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ABSTRACT
The wide spread of GPS-enabled devices and the Internet of Things
(IoT) has increased the amount of spatial data being generated every
second. The current scale of spatial data cannot be handled using
centralized systems. This has led to the development of distributed
spatial data streaming systems that scale to process in real-time
large amounts of streamed spatial data. The performance of dis-
tributed streaming systems relies on how even the workload is
distributed among their machines. However, it is challenging to
estimate the workload of each machine because spatial data and
query streams are skewed and rapidly change with time and users’
interests. Moreover, a distributed spatial streaming system often
does not maintain a global system workload state because it re-
quires high network and processing overheads to be collected from
the machines in the system.

This paper introduces TrioStat; an online workload estimation
technique that relies on a probabilistic model for estimating the
workload of partitions and machines in a distributed spatial data
streaming system. It is infeasible to collect and exchange statistics
with a centralized unit because it requires high network overhead.
Instead, TrioStat uses a decentralised technique to collect and main-
tain the required statistics in real-time locally in each machine.
TrioStat enables distributed spatial data streaming systems to com-
pare the workloads of machines as well as the workloads of data
partitions. TrioStat requires minimal network and storage overhead.
Moreover, the required storage is distributed across the system’s
machines.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; Parallel
and distributed DBMSs; Geographic information systems; •
Computing methodologies→ Distributed algorithms.
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1 INTRODUCTION
The ubiquity of GPS-enabled smart devices, the Internet-of-Things
(IoT), and social networks has led to the development of location-
based services that produce large volumes of data. For example,
500 million tweets are created every day, and they can be geo-
tagged [3]. The current scale of the spatial data being generated
cannot be handled using centralized environments. This has led to
the development of distributed spatial streaming systems.

Distributed spatial streaming systems distribute the workload
across machines by making each machine responsible for some
data partitions. The partitions are generated by dividing the under-
lying space into spatial rectangles. User queries and data points are
directed based on their locations to the machines that handle the
overlapping partitions. A key challenge to improve the performance
and scalability is to ensure even workload across all machines. One
obstacle is to estimate the workload of spatial distributed streaming
systems because spatial data and query workloads change rapidly.
Moreover, spatial distributions of data and queries are skewed. This
skewness changes rapidly with time and users’ interests, e.g., dif-
ferent timezones can lead to signi�cant changes in the distribution
of the spatial data being streamed. Distributed spatial streaming
systems often do not maintain a global system workload state be-
cause the data and queries are distributed across their machines.
Collecting and maintaining statistics about the workload of every
machine in a centralized location introduces high network, storage,
and processing overheads.

This paper introduces TrioStat; an online workload estimation
technique that relies on a probabilistic model to estimate the work-
load of partitions and machines in a distributed spatial data stream-
ing system. TrioStat introduces a new statistics structure that re-
quires minimal storage overhead. TrioStat uses a decentralised
technique to collect and maintain the required statistics in real-
time locally in each machine. Thus, TrioStat introduces negligible
network overhead. Moreover, TrioStat has an e�cient algorithm to
collect the statistics with very localized overhead to process every
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newly received data point or query. TrioStat enables distributed
spatial data streaming systems to compare the workloads of both
the machines and the data partitions.

The rest of this paper proceeds as follows. Section 3 presents a
cost model for estimating the workloads of machines and data parti-
tions. Section 2 discusses related work. Section 4 presents TrioStat’s
statistics, and how they are maintained. Section 5 presents how
TrioStat uses the statistics in a cost model to estimate the workload.
Section 6 studies TrioStat’s performance. Section 7 concludes the
paper.

2 RELATEDWORK
Distributed streaming systems can be categorized based on their
processing model into batch-at-a-time and tuple-at-a-time systems.
Spark Streaming [25], M3 [5] are examples of batch-at-a-time sys-
tems that accumulate batches of data before distributing them for
processing. In contrast, tuple-at-a-time systems process data tuple
once it arrives to produce results with low latency. Example tuple-
at-a-time systems are: Apache Storm [24] and Twitter Heron [15].
The performance of these systems relies on how evenly they distrib-
ute their workload among their machines. They lack a global state
that provides workload estimates. TrioStat estimates the workload
for distributed spatial streaming systems with minimum overhead.
TrioStat applies to tuple-at-a-time systems that are suitable for
real-time processing. It is challenging to track the workload as it is
distributed across multiple machines.

The workload of distributed systems is skewed and is rapidly
changing. Several techniques exist to track data changes and adapt
accordingly. Belussi, et al. [9] propose an approach for Spatial-
Hadoop [12] to detect the skewness degree in spatial data distribu-
tion using box-counting functions [8]. They choose the best parti-
tioning strategy using a heuristic sketch and the detected skewness
degree. However, this technique cannot track online changes in
skewness in a distributed streaming setup. Also, they estimate the
workloads based on the data distribution without considering the
query workloads. Fang, et al. [13] introduce a key-based workload
partitioning strategy to rebalance the workload with minimum mi-
gration overhead. SIMOIS [26] balances the workload by identifying
the set of workload-heavy keys and optimizes join queries accord-
ingly. Identifying hotspot keys is performed using an exponential
counting scheme. PKG2 and PKG5 [18, 19] evenly distribute the
received workload for each key among a limited number of system
machines. They use only the key frequencies as an estimate for the
workload and do not consider queries. Thus, they are not suitable
for tracking changes in spatial data distribution and estimating the
workload of their partitions.

