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ABSTRACT
Business Data Analytics require processing of large numbers of
data streams and the creation of materialized views in order to
provide near real-time answers to user queries. Materializing the
view of each query and refreshing it continuously as a separate
query execution plan is not efficient and is not scalable. In this paper,
we present a global query execution plan to simultaneously support
multiple queries, andminimize the number of input scans, operators,
and tuples flowing between the operators. We propose shared-
execution techniques for creating and maintaining materialized
views in support of business data analytics queries. We utilize
commonalities inmultiple business data analytics queries to support
scalable and efficient processing of big data streams. The paper
highlights shared execution techniques for select predicates, group,
and aggregate calculations. We present how global query execution
plans are run in a distributed stream processing system, called INGA
which is built on top of Storm.

In INGA, we are able to support online view maintenance of
2500 materialized views using 237 queries by utilizing the shared
constructs between the queries. We are able to run all 237 queries
using a single global query execution plan tree with depth of 21.
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1 INTRODUCTION
Real-time processing is becoming more and more important for
internet companies and their customers. It allows them to identify
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opportunities as they occur, thus acting upon them in real-time.
Companies often receive a lot of their data as continuous big data
streams, e.g., search queries, posts and tweets, page views (impres-
sions), ad click streams, etc. Important signals need to be extracted
off the data promptly, and be acted upon. For example, in an adver-
tisement campaign scenario, is the new online advertising campaign
performing well? Is the company getting a satisfactory volume of
clicks from users with the desired profiles? Detecting a discrepancy
allows the advertiser to promptly take corrective actions to save
money, e.g., by changing the campaign’s targeting criteria. More-
over, users need to run online analytical queries against this data
(both fresh and historical) to get insights in real-time. For example,
consider the following query: "What is the distribution of clicks
the ad campaign has been receiving over the last month broken
down by day?". This query requires storing this high volume data
as well as indexing it to be able to answer these queries in real-time.
Having multiple queries of the same flavor provides an opportunity
for optimizing their performance.

The use cases and sample queries above are examples of Business
Data Analytics queries where large numbers of big data streams
need to be processed in real-time by creating and materializing
views to continuously provide answers to users’ queries.

The views created in Business Data Analytics can be considered
as Online Analytical Processing (OLAP) queries with consolidations
(roll-ups) based on some conditions (filters). These materialized
views are created once, and then are read multiple times for each
user query, are refreshed with the arrival of new data, and are
updated with modifications in the set of business data analytics
queries as depicted in Figure 1.

Not only do these big data streams have events arriving at high
rates, but also each event is often information rich carrying high-
dimensional data. For example, Amobee receives many TBs worth
of events daily. Each event contains hundreds of fields. For instance,
an impression event would have the attributes of the page viewed
as well as the profile of the user viewing the page in addition
to the context, where the impression takes place, e.g., the user’s
geographical location, the browser’s type and version, the device
name and type, etc. Data for events are often denormalized. This is
to avoid the expensive cost of joins.

To analyze this large-volume of high-dimensional data, users
often slice and dice the data in many ways aggregating it over
different dimensions. This results in a large number of queries oper-
ating over the same data stream. For example at Amobee, we have
hundreds queries operating over the same stream. These queries
have lots of commonalities and overlap, and thus creating a big
efficiency opportunity for shared execution among these queries.

In order to tackle the aforementioned opportunity, we have devel-
oped INGA, a real-time big-data stream-processing system. INGA is
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Figure 1: Materialized Views in Business Data Analytics

built to execute thousands of business data analytics queries against
the streams, automatically detect overlaps among the concurrent
and arriving queries, and produce an optimized shared-execution
query evaluation plan that exploits shared execution.

Previous work handles big data streams. In the literature, MapRe-
duce Online extends MapReduce to handle streams. In industry,
many systems have been built to handle big data streams, e.g. Storm,
MillWheel, Samza, and S4. INGA complements this previous work.
It provides amulti-query stream processing engine, includes a query
optimizer as well as storage and indexing of the queries’ output
streams for future retrieval.

