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ABSTRACT
The proliferation of mobile phones and location-based services has
given rise to an explosive growth in spatial data. In order to en-
able spatial data analytics, spatial data needs to be streamed into a
data stream warehouse system that can provide real-time analytical
results over the most recent and historical spatial data in the ware-
house. Existing data stream warehouse systems are not tailored
for spatial data. In this paper, we introduce the STAR (Spatial Data
Stream Warehouse) system. STAR is a distributed in-memory data
stream warehouse system that provides low-latency and up-to-date
analytical results over a fast-arriving spatial data stream. STAR
supports queries that are composed of aggregate functions and
ad hoc query constraints over spatial, textual, and temporal data
attributes. STAR implements a cache-based mechanism to facilitate
the processing of queries that collectively utilizes the techniques of
query-based caching (i.e., view materialization) and object-based
caching. Extensive experiments over real data sets demonstrate the
superior performance of STAR over existing systems.

CCS CONCEPTS
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1 INTRODUCTION
With the proliferation of GPS-equipped mobile devices and social
media services, there has been an explosive growth in the spatial
data sizes. Numerous users of social media upload posts on Twitter
or Facebook using their smart phones, giving rise to a fast arriving
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spatial data stream. This spatially annotated data contains valuable
information, and is bene�cial for spatial data analytics. For instance,
consider a marketing manager who wants to know the popularity
of some product in various regions so that she can decide whether
or not to adjust the advertising strategy. She can issue an ad hoc
aggregate query that returns the frequencies grouped by region
of the newly uploaded posts on social networks that mention the
product. Techniques already exist for processing aggregate queries
over data warehouses. However, most of these techniques are for
batch-oriented systems that operate over static data sets, and are
not suitable for handling highly dynamic data streams.

To reduce the gap between data production and data analysis, a
data stream warehouse system (DSWS, for short) [17, 21] provides
real-time analytics over data streams. DSWSs e�ciently ingest
data, and enable online analytical processing over streamed data.
A DSWS allows users to issue continuous queries that monitor
changes in the streamed data as well as snapshot queries that report
the current or past status of warehoused data.

Although spatial data is explosive in size, research on distributed
DSWSs that o�er native spatial data stream analytics is still lack-
ing. Most existing distributed systems, e.g., [4, 5, 14, 42] focus on
developing spatial data management systems over static data sets,
but are not designed for streamed data, and do not support ad hoc
aggregate queries over spatial data streams. Existing distributed
spatial data stream systems, e.g., [11, 30], do not support ad hoc
aggregate queries. Furthermore, they only support continuous but
not snapshot queries.

It is challenging to develop a DSWS that supports ad hoc queries
over spatial data streams. First, the fast arrival speed of streamed
spatial data imposes high demand on system performance, of which
the accompanying workload will overwhelm a centralized system.
It calls for a distributed and scalable solution with an e�ective
workload partitioning scheme that is tailored for the workloads of
processing objects and analytical queries. Second, it is di�cult to
pre-compute and maintain a set of materialized views for ad hoc
aggregate queries over spatial data streams, which are essential
for the performance of a warehouse system. Classic view materi-
alization algorithms (e.g., [25, 34]) do not apply here as they do
not support spatial data. It demands for novel view materialization
algorithms that can optimize processing analytical spatial queries.

In this paper, we introduce STAR, an in-memory cache-based
Spatial Data Stream Warehouse for spatial data analytics over spa-
tial data streams. STAR supports ad hoc aggregate queries that can
have constraints over spatial, textual, and temporal data attributes.
STAR supports algebraic aggregate functions, e.g., ⇠>D=C , �E6, and
(D< in addition to a holistic aggregate function)>? . STAR adopts
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an e�ective workload partitioning method that collectively con-
siders data locality and load balance to solve the distributed view
materialization problem. Moreover, we develop a cache-based mech-
anism to facilitate the processing of analytical spatial queries that
collectively utilizes query-based caching (i.e., view materialization)
as well as object-based caching.

The contributions of our work are summarized as follows:

• We propose a distributed stream warehouse system STAR for
spatial data analytics. STAR supports a rich set of aggregate
queries over spatial data streams. STAR supports both snap-
shot and continuous queries that are composed of algebraic
or )>?: aggregate functions and ad hoc query constraints
over spatial, textual, and temporal data attributes.

• We design an e�ective and e�cient workload partitioning
strategy that reduces the costs of processing objects, pro-
cessing queries, and maintaining materialized views, as well
as achieves load balance and data locality.

• We present a cache-based mechanism for the e�cient pro-
cessing of snapshot ad hoc aggregate queries. The cache-
basedmechanism collectively utilizes the techniques of query-
and object-based caching. Query-based caching considers
spatial and textual attributes to de�ne views for aggregate
functions, and selects andmaintains a set of views in-memory
to speedup query processing. Object-based caching is com-
plementary to query-based caching when a query cannot
be answered using the materialized views only. We develop
an approximation algorithm for object-based caching that
provides a competitive solution with theoretical bounds.

• We evaluate STAR on Amazon EC2 with real spatial data.
STAR achieves excellent performance with respect to both
object and query processing, and outperforms the best base-
line systems by up to 5⇥.

2 RELATEDWORK
Data StreamWarehouse Systems. Based on the architecture, ex-
isting distributed warehouse systems can be classi�ed into three
di�erent types: (1) Systems that extend a database system with the
abilities of fast data ingestion and real-time data evaluation [18]
(2) Systems that extend a data stream processing system with the
ability of exploring historical data [6], and (3) Systems that extend
a distributed analytics framework, e.g., Hadoop, with the abilities
of fast data ingestion and real-time data evaluation [26, 33]. How-
ever, existing distributed warehouse systems do not provide native
support for spatial data streams, and are di�cult to optimize for
aggregate operations over streamed spatial data.