Techniques have been proposed for e�cient spatial data aggre-
gation and summarization. Ho, et al. [14] introduce a technique to
answer range-sum queries of the number of points in a window by
maintaining pre�x sums in a grid. Riedewald, et al. [20] generalize
the idea of pre�x sums to count the number of rectangles (queries)
and support OLAP queries. Maintaining aggregates and summariza-
tions for spatial regions is challenging because the counting could
result in duplicate counting of some queries. Euler histograms [7]
count rectangles that intersect a given region without duplicates.
Euler histograms help estimate the selectivity of spatial joins [6, 23].

AQWA adaptively changes the partitioning of Hadoop [1] by main-
taining statistics using the pre�x sum technique and a variant of
the Euler histogram. AQWA introduces a cost model to estimate
both the data and query workloads. However, it is centralized and
hence is not viable for distributed streaming systems because data
and statistics are distributed on di�erent machines.

Some distributed streaming systems use adaptive load-balancing
that redistribute the workload based on AQWA’s cost model for esti-
mating the workload, e.g., STAR [10], Tornado [16, 17], Amoeba [21,
22], and PS2Stream [11]. However, these techniques are relatively
slow when updating the statistics and updating the workload cost
model when the statistics change. The reason is that they con-
sider only the history of data and queries without considering how
persistent these estimates could be in the future. Most distributed
streaming process the data in real-time and do not store the data for
a long duration. Systems with adaptive load-balancing need a tech-
nique that can accurately predict the workload fast with minimum
network and processing overheads.

3 THE COST MODEL
Distributed spatial streaming systems divide the whole space that
the application serves into partitions. The partitions are distributed
across the participating machines in the system. The system rebal-
ances the workload across its machines by repartitioning and/or
redistributing the partitions. TrioStat estimates the workload of
a partition by computing its potential processing cost relative to
all other partitions. Moreover, the workload of a machine is esti-
mated according to the partitions served by the machine. TrioStat
introduces a probabilistic cost model that relies on three terms (and
hence the name TrioStat). The main factor of the cost model is the
amount of data points that are received by each partition. Also,
the cost model gives higher weight to partitions having a larger
number of queries. The reason is that the number of queries indi-
cates the required number of query checks against every new data
point. Moreover, the cost model predicts the future workload of
each partition based on its workload history. This prediction serves
as a scale factor for the overall cost and workload of each partition.
Assume that we have a distributed spatial streaming system, say
( , that has a set of executor machines " . Each machine < 2 "
holds some partitions %< , where |%< | = =< , =< is the number of
partitions in Machine<. Each partition ? 2 %< , locally maintains
some statistics. The cost estimate⇠ (?) of a partition ? is computed
as follows:

⇠ (?) = # (?) ⇥& (?) ⇥ %A>1 (?) (1)
# (?) is the number of points received by Partition ? , & (?) is the
number of queries that overlap ? , and %A>1 (?) is the probability that
new data and queries land in ? . %A>1 (?) depends on the amount of
data and queries that arrive during the last round of repartitioning.
Note that the workload history is captured via # and& while %A>1
is a weighting factor to the cost of this history. The e�ect of old
data can fade with time as in Section 4.2. %A>1 (?) is estimated as
follows:

%A>1 (?) = '(?)
'(() (2)

where '(?) and '(() are the number of data points and queries
received by ? and all of ( , respectively, during the last round of
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repartitioning. '(() is computed as follows:

'(<) = Õ=<
8=1 '(?8 ), '(() =

Õ |" |
8=1 '(<8 ) (3)

By substituting Eqn. 2 into Eqn. 1, then:

⇠ (?) = # (?)& (?)'(?)
'(() =

#D<(⇠ (?))
'(() (4)

where #D<(⇠ (?)) is the numerator of Partition ?’s cost formula.
Machine<’s workload is computed based on Partitions %< that<
holds:

⇠ (<) = Õ=<
8=1⇠ (?8 ) (5)

Using Eqn. 4,

⇠ (<) =# (?1)& (?1)'(?1)
'(() + · · · + # (?=< )& (?=< )'(?=< )

'(()

⇠ (<) =
Õ=<
8=1{# (?8 )& (?8 )'(?8 )}

'(() =
#D<(⇠ (<))

'(() (6)

where #D<(⇠ (<)) is the numerator of Machine<’s cost formula.
#D<(⇠ (<)) can be computed locally. In contrast, computing '(()
requires data from all machines in ( . '(() is the same for all ma-
chines, and hence is computed once using Eqn. 3 that requires
only one number, '(<), from each machine. Thus, comparing and
ranking the machines based on their costs is the same as compar-
ing and ranking them using only #D<(⇠ (<)). Also, computing
#D<(⇠ (?)) for the partitions of a machines is enough to compare
and rank by cost the partitions locally in their machine.

