that coordinate in attacking the system.
Guard is tested using an application that processes a real
dataset from Twitter while facing different attack scenarios.
Guard successfully blocks all malicious users without in-
advertently blocking any normal users. The system fully
recovers after Guard blocks the attacks. Guard improves
the throughput by 85% and the availability by 86% as a
result of blocking high intensity attacks. Moreover, Guard
reduces the minimum availability that the attacker achieves
by 325%. On average, Guard detects the creation of a ma-
licious hotspot in 30 seconds and blocks the attack in two
minutes.
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