Some work exists for developing centralized stream warehouse
systems over spatial data. Gorawski and Malczok [19] present an
index structure to store spatial data in a stream warehouse. Lins
et al. [28] and Giampi et al. [12] consider the problem of explor-
ing streamed spaito-temporal data, and they propose a new data
structure of views to achieve this. Feng et al. [15] propose solu-
tions for exploring events from streamed geo-tagged tweets. These
systems do not provide native support for aggregate queries with
spatial, textual, or temporal constraints as STAR does. Moreover,
these systems are centralized systems while STAR is distributed.

Systems for Spatial Data. A host of systems has been proposed
for exploring a static spatial data set. Most are extensions to popular
data analytics frameworks: SpatialHadoop [14] and Hadoop-GIS [4]
extend the Hadoop framework; Simba [42], SpatialSpark [45], Lo-
cationSpark [38] and GeoSpark [46] extend the Spark framework.
They extend Hadoop or Spark with operations to support spatial
queries, e.g., range query and :NN query, over a large scale of
spatial data. STAR di�ers from these systems in at least three as-
pects: 1) STAR operates over data streams, while these systems
consider a static data set with few or no updates. 2) STAR is opti-
mized for ad hoc aggregate queries while the other systems mainly
consider object-�nding queries. 3) Apart from operations on spatial
attributes, STAR supports operations on textual attributes while the
other systems focus only on operations over spatial attributes. Loca-
tionSpark [38] adopts a caching strategy that maintains frequently
accessed data in-memory for object-�nding queries. However, it
does not support caching query results for aggregate queries, which
is the main focus of STAR.

Systems for Streamed Spatial Data. The problem of querying
spatial data streams has been studied extensively. Many centralized
solutions have been proposed. Some e�orts are made to �nd top-:
frequent terms given a spatio-temporal range [36]. Another line
of work considers answering spatio-keyword queries. A spatio-
keyword query has a spatial and a textual arguments. An object is in
the result of the query if the object quali�es both arguments [8] or if
the object’s similarity is larger than a threshold [24]. Another body
of work studies the top-: spatio-keyword query [40, 41] that returns
objects having the top-: highest similarities to the input query.
Several distributed systems [9, 11, 29, 30, 37] have been proposed
for querying streamed spatial data. However, these systems do not
have native support for aggregate operations over spatial data. In
contrast, STAR is optimized for processing ad hoc aggregate queries,
which focuses on computing the aggregate results over all objects
rather than �nding individual objects, i.e., STAR treats aggregate
queries over spatial objects as a �rst class operation. A preliminary
version of this work has been demonstrated [10]. Xiong et al. [43]
develop a system PLACE* that supports aggregate queries over
moving spatial data. PLACE* focuses on query plan generation for
reducing network cost. STAR is complementary to PLACE*.

ViewMaterialization. Labio et al. [25] and Ross et al. [34] propose
exhaustive algorithms to materialize views in a single machine that
takes signi�cantly long time to �nish. Many other research focuses
on designing greedy algorithms, e.g., [20, 22, 44], or randomized
algorithms including genetic algorithms, e.g., [23] and simulated
annealing algorithms, e.g., [13]. Ghanem et al. [16] consider the
problem of supporting materialized views in a data stream manage-
ment system. They propose a synchronized SQL query language to
express continuous queries over data streams and create continuous
query execution plans. However, they do not support aggregate or
analytics queries over these views.

3 SYSTEM OVERVIEW
STAR is a web-based system built upon Apache Storm [2], an open
source distributed real-time computation framework. First, we in-
troduce the data types and queries supported by STAR. Then, we
present STAR’s architecture.



3.1 Data Types and Queries
Data Types: Each object has primitive and/or extracted or derived
attributes. Primitive attributes store raw streamed data while the
extracted or derived attributes store data that is extracted or derived
from the primitive attributes. We assume that the raw data has at
least the primitive attributes loc and time, where loc represents
the geographical latitude and longitude, and time represents the
timestamp. The raw data can also have other primitive attributes,
e.g., text that contains a set of terms. STAR integrates a set of tools
to extract data from these primitive attributes. For example, data
in Attribute topic can be extracted from text by employing a pre-
trained Latent Dirichlet Allocation (LDA) model [7].
Supported Queries: STAR is optimized to support aggregate
queries with ad hoc constraints, e.g., over loc, text, and time. STAR
supports algebraic aggregate functions and a holistic aggregate
function TopK . Algebraic aggregate functions, e.g., Count, can be
computed over the disjoint data partitions, and then the partial re-
sults are aggregated to obtain the �nal aggregate results. In contrast,
TopK aggregate the entire data set to obtain the : most-frequent
terms appearing in Attribute text.

STAR supports range and keyword constraints over Attributes
loc and text, respectively. STAR focuses on time-window constraints
that consider only recently streamed data. STAR expresses these
constraints using SQL-like syntax, e.g.,
SELECT aggr_func() FROM stream
WHERE condition(s) GROUP BY attribute(s) [SYNC freq].
aggr_func() is an aggregate function, condition(s) are the constraints,
and attribute(s) are the grouping attributes. STAR focuses on opti-
mizations for processing snapshot queries, but supports continuous
queries as well. STAR de�nes a continuous query via the SYNC op-
erator. SYNC freq indicates that the query result is to be refreshed
every freq time, which is inspired by [16].

Example 1: Snapshot Aggregate Query. Find the popularity
trend of the iPhone in Region ' grouping by date.
SELECT Count(), 30C4 FROM stream
WHERE ;>2 INSIDE ' AND C4GC CONTAINS “iphone”
GROUP BY 30C4 .

Example 2: Snapshot Aggregate Query. Find the hot topics in
the given range in the last 10 minutes.
SELECT ⇠>D=C (), C>?82 ,<8=DC4 FROM BCA40<
WHERE ;>2 INSIDE ' AND C8<4 AFTER “10 mins ago”
GROUP BY C>?82 ,<8=DC4 ORDER BY ⇠>D=C () DESC.
Example 3: ContinuousAggregateQuery. Find themost-frequent
terms of each topic on the objects that are within a region '. Con-
tinuously produce the result every 1 minute.
SELECT TopK(), C>?82 FROM stream
WHERE ;>2 INSIDE ' GROUP BY C>?82 SYNC 1 minute.