4 COLLECTING AND MAINTAINING
STATISTICS

Collecting statistics in distributed streaming systems is challenging
because the data arrives continuously in high volume. Also, most ap-
plications need real-time processing with minimum latency. Thus,
any collected statistics should require minimum number of updates.
Also, each partition should maintain its statistics locally without
the need to communicate with other machines. TrioStat maintains
minimum local statistics that help estimate the workloads of parti-
tions and machines using the cost model in Section 3. TrioStat uses
a hash table in every executor machine to link the ID of every par-
tition in the machine with its statistic structure. TrioStat maintains
the statistics of every partition in a simple multidimensional array
in memory. The statistics of each row (or column) is located next
to each other in memory. Therefore, TrioStat can provide workload
estimations for a partition or a part of a partition fast by taking
advantage of cache prefetching. Reading the �rst needed statistic
to compute a workload estimation from a row (or column) result
on having the remaining needed statistics in cache. The process of
collecting and maintaining statistics is explained in greater detail
below.

4.1 Required Statistics
TrioStat maintains minimal statistics that are needed by the cost
model. The underlying space is divided into a grid of small cells that
are aligned with partition boundaries. Figure 1 gives an example for
dividing the space into a grid of 8X8 small cells. The arrangement
of cells that cover a partition is passed to TrioStat with the partition
ID of the executor machine that holds this partition. Increasing

p9
p11

p5 p6

p7

p8
p14

p13

8 cells

8 
ce

lls

Figure 1: The space is divided into a grid of small cells.

N: 3       
Q: 3        spanQ: 0
R: 2  preSpanQ′: 0

N: 10   
Q: 7        spanQ: 1
R: 5  preSpanQ′: 0   

p11
Statistics 

N: 2        
Q: 2        spanQ: 0
R: 1  preSpanQ′: 0
N: 4
Q: 4        spanQ: 1
R: 2 preSpanQ′: 1
N: 8
Q: 5  spanQ: 2
R: 4  preSpanQ′: 1
N: 10
Q: 7  spanQ: 1
R: 5  preSpanQ′: 0

N‘, Q‘, and 
spanQ‘ are in 
each row and 
column, which 

are used during 
new rounds to 

collect statistics

Figure 2: TrioStat statistics for Partition ?11

the number of cells that divide the space increases the storage and
processing overhead of TrioStat and increases the resolution of
workload estimation. We use Partition ?11 in Figure 1 to illustrate
how TrioStat maintains the statistics.

Systems periodically check if repartitioning could improve per-
formance. TrioStart provides the needed workload estimates by
the end of every repartitioning round. Figure 2 gives the statis-
tics maintained by TrioStat to estimate ?11’s workload. The dots
and rectangles represent the positions of the data points and the
query ranges in ?11, respectively. The stars and the gray rectangles
mark the data points and the queries received in the last round
of repartitioning, respectively. ?11 has a 4X2 cell matrix. TrioStat
maintains in each row (column) 5 statistics; 3 of which are cu-
mulative. Row 8’s (Column 9 ’s) cumulative statistics represent the
total from the uppermost row (leftmost column) until Row 8 (Col-
umn 9 ), respectively. The 5 maintained statistics in each row (col-
umn) are: (1) # : the cumulative number of data points, (2) & : the
cumulative number of queries, (3) ': the cumulative number of data
points and queries received during the last round of repartition-
ing, (4) B?0=& : the number of queries whose ranges span from the
previous row/column, and (5) ?A4(?0=& 0: the number of queries
received during the last repartitioning round whose ranges span
from the previous row/column. Refer to Row 3 of ?11 in Figure 2.
All cumulative statistics re�ect the objects in the �rst 3 rows. There
are 8 data points (# ) and 5 queries (&). Two data points and two
queries are received during the last round, hence ' = 4. Two queries
span from the second row (B?0=& = 2). However, only one of them
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is received during last round (?A4(?0=& 0 = 1). TrioStat uses these
statistics to estimate the workload of each part of a partition. The
overall statistics of a partition ? (# (?), & (?), and '(?)) are the
ones in the last row/column. The statistics are only updated at the
end of every repartitioning round to avoid the overhead of updating
almost all the statistics whenever a new data point or query arrives.
Three more statistics, termed Statistics Collectors, for each row and
column are introduced, namely # 0, & 0, and B?0=& 0. Statistics Col-
lectors are used to update the statistics at the end of a round. They
reduce the number of updates per received data point or query.