In this paper, we highlight the shared execution engine for busi-
ness analytics queries in INGA. The main contributions of this
paper are as follows.

1. We present INGA that provides a multi query optimization
engine where logical query execution plans for all the queries are
combined into one global query execution plan that shares the
execution of the queries’ common select predicates, aggregate func-
tions, and group-by dimensions. The query optimizer for INGA uses
novel SubsetHeap and SupersetHeap data structures to facilitate
the generation of the optimized global query execution plans. INGA
operates on a distributed system for scalable real-time computation.

2.We design and prototype INGA, evaluating it using a real ad
impressions data stream. The experimental results demonstrate that
INGA can support online view maintenance of 2500 materialized
views using 237 queries by utilizing the shared constructs, and
decrease the end-to-end latency into the order of few seconds using
a single global query execution plan tree with depth of 21.

2 BACKGROUND
An examination of typical business data analytics queries shows
that these queries create views on the same type of data streams
that are maintained continuously as the data arrives, and are mostly
filtered by common predicates, have group-by on common keys,
contain common aggregates, and join the common data streams
using common join keys. These commonalities in business data

analytics queries give us the opportunity to combine multiple of
these queries during query execution for scalability and efficiency.
Shared execution of the common operations in these continuous
queries is vital because the underlying input data streams these
queries operate on have high arrival rates.

There are two main challenges when processing continuous
business data analytics queries that create materialized views that
then serve as the source for answering user queries. The first chal-
lenge is: How to minimize the number of times the input stream is
read. Reading a specific input stream with high input rate for each
query is not scalable. For example, reading the input stream of
impressions for each advertiser query is not efficient. The second
challenge is: How to minimize the number of operators applied and
the number of tuples flowing between these operators. Identifying
the shared operators among the running queries, processing these
shared operators once, and sharing their output tuples among the
downstream operators makes query processing more efficient and
more scalable.
Running Example 1:
Consider the following real-world queries from online advertising
business analytics. The views created by these sample queries are
endpoint pages or reports that are hit and are queried by real users.
In this example, the intended users are the advertisers.

q1: SELECT advertiser_id, insertion_order_id,
SUM(impressions), SUM(cost), SUM(bid_price)
FROM impressions
WHERE country = ’US’
GROUP BY advertiser_id, insertion_order_id
WINDOW 5m

q2: SELECT advertiser_id,
SUM(impressions), SUM(cost), SUM(bid_price)
FROM impressions
WHERE country = ’US’ AND state = ’NY’
GROUP BY advertiser_id
WINDOW 5m

q3: SELECT advertiser_id,
SUM(impressions), SUM(cost), SUM(bid_price), SUM(bids)
FROM impressions
WHERE country = ’US’
GROUP BY advertiser_id
WINDOW 5m

These queries can be executed in complete isolation, where we
can have one query execution plan per query, or they can be ex-
ecuted in a single global query execution plan (Figure 2). In the
global query execution plan, the input data stream is read just once
instead of three times, as in the separate execution plans.

3 THE DESIGN OF INGA
Shared execution can be achieved by processing as many queries
as possible in a single query execution plan. Query execution in
INGA is optimized using a global query execution plan where all
queries on an input data stream are processed together. The goal is
to minimize the number of times we read the tuples from the input
data stream, the number of times we read the intermediate tuples in
the query evaluation plan, and the total number of tuples flowing
between the operators. As a result, both the IO and network load
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Figure 2: Shared Execution

operations are minimized, and that leads to an efficient and scalable
query execution.

In INGA, we detect commonalities in query constructs, and share
the execution of these constructs in order to optimize the total
cost of query execution. The detected query constructs are mainly
the boolean predicates in WHERE clauses, the aggregates in SELECT
clauses and the GROUP BY clauses that accompany these aggregates.