3.2 System Architecture
STAR has four components: parser, router, worker and aggregator.

Parser. The parser takes as input the streamed spatial objects and
the queries from users. It parses the primitive attributes of each
object, and generates the extracted ones. Then, it transforms a user’s
SQL query into a prede�ned data structure in STAR. The parsed
queries are sent to the router.

Router. The router is responsible for workload partitioning. It
maintains a global index to facilitate partitioning the workload.

Worker. The worker processes objects and queries. It builds in-
memory object and query indexes. The worker performs the follow-
ing operations: (1) On receiving an object, say > , the worker inserts
> into the object index. Then, it checks the continuous-query index
to �nd the queries whose results are a�ected due to >’s arrival.
If any query quali�es, then the worker sends the updated results
to the aggregator. (2) On receiving a snapshot query, say @B , the
worker leverages the cached data to answer @B by checking whether
the maintained query cache structures can be used. Otherwise, it
checks the indexed objects to answer @B . The results are sent to
the aggregator. (3) On receiving a continuous query @2 , the worker
registers @2 into the in-memory continuous-query index.

Aggregator. The aggregator collects the partial results from work-
ers, and computes the �nal result. It maintains an index to store the
partial results for each query. When receiving a noti�cation that
a new query has arrived, it stores the query id, and waits for the
results from workers. For a snapshot query, after receiving all the
partial results, the aggregator computes and outputs the �nal result
immediately. For a continuous query, the aggregator outputs the
result according to the result’s refresh-rate speci�ed by the query.

4 WORKLOAD PARTITIONING
STAR partitions workload with three considerations: (1) Data Lo-
cality. Records that are close to each other should be assigned to
the same partition. (2) Load Balance. Partitions should be roughly
of the same load. (3) ViewMaintenance. STARmaterializes views
to support queries. Maintenance of views needs to be considered.

SpatialHadoop [14] partitions spatial data using an R-tree or a
grid index. In-memory distributed spatial systems, e.g., Simba [42],
SpatialSpark [45], LocationSpark [39], and GeoSpark [46] typically
use spatial partitioning methods, e.g., R-tree-based partitioning
strategy, quadtree, and grid indexes. These systems do not consider
the e�ect of viewmaintenance on workload partitioning in addition
to the workload from querying the streamed data.

4.1 Workload and Partitioning
An important design decision of STAR is to build and maintain
in-memory materialized views to support ad hoc aggregate queries.
First, we introduce these views, and then present their e�ect on
workload and partitioning.

Materialized Views. A view is a derived relation that is de�ned
by a query. A view is said to be materialized [20, 22] if its de-
rived relation that contains the result of the view’s query is stored
persistently into the system. STAR materializes views into mem-
ory. Materialized views can accelerate the processing of queries
in STAR. To process a query, STAR reads the content of the cor-
responding materialized view that is most relevant to the query.
Alternatively, STAR can rewrite the query to make use of the most
relevant materialized views to answer the query.

STAR selects a set of views to be materialized in a cluster of
workers. The target is to optimize system performance with these
in-memory materialized views. Lot of work exists for addressing
various aspects of view maintenance, e.g., [20, 22, 44]. STAR is the



�rst work to utilize materialized views to optimize the performance
of spatial data analytics. However, maintaining these views comes
at a cost. Thus, we also consider balancing the load of workers
where the load includes spatial object processing, query processing
and view maintenance. Next, we de�ne the load of a worker.

D��������� 1. Load of a Worker: Given a time period, the load
of a workerF8 during this period can be estimated as follows:

!8 = 21 · |$ | + 22
’
>2$

=1 (>,&2 ) + 23
’
>2$

=2 (>,+ )+

24
’
@2&B

(=3 (@,+ ) + =4 (@,$)),
(1)

where$ is a set of spatial objects that has arrived to the worker in this
time period, &2 is a set of continuous queries handled by this worker,
&B is a set of snapshot queries handled by this worker, + is a set of
materialized views stored in this worker, =1 (>,&2 ) is the number of
continuous queries processed for > , =2 (>,+ ) is the number of views
updated for > , =3 (@,+ ) is the sum of the sizes of the views accessed for
@, and =4 (@,$) is the number of the objects accessed for @. 21 is the
average cost of inserting an object, 22 is the average cost of processing
continuous queries for an object, 23 is the average cost of updating
views, and 24 is the average cost of processing a snapshot query.

The load of one worker comprises processing spatial objects,
processing queries, and maintaining the views managed by this
worker. We de�ne the cost of processing a snapshot query as the
sum of the costs of accessing materialized views and objects.

D��������� 2. Partitioning and ViewMaterialization Prob-
lem: Given a set of spatial objects$ , a set of snapshot queries&B , and
a set of continuous queries&2 , the Partitioning and View Materializa-
tion problem is to split $ , &B and &2 into< subsets, where< is the
number of workers, and to materialize a set of views (8 for each triplet
($8 ,&B

8 ,&
2
8 ) (1  8  <), where $8 is a subset of $ , &B

8 is a subset
of &B , and &2

8 is a subset of &2 . The objective is to minimize
Õ<
8=1 !8 ,

subject to the following constraints: (1) 81  8  <,"4<((8 )  ⇠8 ,
where "4<((8 ) is the memory usage of (8 , and ⇠8 is the memory
capacity of workerF8 , and (2) 88 < 9 , !8/!9  f , where f is a small
constant value larger than 1.

The partitioning and view materialization problem materializes
a set of views for each worker, and aims at minimizing the total
amount of load. The �rst constraint is that the memory usage of
the materialized views does not exceed the memory capacity of
each worker. The second constraint is that the workers should have
balanced load. The Problem is NP-hard as it can be reduced from
the minimum set cover problem [20].

4.2 Partitioning Algorithm
Due to the hardness of the partitioning and view materialization
problem, we investigate heuristic algorithms to solve it. The fact
that the results of data partitioning and view materialization are
dependent on each other makes the task even harder. A heuristic
solution is to partition the data �rst, and then to select the set of
views to be materialized for each partition. Unfortunately, even
this simple solution is challenging because either data partitioning
or view materialization is a formidable task to be handled (both
problems are NP-hard). We assume for now that we have an oracle

to materialize views for a data partition, and focus on explaining
the partitioning procedure. In the next section, we discuss the view
materialization algorithm.