4.2 Maintaining the Statistics
TrioStat performs a few updates when receiving a data point or
query. When a point arrives, TrioStat updates two of a partition’s
Statistics Collectors. However, when a query arrives, TrioStat up-
dates the Statistics Collectors of the rows (columns) that overlap the
query. Having more statistics to update will not a�ect performance
because the arrival rate of data is much higher than that of queries.
Three Statistics Collectors, # 0, & 0, and B?0=& 0, are used in each
row/column to count di�erent types of received objects during
the most recent round of repartitioning. # 0 and & 0 count the new
data points and queries, respectively. B?0=& 0 counts the number
of queries that their ranges span from the previous row/column.
When a data point arrives, TrioStat increments # 0 of the row (col-
umn) containing the data point. When a query arrives, TrioStat
increments both & 0 of the row (column) that overlap the top-left
corner of the query, and B?0=& 0 of the remaining rows (columns)
that overlap the query. To conclude a repartitioning round, TrioStat
uses the Statistics Collectors to update all remaining statistics as
follows. Let 8 � 0 be a row/column index. Then, the statistics are
updated as follows:

# (8) = # (8) +Õ8
9=0 #

0( 9)
& (8) = & (8) +Õ8

9=0&
0( 9)

'(8) = Õ8
9=0 #

0( 9) +Õ8
9=0&

0( 9)
B?0=& (8) = B?0=& (8) + B?0=& 0(8)

?A4(?0=& 0(8) = B?0=& 0(8)
The naive way to compute the cumulative statistics requires com-

puting the summations from the beginning each time. Its time com-
plexity is$ (:2), where : is the number of rows and columns of the
partition’s statistics. However, TrioStat utilizes the fact that the sum-
mations in the equations can be carried out from one row/column to
another. Hence, there is no need to compute the summations from
scratch each time. With only one addition, we produce the statistics
of the next row/column from these of the previous row/column.
Algorithm 1 illustrates how to update the statistics of a partition
by passing once through the partition’s rows and columns. The
time complexity of using Algorithm 1 to update the statistics of a
partition is is $ (:). This algorithm runs as a separate background
task. Note that all Statistics Collectors are reset to 0 to be ready for
collecting the statistics of the next round of repartitioning.

Figure 3 illustrates the statistics of Partition ?11 while receiving
new data points and queries. Figure 3a illustrates the positions
of the data points and the ranges of the queries in ?11 at the be-
ginning of a new repartitioning round. Also, it shows the current

Algorithm 1: updateStat(PartitionID, rowOrColumn)
1 stat [ ] [ ] = partitionsHashMap.get(PartitionID)

.statistics(rowOrColumn) ù Multidimensional array
2 int BD<# 0 = 0
3 int BD<& 0 = 0
4 for 8 = 0 to Num of rowOrColumn in PartitionID do
5 BD<# 0 += stat [# 0] [8]
6 BD<& 0 += stat [& 0] [8]
7 stat [# 0] [8] = 0 ù Reset current # 0

8 stat [& 0] [8] = 0 ù Reset current & 0

9 stat [# ] [8] += BD<# 0

10 stat [&] [8] += BD<& 0

11 stat [preSpanQ0] [8] =stat [B?0=& 0] [8]
12 stat [B?0=&] [8] += stat [B?0=& 0] [8]
13 stat [B?0=& 0] [8] = 0 ù Reset current B?0=& 0

14 stat ['] [8] = BD<# 0 + BD<& 0

15 end

state of the maintained statistics, as in Section 4.1. The Statistics
Collectors are all set to 0 at the beginning of the round. Figure 3b
gives the Statistics Collectors at the end of the round after receiving
2 new data points and 3 new queries. During the repartitioning
round, the two data points ⇡� and ⇡⌫ are received �rst. Both data
points are in the third row ('>F2), in Columns ⇠>;0 and ⇠>;1, re-
spectively. Hence, # 0('>F2) is incremented twice while # 0(⇠>;0)
and # 0(⇠>;1) are each incremented once. Then, Queries &� , &⌫ ,
and &⇠ arrive into ?11 in this order. The upper-left corner of &�
is in the cell that overlaps ⇠>;0 and '>F1. Also, the range of &�
is contained within one cell. Thus, only & 0('>F1) and & 0(⇠>;0)
are incremented. &⌫ starts in '>F0 and spans through '>F1 and
'>F2. Thus, B?0=& 0('>F1) and B?0=& 0('>F2) are incremented in
addition to the increment of & 0('>F0) and & 0(⇠>;1). At the end
of the round, Statistics Collectors are used to update the statistics
using Algorithm 1. The results of the updated statistics are given
in Figure 2.

Notice that the target of TrioStat is not to count the actual num-
ber of data points but rather to track the change in the spatial data
workload. To diminish the e�ect of old data gradually, the number
of data points # is divided by 2 before it is updated in each round
of repartitioning. This is to reduce the e�ect of old data points on
the current spatial distribution. In distributed streaming systems
that support historical queries, TrioStat needs to be informed about
data expiration to update # accordingly.