3.1 Global Query Execution Plan
A global query execution plan on one or more input data streams is
represented as a heap data structure, where operators are denoted
as nodes. For illustration purposes, assume that we are given a set
of queries on a single input data stream with select predicates and
group-by/aggregate calculations. The global query execution plan
represents the select predicates as predicate nodes in a SubsetHeap
and the group-by/aggregate calculations as group-by nodes in a
SupersetHeap. Sample heaps are given in Figure 3a. We define these
proposed data structures in the following way:
SubsetHeap is a tree-based data structure (similar to a MinHeap),
where

A = parent(B) ⇒ key(A) ⊂ key(B).
The root node of a SubsetHeap is the empty set (∅).
SupersetHeap is a tree-based data structure (similar to a MaxHeap),
where

A = parent(B) ⇒ key(A) ⊃ key(B).
The root node of a SupersetHeap is the universal set (U ).

Then, a global query plan is defined as a SubsetHeap, where
there is a SupersetHeap connected to each predicate node if there
are queries with predicates that are same as the predicates of that
node, as depicted in Figure 3b. The global query execution plan for
the sample real-world queries given in Section 2 is illustrated in
Figure 2.

4 THE ARCHITECTURE OF INGA
The architecture of INGA is illustrated in Figure 4. Input queries
over data streams are processed by the IQL Parser (IQL is INGA’s

(a) SubsetHeap and SupersetHeap

(b) Global Query Execution Plan

Figure 3: Proposed heaps and global query execution plan.
A,B,C,D are predicates, xi represents a group-by dimension

Query Language) that creates the query constructs (predicate and
group-by nodes). The validation of the query is checked with the
help of the schema files written as proto files (Google Protocol
Buffers format) and are given to the ProtoParser for creation of the
schemas. Query constructs are then given to Logical Query Opti-
mizer which inserts those into heap data structures (SubsetHeap
and SupersetHeap) and outputs a single global query execution
plan per input data stream.

The shared execution techniques provided in section 3 are ap-
plied in logical query executor in order to create an optimized query
execution plan. These global query execution plans (one plan per
data stream) are then passed to Physical Query Optimizer which
creates execution tasks and distributes the tasks for physical exe-
cution at the servers of underlying data stream processing system,
Storm. Input tuples arrive at the Storm topologies, get processed
and resulting output tuples are written to HBase. The tuples that
are stored in HBase form the materialized views which are then
queried by end users.

5 RELATEDWORK
Our work is related to a broad area of existing works especially in
the following two main areas: materialized views and view main-
tenance, and multi query optimization and shared execution. The
works in these main areas can be categorized into two depending on
the system in the focus of the research: disk-based traditional rela-
tional database management systems and data stream management
systems. Therefore, we classify the related work into the following
categories: (1) disk-based view maintenance and shared execution,
(2) streaming view maintenance and shared execution.

A lot of work has been conducted on viewmaintenance andmulti
query optimization or shared execution in the context of traditional
relational databases, e.g., [4, 5, 8, 9, 17, 19], and in the context of
data stream management systems, e.g., [1–3, 6, 7, 10–16, 18, 20].
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Figure 4: System architecture

The closest work to our proposal is [4], which focuses on sharing
the group-by operators in a disk-based relational database. How-
ever, it lacks any mention on predicate sharing and application to
streaming data is not mentioned.

Many works in the streaming category focus on incremental
view maintenance, and shared execution in these works is gener-
ally defined as the re-use of these views. We cover the use case of
processing business data analytics queries on big data streams while
doing operator and predicate level execution sharing and materi-
alizing the periodic outputs as views to support user queries. Our
work is also novel since it focuses on how global query execution
plan can be run a modern distributed processing system.

6 CONCLUSION
We showed that by applying shared execution techniques over
the queries of big data streams we can have efficient global query
execution plans. These plans can be translated into physical query
execution tasks that run on a distributed stream processing system.

Further improvements are possible on the efficiency of global
query execution plan. For example, if we consider the predicate con-
tainment (e.g., aдe > 30 contains aдe > 50) or group-by dimensions
containment (e.g.,GROUP BY city containsGROUP BY city, state)
we can detect the shared constructs in the queries even if they do
not match.
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