AlgorithmOverview.Themain idea is to construct a quad-tree [35]
by recursively partitioning the most loaded node, and then assign-
ing leaf nodes of the quad-tree to workers, aiming to achieve load
balance and data locality. The algorithm can be divided into two
phases. In Phase 1, we initialize a quad-tree with one root node, and
recursively partition the node with the maximum estimated load
until the number of nodes is larger than the required number of
partitions. In each iteration, we call a function to estimate the load
of each node, and partition the node having the maximum load.
According to De�nition 1, the load of a worker is related to the
objects, queries, and materialized views. Because we cannot deter-
mine in advance which views will be materialized before assigning
nodes to a partition (i.e., a worker), we estimate the load of a node
by only considering the objects and queries, which is computed by
21 |$ | + 22 |$ | · |&2 | + 24 |$ | · |&B |.

In Phase 2, we assign leaf nodes to di�erent partitions, and com-
pute the set of views to be materialized for each partition. Then, we
check if the load balance constraint can be satis�ed. If this is the
case, then we output the quad-tree and the partitions. Otherwise,
we partition the leaf node having the maximum load, and repeat
the above procedure. We have two objectives for the assignment of
nodes to partitions: (1) We attempt to locate neighboring leaf nodes
into the same partition. The reason is that some queries may over-
lap multiple adjacent nodes. Assigning them to di�erent partitions
will increase the total amount of load. (2) We attempt to balance
the load of di�erent workers.

Assigning Nodes to Partitions. This function assigns leaf nodes
of the quad-tree to partitions, aiming to achieve the two design
objectives above. To achieve load balance, �rst, we estimate the
average load each partition should have that we denote by !0E6 .
Then, we access the leaf nodes of the quad-tree in a depth-�rst
manner, and assign the leaf nodes to di�erent partitions so that the
load of each partition is close to !0E6 , and the adjacent nodes in the
quad-tree order are assigned to the same partition.

5 CACHE-BASED OPTIMIZATIONS
In this section, we explain the cache-based mechanism that STAR
adopts for processing snapshot queries, which is the main novelty
of STAR. It comprises query- and object-based caching.

5.1 Query-based Caching
Query-based caching facilitates processing snapshot queries by
materializing a set of views based on historical queries (and that
is why we name it “query-based caching”). It maintains a selected
set of views per worker. View selection is a classical problem in
data warehousing, and has been extensively studied [20, 31]. How-
ever, in STAR, we investigate whether views de�ned for spatial
and textual attributes can optimize processing aggregate queries
over spatial data streams. STAR is the �rst to utilize materialized
views to optimize spatial data analytics. However, materializing
stream-based views may induce signi�cant overhead, and deserves
more consideration. STAR materializes the following views into



!!: SELECT "#$%, &'()$() FROM 
*+$+ WHERE ,'" ∈ . GROUP BY 
"#$%

"/,,	1

"/,,	2

3455	6:
“Seattle”, 10
“Los Angle”, 15

3455	8:
“Los Angeles”, 5
“Las Vegas”, 12

(a) Views for the range constraint.

!!: SELECT "#$%, '()*$() FROM +,$,-.$
WHERE “iphone”∈ $.0$ GROUP BY "#$%

“iphone”:
“Seattle”, 10
“Los Angle”, 25
“Las Vegas”, 12
“New York”, 30

!": SELECT "#$%, '()*$() FROM +,$,-.$
WHERE “NBA”∈ $.0$ GROUP BY "#$%

“NBA”:
“Seattle”, 12
“Los Angle”, 30
“Las Vegas”, 8
“New York”, 22

(b) Views for the keyword constraint.

Figure 1: Views for the queries.

memory: (1) Views for algebraic aggregate functions, and (2) Views
for TopK aggregate functions. The former is similar to those for
relational databases while the latter is not investigated in the view
selection literature. For the �rst type of views, STAR has a new
load-aware view materialization algorithm, and introduces the no-
tion of domination among views that is de�ned based on the load,
and that improves the e�ectiveness of the classic greedy algorithm
by more than 50% according to our experiments. For the second
type of views, STAR has an approximate solution that maintains a
summary structure with a performance guarantee.

5.1.1 Views for Algebraic Aggregate Functions. The result of an
algebraic aggregate function can be computed as follows: (1) Par-
tition the input into disjoint subsets, (2) Compute the aggregate
result for each subset, and (3) Aggregate the partial results. For
simplicity, we illustrate using Aggregate Function⇠>D=C . However,
the proposed techniques can be extended easily to support other
algebraic aggregate functions, e.g., �E6 and (D<.

Example. Figure 1 gives an example of views. In Figure 1(a), @1 re-
turns the number of objects for each city, and has a range constraint
that covers Cells 1 and 2. The views maintained in Cells 1 and 2
are two sets of key-value pairs. Only the cells covered by the query
need to maintain this view. To answer @1, we merge the views in
Cells 1 and 2, and scan the objects in the other overlapped cells to
compute the result. Figure 1(b) gives two views for the queries that
have a keyword constraint. To answer @2 and @3, STAR produces
the corresponding view as output.

Domination. Observe that when a set of views is materialized,
selecting another view to be materialized may result in a bigger
load. Consider a candidate view E2 , and a set of materialized views
( , !(( [ {E2 }) � !(() > 0, where !(.) is computed using Eqn 1.
Although STAR can bene�t from materializing a new view E2 by
gaining e�ciency in answering a set of queries, this bene�t can be
outweighed by the burden of maintaining the new view. We de�ne
domination between views to capture this.

D��������� 3. Domination: Given two views E0 and E1 , E0 is
dominated by E1 i� (1)& (E0) can be answered using E1 , where& (E0)
represents the set of queries that can be answered using E0 , and (2)
!({E1 }) < !({E0, E1 }).