4.3 Correctness of the Statistics
In this section, we prove the correctness of the statistics that Trio-
Stat collects and maintains about data points and queries. To show
this, we need to prove that the maintained statistics always repre-
sent the true number of data points and queries without any over-
or under-counting.
Correctness of the Statistics for Point Data. Assume that we
have a partition that has : rows and only one column. This results
in : cells in total as in Figure 4.
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Figure 3: Updating Partition ?11’s Statistics Collectors

Cell1

Cellsp

Cellk

Cellsp+1
Split Point (SP)

Figure 4: Partition with : cells (rows)

Let 8 be the row number of a cell, where 1  8  : ,=(8) be the true
number of data points in 24;;8 , and # (8) be the cumulative number
of data points that TrioStat maintains in A>F8 . =(8) can be obtained
by simply counting the number of data points within 24;;8 . As
mentioned before, the cumulative number # (8) is computed from
top to down for horizontal divisions. Therefore, # (8) = Õ8

9=1 =( 9).
In the initial case where : = 1, there is only one cell with =(1)

data points, hence # (1) = =(1). For : = 2, # (2) = =(1) + =(2). We
can derive the number of data points in 24;;2 as =(2) = # (2)�# (1).
In general (refer to Figure 4 for illustration), assume that a partition
has a split point B? , where 1 <= B? <= : , that divides the partition
into two partitions, say ?1 and ?2. Let =(?8 ) be the true number of
data points in Partition ?8 . Thus, the number of data points in each
partition can be computed as follows:

=(?1) = =(1) + =(2) + ... + =(B?)
) =(?1) =

ÕB?
9=1 =( 9) = # (B?)

=(?2) = =(B? + 1) + =(B? + 2) + ... + =(:) = Õ:
9=B?+1 =( 9)

) =(?2) =
Õ:

9=1 =( 9) �
ÕB?
I=1 =(I) = # (:) � # (B?)

This shows that the computed statistic # is equal to the true num-
ber of data points, i.e., =. An analogous proof can show that # is
also correct when dividing cells vertically, and # is cumulatively
computed from left to right.
Correctness of the Statistics for Queries. Refer to Figure 4.
Given the input query boundaries, we can count all queries in

each grid 24;;8 by maintaining four variables, namely, @B ,@4 ,@B4 ,
and @> (B, 4, B4,> are short for start, end, start and end, and overlap,
resp. Let @B (8) be the number of queries whose upper boundary
intersects 24;;8 and whose lower boundary intersects another cell,
@4 (8) be the number of queries whose lower boundary intersects
24;;8 and whose upper boundary intersects another cell, @B4 (8) be
the number of queries whose upper and lower boundaries intersect
24;;8 , and @> (8) be the number of queries whose upper and lower
boundaries do not intersect 24;;8 but their ranges overlap 24;;8 . Thus,
the true number, @(8), of queries that intersect 24;;8 is the sum of
these four variables, i.e.,

@(8) = @B (8) + @4 (8) + @B4 (8) + @> (8) (7)

We extend this formula to compute the true number of queries,
@(D, ;), that overlap a one-column sub-partition whose column of
cells starts from Row D and ends in Row ; > D. We need to avoid
double counting of a query that overlaps multiple cells. @(D, ;) is
the true number of queries in Row D and only queries that start
in any row from Row D + 1 up to Row ; , no matter where these
queries end. For rows after D, only counting queries that start in
any cell will exclude recounting any query that span over multiple
cells. Therefore, @(D, ;) can be computed as follows:

@(D, ;) = @(D) +Õ;
9=D+1 (@B ( 9) + @B4 ( 9)) (8)

We demonstrate that the statistics gathered by TrioStat when
counting the number of queries equals @(D, ;), the true number.
Refer to Figure 4 for illustration. We have a partition with : cells
from Cell 1 at the top to Cell : at the bottom. To maintain query
statistics, for each Row 8 , 1  8  : , of a partition, TrioStat main-
tains only two statistics per row, namely, & (8) and &B?0= (8). & (8)
is the cumulative number of queries from Row 1 of the partition to
Row 8 . Thus, & (8) directly represents the number of queries that
start at any row from the beginning of the partition until Row 8 .
Recounting of queries can happen by considering queries that only
end or overlap any of the cells as they are already counted where
they start. Thus, they are excluded from & (8) as follows:

& (8) = Õ8
9=1 (@B ( 9) + @B4 ( 9)) (9)
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Let &B?0= (8) be the number of queries that extend (span) from
an upper row, say Row (8 � 1), to Row 8 . Thus, &B?0= (8) is the
number of queries that overlap or start without ending in Row
(8 � 1). &B?0= (1) is always 0 because there are no queries that
extend from outside the partition to the �rst row. Thus,&B?0= (8) is
formulated from the true values as follows:

&B?0= (8) =
(
0, if 8 = 1
@B (8 � 1) + @> (8 � 1), otherwise

&B?0= (8) depends on the variables of the previous row (8 � 1)].
However, there is an equivalent way of computing &B?0= (8) with
the variables fromRow 8 that makes the proof sketch easier to follow.
Any query that overlaps Row (8 � 1) or that starts without ending
in Row (8 � 1) de�nitely extends to Row 8 and this query’s range
either ends at Row 8 or overlaps Row 8 and continues to the next
row below Row 8 . This is re�ected in the formula for calculating
&B?0= (8) as follows:

* @B (8 � 1) + @> (8 � 1) = @4 (8) + @> (8)
) &B?0= (8) = @4 (8) + @> (8) (10)

This equation for calculating &B?0= (8) is correct also in the case
when 8 = 1 because both @4 (1) and @> (1) are always 0.