Based on this de�nition, when a view, say E2 , is selected for
materialization, the views dominated by E2 are removed from the
candidate views for materialization.

Generating Candidate Views. Another problem is how to gen-
erate the set of candidate views. We insert every query @ into a
quad-tree, and �nd the largest quad-tree node (denoted by =@ ) that
is covered by @’s query range. Then, the view de�ned over the ob-
jects in =@ that can help answer @ will be added to a list of candidate
views. This strategy is based on the domination de�nition. The
rationale for it is to reduce the number of candidate views.

Load-aware View Materialization. STAR selects recursively the
view that has the largest bene�t per unit space. The bene�t of a
view w.r.t. a set of materialized views ( is computed by:

⌫(E, () = max(!(() � !(( [ {E}), 0), (2)

where !(() is the load of the worker due to ( (Eqn 1). The bene�t
of a view E per unit space is ⌫(E, ()/=E . The main operation in
this algorithm is �nding the view that has the maximum bene�t,
and thus has a time complexity of $ (=2), where = is the number
of candidate views. It runs at most ⇠ iterations, where ⇠ is the
memory capacity for the materialized views and is a system-de�ned
parameter. Thus, the time complexity of the algorithm is $ (⇠=2).
5.1.2 Views for the TopK Aggregate Function. The result of an al-
gebraic aggregate function can be computed by aggregating the
partial results for each subset of the data. However, this technique
does not work for the TopK aggregate function as it requires com-
puting over the complete dataset. Due to the fast arrival of streamed
objects and large vocabulary size, it is not practical to maintain an
accurate view for a TopK query. We propose to maintain a summary
structure as a view that contains a small number of key-value pairs.
To save memory space, we do not employ techniques that have
dynamic summary size, e.g., [36]. Instead, we maintain a Space-
Saving summary [32] that estimates the frequency of any term C
with additive error n= using $ (1/n) memory space, where = is the
number of objects. For a parameter < that is speci�ed based on
the available memory size, the SpaceSaving summary maintains at
most< counters.< is set automatically by the system or is provided
by a system administrator. When a new term C arrives, SpaceSaving
summary checks if C has been maintained in the summary, and
increments C ’s counter. Otherwise, let C< be the term having the
least frequency in the summary. C replaces C< and increases the
counter by 1. To answer a TopK query, the summary can output the
: terms having the largest counters. A term C is guaranteed to be
among the top-: most-frequent terms if ⇠ [C] � nC > ⇠:+1, where
⇠:+1 is the (: + 1)-th largest counter.

T������ 1. For a TopK query, by using $ (1/n) memory space,
SpaceSaving summary guarantees that terms having frequency larger
than (1 � n)�: are included in the result, where �: is the frequency
of the :-th most-frequent term.

Proof: Assume that the SpaceSaving summary maintains =
n�:

coun-
ters that take $ (1/n) memory space. Then, the maximal possible
overestimation error will be n�: . Therefore, all the terms included
in the result have frequencies that are larger than (1 � n)�: .

According to Theorem 1, SpaceSaving summary provides accu-
racy guarantees for a TopK aggregate function. In the case that a



query has ad hoc constraints, STARmaintains multiple SpaceSaving
summaries, one for each subset of data that is partitioned according
to the constraints. Agarwal et al. [3] have proven that Theorem 1
still holds when merging multiple SpaceSaving summaries.

5.1.3 Using Views for Processing �eries. STAR organizes views
using a quad-tree. Each node in the quad-tree maintains a set of
materialized views (the empty set is also possible for some nodes).
To explain the procedure for processing a query, say @, we start with
a simpli�ed case when @’s query range matches a quad-tree node,
say =B . If =B is a leaf node, we select the most cost-e�cient view(s)
in =B to answer @, or access the objects in =B if these view(s) do not
exist. When =B is a non-leaf node, we compare the costs of using =B
and using the child nodes of =B to answer @, and choose the one that
has the smaller cost. STAR uses Eqn 1 to compute the cost. If one of
the child nodes =2 is also a non-leaf node, we recursively compare
the costs of using =2 and using =2 ’s child nodes. Speci�cally,

!(@,=B ) =
(
2>BC (=B ), if =B is a leaf
<8=(2>BC (=B ),

Õ
=2 2=B .2⌘8;3A4= !(@,=2 )), otherwise

This recursive computation is e�cient because we maintain the
sizes of the materialized views and the number of objects in each
node. Then, we access either the materialized views or the objects,
accordingly, to compute the result.

!!: SELECT "#$%&() FROM '(&(
WHERE )#* ∈ , GROUP BY *-&.

Covered by !

Overlapped by !
on a side

Overlapped by !
on a corner

Unrelated to !

Figure 2: A query range overlaps multiple quad-tree nodes.

Next, we explain the case when the query range is not a quad-tree
node. The overall procedure is identical to processing the simpli�ed
case except that we cannot utilize the views of a node that is not
covered by the query range. For nodes that are partially overlapped,
we need to access objects in them to compute the query result.
Figure 2 gives an example query that overlaps multiple quad-tree
nodes. Nodes may overlap the query by a side or by a corner, e.g.,
nodes with slash pattern and with horizontal line pattern, respec-
tively. The overhead may be large when many partially overlapped
nodes exist with many objects in them. To reduce query processing
time, we propose to cache objects in the next subsection.

5.2 Object-based Caching
We present the idea of caching objects that works seamlessly with
the materialized views. The main idea is to cache objects in the
borders of a node that overlap the query range so that we only need
to access the cached objects rather than the entire object set in the
node to answer queries. We propose an approximation algorithm
to decide a set of cached objects to optimize query processing with
theoretical guarantees.

D��������� 4. Caching Region: For a quad-tree node =? that
partially overlaps queries, there are two types of caching regions for
=? . A side caching region of =? is a rectangle inside =? that has one
side being set as one of the border lines of =? . A corner caching region
of =? is a circular sector inside =? whose center is a corner point of
=? and has the angle being equal to 90 degree.