In the initial case, when : = 1, and there is only one cell in
the partition with @(1) queries, & (1) = @B (1) + @B4 (1) = @(1) and
&B?0= (1) = 0. This is correct because @B (1) = @4 (1) = @> (1) = 0 as
24;;1 covers the whole partition and every query de�nitely starts
and ends in this cell. For : = 2, by Eqns. 9 and 10, & and &B?0= for
Rows 1, 2 are computed by:

& (1) = @B (1) + @B4 (1) , & (2) = & (1) + @B (2) + @B4 (2)
&B?0= (1) = @4 (1) + @> (1) = 0 , &B?0= (2) = @4 (2) + @> (2)

Notice that when : = 2, there are only the following three possible
sub-partitions: a partition that has 24;;1 only, 24;;2 only, or 24;;1
and 24;;2. The computation of the true numbers can be computed
using Eqn. 8 as follows:

@(1, 1) = @(1) = @B (1) + @4 (1) + @B4 (1) + @> (1)
) = @B (1) + 0 + @B4 (1) + 0 = & (1)

@(1, 2) = @(1) + @B (2) + @B4 (2)
= @B (1) + @4 (1) + @B4 (1) + @> (1) + @B (2) + @B4 (2)
= @B (1) + 0 + @B4 (1) + 0 + @B (2) + @B4 (2)
) = & (1) + @B (2) + @B4 (2) = & (2)

@(2, 2) = @(2) = @B (2) + @4 (2) + @B4 (2) + @> (2)
) = & (2) �& (1) +&B?0= (2)

Notice that the maintained statistics are enough to compute the
true number of queries in all sub-partitions for : = 2. Refer to
Figure 4 for illustration. For cases : > 2, assume that a partition
has a split point B? , 1 <= B? <= : , that splits the partition into
two sub-partitions, say ?1 and ?2. TrioStat’s query statistics are
computed by Eqns. 9 and 10 as follows:

& (B?) = ÕB?
9=1 (@B ( 9) + @B4 ( 9))

& (:) = Õ:
9=1 (@B ( 9) + @B4 ( 9))

&B?0= (B? + 1) = @> (B? + 1) + @4 (B? + 1)

The true number of queries in Partition ?1 is computed by Eqns. 8
and 7 as follows:

@(?1) = @(1, B?) = @(1) +ÕB?
9=2 (@B ( 9) + @B4 ( 9))

= @> (1) + @4 (1) + @B4 (1) + @B (1) +
ÕB?

9=2 (@B ( 9) + @B4 ( 9))

= @> (1) + @4 (1) +
ÕB?

9=1 (@B ( 9) + @B4 ( 9))

) = 0 + 0 +ÕB?
9=1 (@B ( 9) + @B4 ( 9)) = & (B?)

Notice that the computed statistic& (B?) is equal to the true number
of queries in ?1, i.e., @(?1). The true number of queries in Partition
?2 is computed as follows:

@(?2) = @(B? + 1,:) = @(B? + 1) +Õ:
9=B?+2 (@B ( 9) + @B4 ( 9))

= @> (B? + 1) + @4 (B? + 1) + @B4 (B? + 1) + @B (B? + 1)
+Õ:

9=B?+2 (@B ( 9) + @B4 ( 9))

= @> (B? + 1) + @4 (B? + 1) +Õ:
9=B?+1 (@B ( 9) + @B4 ( 9))

) @(?2) = &B?0= (B? + 1) +Õ:
9=B?+1 (@B ( 9) + @B4 ( 9))

= &B?0= (B? + 1) +Õ:
9=1 (@B ( 9) + @B4 ( 9))

�ÕB?
9=1 (@B ( 9) + @B4 ( 9))

) @(?2) = &B?0= (B? + 1) +& (:) �& (B?)
Therefore, TrioStat’s statistics (& and &B?0=) are necessary and
su�cient to compute the true number of queries. The same proof
can be used to show that TrioStat’s statistics are correct by using the
computed cumulative number & from left to right when dividing
partitions vertically.

TrioStat’s Statistic ' represents the cumulative number of the
newly received data points and queries. Thus, the proof of correct-
ness for ' is the same as those for the data points and the queries
explained above. However, in the proofs, &?A4(?0= is to used in-
stead of &B?0= , where the former represents the span of only the
new queries.

5 ESTIMATING THEWORKLOAD
Periodically, distributed spatial streaming systems need to evaluate
the e�ectiveness of their partitioning and workload distribution.
Hence, by the end of every repartitioning round, TrioStat collects
the statistics as in Section 4. Using these statistics, TrioStat can
estimate the workload in $ (1) for partitions, parts of a partition,
and entire machines.