Figure 3 gives example caching regions. The smaller gray node
has two candidate side caching regions that have a height equal to
the shorter or longer bidirectional arrow, respectively. The larger
gray node has two candidate corner caching regions that have a ra-
dius equal to the shorter or longer bidirectional arrow, respectively.

For a quad-tree node, we maintain at most 8 caching regions, i.e.,
four for the sides and the other four for the corners. For a query
@ that covers a side of a node =2 (but not the full node region),
only the closest side caching region of =2 to @ can be used (the
overlapped area should be inside the caching region, otherwise, we
do not use the cache). For a query @0 that covers a corner of a node
=2 (again, not the full node region), we select among the closest
corner caching region and the two closest side caching regions. We
use the one that has the smallest number of cached objects among
the ones covering the overlapped area. Next, we de�ne the Object
Caching Problem.

D��������� 5. Object Caching Problem: Given a set of spatial
objects $ , a set of snapshot queries &B , and a quad-tree ) organizing
the materialized views, the Object Caching problem is to decide a
caching region (can be empty) for each border or corner of the nodes
in ) . We aim to maximize

Õ
@2&B

Õ
=? 2#?

( |$=? | � |$2 |) subject to
the constraint that the total number of cached objects is smaller than
⌫, where #? is the set of partially overlapped nodes for @, $=? is the
set of objects in =? , $2 is the set of objects in the caching region that
are used for answering @, and ⌫ is the memory capacity for caching.

T������ 2. The Object Caching problem is NP-hard.

Proof Sketch: This can be proved by reducing from the Knapsack
problem.

Load-basedGreedyAlgorithm.We introduce a greedy algorithm
to determine caching regions. Considering a set of partially over-
lapped queries& and the overlapped area being�, a caching region
A that covers � can accelerate the processing of each query in & .
The overall load improvement will be �! = 22

Õ
@2& (= � =A ) based

on Eqn 1, where = and =A denote the number of objects in the node
and in A , respectively. Figure 3 gives an example of caching regions.
Both @1 and @2 partially overlap the smaller gray node. If we build
a caching region with the height being equal to the shorter bidirec-
tional arrow, we can reduce the running time of @1. If the height of
the caching region equals to the longer bidirectional arrow, both @1
and @2 can be accelerated. Based on this observation, we propose
a greedy algorithm that decides the caching regions in descend-
ing order of �! (',A )

=A
, where ' denotes the current set of caching

regions, and �!(', A ) denotes the load improvement after adding
A . When adding A into ', we delete candidate caching regions that
are covered by A .

T������ 3. The load improvement of the caching regions ' pro-
duced by the greedy algorithm is at least 63% of that of the optimal
solution using the same amount of space as '.



!! !"

Figure 3: Caching regions of a node for queries.

Proof: The proof is based on the observation that

�!({A1, A2},')  �!(A1,') + �!(A2,')
that can be easily extended to �!(⌧,')  Õ

A 2⌧ �!(A ,'), where⌧
denotes a set of caching regions.

Let ' be the set of caching regions produced by the greedy
algorithm, �!(') be the load improvement of ', and \' be the
memory used by '. Assume that the optimal solution using \'
units of memory space produces '⇤, and the load improvement of
'⇤ is �!('⇤).

Consider that during the running of the greedy algorithm, Caching
Region ': has been selected, and ': consumes : units of memory
space. ': has the load improvement

Õ:
8=1 18 , where18 is the load im-

provement of adding the 8th unit of memory space. Observe that the
load improvement of the set '⇤ [': is at least �!('⇤), i.e., the load
improvement of'⇤ with respect to': is at least�!('⇤)�Õ18: 18 :
�!('⇤,': ) � �!('⇤) �Õ:

8=1 18 .
According to this earlier observation, we deduce that

�!('⇤,': ) 
’
A 2'⇤

�!(A ,': ) . (3)

There exists a caching region AC 2 '⇤ satisfying �!(AC ,': )/\AC �
�!('⇤,': )/\' � (�!('⇤) �Õ:

8=1 18 )/\' , where \AC is the memory
space of AC . Otherwise, inequality 3 will not hold.

The load improvement per unit space of the caching region
A6 selected by the greedy algorithm with respect to ': is at least
�!(AC ,': )/\AC that is at least (�!('⇤)�

Õ:
8=1 18 )/\' . By distributing

the bene�t of A6 over each of its unit memory spaces, we get 1:+9 �
(�!('⇤) �Õ:

8=1 18 )/\', for 0 < 9  \A6 , where \A6 is the memory
used by A6 . The above equation applies to each caching region that
is selected by the greedy algorithm. Thus,

�!('⇤)  \'1 9 +
9�1’
8=1

18 , for 0 < 9  \' . (4)

Multiplying the 9th equation by ( \'�1\'
)\'�9 and adding all the

equations, then
Õ\'
8=1 18/�!('⇤) � 1 � 1/4 ⇡ 0.63.

Theorem 3 provides a theoretical bound on the performance of
the greedy algorithm. Notice that the savings achieved from having
caching regions are orthogonal to the query-based caching, i.e.,
maintaining materialized views. Thus, having caching regions can
reduce query time even without using query-based caching.

Maintaining Caching Regions. Due to insertions of new objects,
the memory constraints for the caching regions may get violated. To
handle this, STAR adopts an eviction policy that removes the Least
Recently Used (LRU) caching region. It keeps removing caching
regions in the LRU order until the memory constraint is satis�ed.

6 SUPPORT FOR CONTINUOUS QUERIES
Unlike existing distributed streamed systems [11, 30] for spatial
data that are optimized for continuous range queries, STAR deals
with aggregate continuous queries with ad hoc constraints, whose
results are a set of key-value pairs. STAR adopts the following
strategy: We maintain the result of each continuous query, and
update the result using new spatial objects. For a new object, we
check it against each continuous query and �nd the set of queries
whose constraints are satis�ed by the object. For these queries,
we update their query results accordingly: (1) For a query with
an algebraic aggregate function, we compute the e�ect of the new
object on the query result, and update the result. (2) For a query
with TopK aggregate function, we use a SpaceSaving summary to
store its result, and update its result for each new object as we do
for maintaining views for the TopK aggregate function.

STAR also exploits the following optimization. Consider that
there are a set of queries that arrive at the system at almost the
same time, and that have the same group-by attribute(s). They have
query ranges that overlap with each other, and have the same ad
hoc constraints except query ranges. STAR divides the result of
such query into two parts: one part that is in the overlapped area
and the other part that is not. For the �rst part, STAR maintains
a single copy of result for the queries so that reducing the result
updating cost due to objects falling in the overlapped area. For the
other part, STAR still maintains a distinct result for each query.

We term these overlapping queries template queries, and we
index them using a grid index. For a cell that is covered by template
queries, we maintain one copy of the result. However, the additional
cost is that we will need to aggregate the partial results of multiple
cells when the sync period of a query is reached. To avoid large
aggregation costs, we prede�ne a threshold \ of aggregation costs
that can be set based on user tolerance to query response time. If
a query, say @, satis�es

Õ
62⌧@

=4 (@,6)�(@)/�(6) > \ , where ⌧@ is
the set of cells overlapping @, �(·) is a function that computes the
area of a query range or a cell, and =4 (@,6) is an estimation of the
cardinality of @’s partial result in 6, we maintain @’s complete result
in the same way we do for non-template queries.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup
We deploy STAR on the Amazon EC2 platform using a cluster
of 8 c5d.2xlarge instances with 10G network bandwidth. Each
c5d.2xlarge has 8 vCPUs running Intel Xeon Platinum 8000-series
Processors with 3.5GHz and 16GB RAM. To simulate the streaming
scenario, we deploy Apache Kafka on another storage optimized
instance i3.4xlarge for emitting streamed data to STAR, which has
16 vCPUs running Intel Xeon E5 2686 v4 Processor at 2.3GHz and
122GB RAM. Apache Kafka [1] is a popular framework for building
real-time data pipelines and streamed applications.

Datasets and Queries. We evaluate STAR using a real dataset
Tweets. The Tweets dataset consists of 500 million tweets in Amer-
ica, each of which has the attributes of ;>2 , C4GC and C8<4 . We use
tools to extract derived attributes from ;>2 , C4GC and C8<4 , respec-
tively. Due to lacking of real-life ad hoc aggregation queries over
Tweets, we synthesize both snapshot and continuous queries based



Parameter Value
Aggregate function ⇠>D=C , )>? ()
Number of constraints 1, 2, 3, 4
Side length of the range 0.05%, 0.1%, 0.2%
Number of keywords 1, 2, 3
Interval length on C8<4 10min, 20min, 30min
Equality value on C>?82 a random value among 50 topics
Sync time 1min, 5min, 10min

Table 1: Possible values for parameters.

on Tweets for evaluation. To synthesize a query with ad hoc con-
straints, we synthesize a constraint on Attribute ;>2 , C4GC , C8<4
and C>?82 (a derived attribute extracted from C4GC ), respectively,
each of which is of a di�erent type: a range constraint on ;>2 , a
keyword constraint on C4GC , an interval constraint on C8<4 , and an
equality constraint on C>?82 . we also de�ne an aggregation func-
tion and group-by attribute(s). For continuous queries, we de�ne an
additional sync time.

Table 1 shows the possible values of each query parameter.
)>? () uses a default parameter : = 10. Each query has a number
of constraints that are selected randomly. Range constraint is created
by de�ning a square whose upper left point is the coordinates of a
random tweet in Tweets. Keyword constraint is created by selecting
a set of keywords randomly from Tweets. Interval constraint wants
the result on the objects that arrived within the past a period of time.
Equality constraint requires that Attribute C>?82 equals to a value
selected from 50 topics. The parameter value for each constraint is
selected randomly from the values in Table 1.

For both snapshot and continuous queries, we synthesize two
types of queries that have di�erent data distributions of group-by
attribute(s). We �rst enumerate all possible combinations of derived
attributes to create the set of group-by attribute(s). For the �rst type
of queries, we select the group-by attribute(s) from the set randomly.
However, in real-life scenario, users are usually more interested in
a small ratio of group-by attribute(s), and users at di�erent positions
tend to have di�erent interested group-by attribute(s). Therefore, we
synthesize another type of queries. We partition the spatial space
into 10 ⇥ 10 uniform cells, and for each cell we randomly pick a
group-by attribute(s) from the set of group-by attribute(s), which we
call it as pivot. Each query, based on the cell which its upper left
point resides, has a probability of % using the corresponding pivot
as the group-by attribute(s), and 1 � % probability using a random
group-by attribute(s). In our experiments, we set % as 0.7. We classify
our queries as follows:
QS1-Count, QS1-TopK: Both are snapshot queries. The group-by
attribute(s) are randomly selected. &(1-Count uses ⇠>D=C () as the
aggregation function, and &(1-TopK uses )>? () as the aggrega-
tion function.
QS2-Count, QS2-TopK: Both are snapshot queries. The group-
by attribute(s) are selected using the pivot based method. &(2-
Count uses ⇠>D=C () as the aggregation function, and &(2-TopK
uses )>? () as the aggregation function.
QC1-Count, QC1-TopK: Both are continuous queries. The other
settings are the same as &(1-Count and &(1-TopK.
QC2-Count, QC2-TopK: Both are continuous queries. The other
settings are the same as &(2-Count and &(2-TopK.

Workload. The arrival speed of a spatio-textual object is approxi-
mately 10 times of the arrival speed of a snapshot or a continuous
query. We evaluate our system after the system digests and pro-
cesses objects and queries for 10 minutes.

7.2 Evaluation on Snapshot Queries
To evaluate the performance of STAR on processing snapshot queries,
we compare STARwith the following two baselines that are variants
of STAR:

Baseline-1. Baseline-1 does not use any cache-based technique.
The other techniques used are the same as STAR.

Baseline-2. Baseline-2 di�ers from Baseline-1 only in that it uses
a classic greedy algorithm to materialize views for queries without
a spatial or keyword constraint.