According to Eqns. 4 and 6, there is no need to divide by '(() to
compare the workload of partitions and machines because '(() is
common in all equations. Thus, TrioStat estimates the workload of a
Partition ? to be, (?) = #D<(⇠ (?)), and the workload estimation
for a Machine< to be, (<) = #D<(⇠ (<)). Let # (8), & (8), '(8),
B?0=& (8), and ?A4(?0=& 0(8) be the statistics of ? at Row (Column)
Index 8 . Also, let ! be the index of the last row (column) of ?’s
statistics. TrioStat estimates the workload of Partition ? by using
?’s statistics as follows:

, (?) = # (!) ⇥& (!) ⇥ '(!)
For example, the workload estimation of Partition ?11 in Figure 5
is, (?11) = 10 ⇥ 7 ⇥ 5 = 350.
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Figure 5: Estimating the workload when Partition ?11 splits
into the two Sub-partitions ?0 and ?1

TrioStat estimates the workload of sub-partitions that could
result from splitting ? into 2 sub-partitions ?0 and ?1 . Figure 5
illustrates splitting ?11 vertically or horizontally. The split point
(B?) is the row (column) index, where the partition is split. TrioStat
uses the maintained statistics directly to estimate the workloads of
the sub-partitions as follows:

, (?0) = # (B?) ⇥& (B?) ⇥ '(B?)
& (?1 ) = & (!) �& (B?) + spanQ(B? + 1)
'(?1 ) = '(!) � '(B?) + preSpanQ’(B? + 1)
, (?1 ) = [# (!) � # (B?)] ⇥& (?1 ) ⇥ '(?1 )

For example, when %11 is split horizontally on the second row as
in Figure 5:, (?0) = 32, & (?1 ) = 5, '(?1 ) = 4 and, (?1 ) = 120.
Notice that, (?) is always greater than or equal to, (?0) +, (?1 )
because the queries get distributed among the sub-partitions. The
sum of the sub-partitions’ workload estimations is usually smaller
than the original partition’s workload estimation. The reason is
that the total required number of query checks against every newly
received data point is decreased. Also, the probability of receiving
new objects can be di�erent for each sub-partition. The sum of
the workload estimates of the sub-partitions can be equal to the
workload estimate of the original partition only when the split point
(B?) cuts all the queries of the original partition and the probability
of receiving new objects is equal for both sub-partitions.

TrioStat estimates the workload of a machine, (<) by sum-
ming the workload estimates of the partitions that < holds. To
compare the machines according to their workloads, the machine
that performs the comparison should probe all machines to share
their workload estimates. Hence, TrioStat requires minimal network
overhead. Moreover, '(() can be computed in a common machine
by getting and summing '(<) of all machines. '(() is a useful
measurement to monitor the throughput of the system because it
represents the number of objects (data points and quires) that have
been served by the system during the last round of repartitioning.
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Figure 6: Overhead of TrioStat in executor machines

6 EXPERIMENTS
We realize TrioStat in Apache Storm [24]. However, TrioStat can
be used with any other distributed spatial streaming system that
processes streams in tuple-at-a-time manner. In these experiments,
TrioStat provides workload estimates for an application that pro-
cesses a real dataset from Twitter. The dataset is composed of 1
Billion geotagged tweets of size 140 GB in the US. The tweets are
collected from January 2014 to March 2015. To simulate an in�-
nite data stream, the 1 Billion tweets are replayed repeatedly each
time they �nish. The application’s query workload is composed of
continuous range queries. Locations of the real tweets are used as
the query focal points. The continuous queries return tweets that
overlap the queries’ spatial ranges. TrioStat’s grid that divides the
whole space is of size 1000 ⇥ 1000. This size allows small cities in
the US to be covered by multiple cells. The spatial side lengths of
queries are 0.16% of the side length of the whole space (about the
size of a university campus).

Experiments are performed using 6 Amazon EC2 instances. The
network bandwidth is up to 10 Gbps. Apache Storm 1.0.0 runs in
each instance over Ubuntu 18.04.2. One of the instances is of type
m5.xlarge with 4 vCPU and 16 GB of memory. This instance has
the Nimbus of Storm and a Zookeeper server [2] installed. The
remaining 5 instances are of type m5.2xlarge, where each instance
has 8 vCPU and 32 GB of memory. Each of the 5 instances is divided
into 8 virtual machines each having one vCPU and 4 GB of memory.
This results in a total of 40 virtual machines. 10 of the virtual
machines act as Storm spouts to produce tweets and query streams.
The application divides the remaining 30 virtual machines as 8
routing machines and 22 Executor machines. The routing machines
distribute the workload among the executor machines based on
the partitions held by each machine. A new repartitioning round
is started every 15 seconds. By the end of every round, TrioStat
updates the statistics, and requests from all executor machines to
send their workload estimates (, (<)) and the number of newly
received objects ('(<)) to one of the routing machines. All the
experiments are performed from a cold start.

Figure 6 illustrates the overhead of TrioStat operations by show-
ing the average time each operation takes in microseconds after
running the system for an hour. Figure 6 illustrates that TrioStat
adds 0.41 microseconds to the processing time of a new object to
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Figure 7: Network overhead of TrioStat statistics

identify its partition and collect statistics about it. This demon-
strates TrioStat’s success in minimizing the added overhead to the
processing of each new object. At the end of every repartitioning
round, TrioStat needs 58 microseconds on average to update the
statistics of all the partitions that an executor machine holds. Af-
ter this update, TrioStat can estimate the workloads in $ (1), as in
Section 5.

Figure 7 gives the network overhead of TrioStat’s decentralized
statistics compared to AQWA’s centralized statistics approach [4].
Notice that the results are given in logarithmic scale. AQWA’s
statistics require maintaining one number per cell to count the data
points, and four numbers per cell to count the queries. The four
numbers in each cell are required to use the Euler Histogram [7] to
count queries in a partitionwithout re-counting queries that overlap
multiple cells. Thus, AQWA collects the 5 statistics for every cell in
the machine that holds the cell. By the end of every repartitioning
round, all the collected statistics should be sent to one machine in
order to be combined and used for workload estimation. Figure 7
compares the two approaches by measuring the number of bytes
needed to be sent to one of themachines tomonitor the performance
of the system, compare the workload of all machines, and decide
accordingly if repartitioning is needed. TrioStat’s decentralized
approach outperforms the centralized approach because TrioStat
requires sending only two statistics per executor machine. The
two numbers are the workload estimate of the machine (, (<)) and
the number of the newly received objects by the machine ('(<)).
In contrast, the centralized approach requires sending �ve statistics
per cell in the system, i.e., �ve million statistics for the 1000⇥ 1000
grid that divides the space. TrioStat will always outperform the
centralized approach because each machine can hold at least one
cell sized partition, i.e., TrioStat’s machines will send 2 statistics
per machine while the centralized machines will send 5. However,
having every machine holds only one partition with one cell is
not practical. Hence, the grid size will be increased and that will
increase the amount of statistics that the centralized approach have
to send.

TrioStat requires having 8 numbers stored for every row and col-
umn of every partition. 5 of them are for the required statistics and
3 for the statistics collectors. Therefore, the storage that TrioStat
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Figure 8: Total Storage for the statistics while varying the
number of partitions

requires is distributed across the machines according to the distribu-
tion of the partitions. On the other hand, AQWA requires storing a
total of 10 numbers per cell. 5 of the numbers are used to collect the
statistics and they are stored across the machines according to the
distribution of the partitions. However, the remaining 5 numbers
are all stored in a centralized machine to aggregate the collected
statistics and can be used for workload estimation. This results
in high storage overhead in one of the machines. Figure 8 gives
the results of analyzing the total storage that TrioStat requires for
statistics in comparison to AQWAwhile varying the number of par-
titions that divide the whole space. The grid that divides the space
is 1000⇥ 1000 resulting in 1 million cells. Figure 8 gives the number
of partitions in logarithmic scale between having 1 partition and 1
million partitions (all partitions are composed of a single cell). The
required storage for TrioStat’s statistics depends on the number
of partitions and their shapes. Since TrioStat maintains statistics
for every row and column of every partition, the total storage of
TrioStat increases with the increase in the total circumferences of
the partitions. Therefore, TrioStat requires the minimum storage
when all partitions are squares (Best Case). On the other hand,
The maximum storage (Worst Case) happens when the maximum
number of partitions is of size 1 X grid side length. There is a fast
increase in the worst case of TrioStat in Figure 8 before having 1000
partitions (equivalent to grid side length) because all partitions can
be of size 1 X grid side length except one partition. In this worst
case scenario, any increase in the number of partitions up to 1000
will result in increasing the total circumferences of the partitions by
two times the grid side length. The increase in the worst case slows
down after having more than 1000 partitions because any split after
having 1000 partitions of size 1 X grid side length results in increas-
ing the total circumferences of the partitions by exactly two. When
the number of partitions become very large, each partition will
be formed of very few cells. In this case, TrioStat requires higher
storage than AQWA. However, it is not practical to have a large
number of small partitions in the system. This is because having a
large number of small partitions results on duplicating queries in a
large number of partitions that needs to communicate to produce
queries’ �nal results. Usually, neighboring partitions in the same
machines gets combined to reduce the overhead of query execution,
which will result on having medium sized partitions. Hence, having
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Figure 9: Total Storage for the statistics while varying the
grid size

a large number of partitions that is close to the number of cells in
the grid may never happen.

Figure 9 gives the results of analyzing the total storage that Trio-
Stat requires for statistics in comparison to AQWA while varying
the size of the grid that divides the whole space. The grid side
length varies between 100 and 6400 cells. Notice that the number of
statistics is represented in logarithmic scale. The number of parti-
tions is �xed to be 1000 partitions. TrioStat outperforms AQWA in
all cases. The gap between TrioStat in the best case and the worst
case is small when the side length of the grid is less than 1000 (the
number of partitions) for the same reason explained in the previous
paragraph.

7 CONCLUSIONS
This paper introduces TrioStat, an online workload estimation
technique that relies on a probabilistic model for estimating the
workload of partitions and machines in a distributed spatial data
streaming system. TrioStat introduces a new statistics structure that
requires minimal storage overhead. TrioStat uses a decentralised
technique to collect and maintain the required statistics in real-time
locally in each machine. An e�cient algorithm is presented for col-
lecting statistics without adding much processing overhead with
the arrival of every new data point or query. TrioStat is tested and
compared against AQWA using an application that processes a real
dataset from Twitter. TrioStat enables the application to compare
the workload of its machines and data partitions with minimal net-
work, storage, and processing overhead. TrioStat requires sharing
only two numbers per machine to compare the machines based on
their workloads and to monitor the performance of the system.
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