Note that no existing system is designed to support snapshot
aggregate queries over spatial data streams. We will extend rep-
resentative existing systems for comparison in Section 7.3. We
evaluate the performance by the query response time.

Query Response Time. Query response time is the average time
required for answering a query. To avoid long queuing time in
the bu�er, we measure query response time by using a moderate
input speed of the data stream. We evaluate the performance of our
cache-based algorithms: Q-cache represents using the query-based
caching algorithm andQO-cache represents using both query-based
caching and object-based caching algorithms.
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Figure 4: Query response time comparison for snapshot
queries.

Figure 4 gives the experimental results. We observe that both
Q-cache and QO-cache show a signi�cant performance improve-
ment over the baselines: they are about one magnitude faster than
Baseline-1 when the number of constraints is 1 and 4–9 times faster
when there are more than one constraint; they are 2–3 times faster
than Baseline-2. QO-cache has the best performance, which im-
proves the performance of Q-cache by 10% – 40%. This is because
that QO-cache maintains materialized views and uses cached ob-
jects to help processing queries, which avoids checking a large
amount of objects. Baseline-1 performs the worst as it always needs



 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e 
(m

s)

#constraints

Simba
GeoSpark

STAR

(a) &(1-Count

 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e 
(m

s)

#constraints

Simba
GeoSpark

STAR

(b) &(2-Count

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01% 0.05% 0.1% 0.5% 1%

R
es

p
o
n
se

 t
im

e 
(m

s)

Side-length of the query range

Simba
GeoSpark

STAR

(c) &(1-Count (#constraints=3)

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01% 0.05% 0.1% 0.5% 1%

R
es

p
o
n
se

 t
im

e 
(m

s)

Side-length of the query range

Simba
GeoSpark

STAR

(d) &(2-Count (#constraints=3)

Figure 5: Comparison with existing systems
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Figure 6: Scalability

to check the objects to answer queries. Baseline-2 is at least 1 time
faster than Baseline-1, indicating that views without spatial or tex-
tual attributes are also helpful. We also observe that Baseline-2,
Q-cache and QO-cache have smaller query response time for &(2
queries than for &(1 queries. The reason is that for the uneven dis-
tribution of group-by attribute(s) in &(2 queries, the query-based
caching algorithm is more likely to materialize the views having
larger bene�ts, which helps reducing the query response time.

7.3 Comparison with Existing Systems
No existing system is able to support snapshot aggregate queries
over spatial data streams, and thus no existing systems can be com-
pared directly. We extend Simba [42] and GeoSpark [46], two repre-
sentative distributed spatial data analytics systems, for comparison.
However, both Simba and GeoSpark cannot work on streamed data.
To make the comparison feasible, we introduce the following set-
ting: (1) We create a static spatial data set by pre-loading STAR,
Simba, and GeoSpark with a static set of tweets. (2) We input the
queries with at least one range constraint.

Figures 5(a) and 5(b) show the query response time with respect
to the number of constraints. STAR is about 3 times faster than
Simba and GeoSpark. Though Simba and GeoSpark are designed
for spatial data analytics, they are not optimized for aggregate
queries with ad hoc constraints. The results demonstrate the e�ec-
tiveness of the cache-based algorithms adopted by STAR. To further
compare their performance, we vary the size of the query range
to investigate the impact on the query response time. Figures 5(c)
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Figure 7: Query throughput comparison with Tornado.
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Figure 8: Comparing di�erent partitioning schemes.

and 5(d) show that STAR has a much smaller query response time,
e.g., in Figure 5(d), the query response time of STAR is smaller than
40% of the query response times of other systems. The running
time of all the systems increases with the increase of the query
range. However, the running time of STAR is more stable, which is
ascribed to the cached data maintained in STAR.

Figure 6 gives the result on scalability with the number of work-
ers. STAR is 2–3 times faster than Simba and GeoSpark no matter
how many workers are used. The results show that STAR scales
well with the system size.

The results show that STAR outperforms Simba and GeoSpark
in processing ad hoc aggregate snapshot queries over a static set of
spatial data, although STAR is designed for streamed data. The main
reason is that STAR exploits cache-based algorithms to optimize
processing ad hoc aggregate queries over spatial data.

7.4 Evaluation on Continuous Queries
For continuous aggregate queries, we compare STAR with Tor-
nado [30], a state-of-the-art system that supports continuous queries
with ad hoc spatial and textual constraints over spatial data streams.
We extend Tornado to support aggregate continuous queries for spa-
tial data. Tornado only indexes continuous queries, but not spatial
objects (and thus it cannot answer snapshot queries). Figure 7 gives
the result of comparing throughputs. STAR has larger throughputs
than Tornado for all groups of queries. For example, in Figures 7(a)
and 7(b), the throughput of STAR is larger than Tornado by 23% and
32%, respectively. This is because that the optimization techniques
adopted by STAR can reduce the cost of processing continuous
queries. The results demonstrates that STAR outperforms Tornado
in processing aggregate continuous queries.

7.5 Workload Partitioning
We evaluate our workload partitioning scheme by comparing it
with two partitioning schemes: STR [27] and AQWA [5]. Figure 8
gives the experimental results. We observe that our partitioning
scheme has the best performance: In Figure 8(a), STAR has about



20% smaller query response time than the others; In Figure 8(b),
STAR has about 18% larger throughput than the others. The results
demonstrate the e�ectiveness of our partitioning scheme.

8 CONCLUSIONS
In this paper, we present STAR; a distributed in-memory data stream
warehouse system that provides low-latency and up-to-date analyt-
ical results over a fast arriving spatial data stream. STAR supports
aggregate queries that have ad hoc constraints over spatial, textual
and temporal data attributes. STAR adopts an e�ective workload
partitioning strategy that partitions the workload composed of ob-
ject processing, query processing, and viewmaintenance. Moreover,
STAR implement a novel cache-based mechanism that signi�cantly
reduces the run-time of analytical queries over streamed spatial
data. Extensive experiments over real data sets demonstrate the
superior performance of STAR over existing systems.
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