
Towards an End-to-End Human-Centric
Data Cleaning Framework

El Kindi Rezig♠ Mourad Ouzzani⋄ Ahmed K. Elmagarmid⋄ Walid G. Aref⋆ Michael Stonebraker♠
♠MIT CSAIL ⋆Purdue University ⋄Qatar Computing Research Institute, HBKU

elkindi@csail.mit.edu {mouzzani,aelmagarmid}@hbku.edu.qa aref@cs.purdue.edu stonebraker@csail.mit.edu

ABSTRACT
Data Cleaning refers to the process of detecting and fixing errors in
the data. Human involvement is instrumental at several stages of
this process such as providing rules or validating computed repairs.
There is a plethora of data cleaning algorithms addressing a wide
range of data errors (e.g., detecting duplicates, violations of integrity
constraints, and missing values). Many of these algorithms involve
a human in the loop, however, this latter is usually coupled to the
underlying cleaning algorithms. In a real data cleaning pipeline,
several data cleaning operations are performed using different tools.
A high-level reasoning on these tools, when combined to repair the
data, has the potential to unlock useful use cases to involve humans
in the cleaning process. Additionally, we believe there is an oppor-
tunity to benefit from recent advances in active learning methods
to minimize the effort humans have to spend to verify data items
produced by tools or humans. There is currently no end-to-end data
cleaning framework that systematically involves humans in the
cleaning pipeline regardless of the underlying cleaning algorithms.
In this paper, we present opportunities that this framework could
offer, and highlight key challenges that need to be addressed to
realize this vision. We present a design vision and discuss scenar-
ios that motivate the need for this framework to judiciously assist
humans in the cleaning process.

1 INTRODUCTION
Businesses often collect large volumes of data to inform key deci-
sions. However, because data can be humongous and highly volatile,
it is infeasible for humans to manually verify its accuracy. As a
result, decision-makers have to deal with possibly-inaccurate data
that may inherently lead to faulty business decisions. There are
abundant research efforts to detect and repair the many types of
data errors that one sees in the wild. This process is also known
as data cleaning. Data errors include duplicates [12], violations of
integrity constraints [7], and missing values [2]. While ideally we
want to be able to fully automate this process, it has been widely
recognized that humans have to be involved at various stages of the
data cleaning pipeline [1, 11, 26]. A large spectrum of data clean-
ing systems involve humans. Examples include Poter’s Wheel [19],
GDR [26], KATARA [8], CrowdER [24], and UGuide [22]. Each of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HILDA’19, July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6791-2/19/07. . . $15.00
https://doi.org/10.1145/3328519.3329133

these systems involves humans to solve a particular data clean-
ing task. However, an end-to-end data cleaning framework that
involves humans in a way that is orthogonal to the underlying
cleaning algorithms is not yet available. Looking at existing data
cleaning techniques, we make the following observations:
Human involvement is algorithm-driven: Humans are the ulti-
mate authority in verifying the accuracy of the data. Because it is
impractical to have humans correct the entirety of the data, many
techniques strive to involve humans judiciously so as to maximize
the benefit of their feedback in the cleaning process [18, 24–26].
Typically, humans are tightly coupled to the cleaning logic, i.e.,
humans are involved in ways that are dictated by the cleaning al-
gorithm being used. This coupling is necessary to produce good
quality results for specific data cleaning tasks. However, if we want
to “plug-and-play” arbitrary tools to clean different types of data
errors, then, we need a way to involve and manage humans in
an algorithm-agnostic fashion in the data cleaning pipeline. This
generic inclusion of humans is not meant to replace human-guided
algorithms, in fact, they should go hand-in-hand to unlock various
use cases in the cleaning process.
Data singularity: An assumption that is usually made in cleaning
algorithms is that the data is subjected in its entirety to a given
cleaning algorithm [10, 20]. However, in practice, different parts of
the data are cleaned by different agents. For instance, one may use
an automatic data cleaning tool to find the correct mapping of the
Zip code to a City name while requesting humans to correct the
Salary data (one would not trust an automatic algorithm to modify
the salary data). This motivates the need for a cleaning framework
that supports both human and automatic agents to holistically clean
different parts of the data. In the remainder of the paper, we refer
to the detection and repairing agents as cleaning agents.
Source of errors: There are multiple factors that can influence
the quality of the computed repairs, e.g., the humans involved,
the data quality rules, and the repair algorithm. However, existing
techniques do not assess the effect of various factors that produce
the data repairs (for example, many rule-based repair algorithms
assume the rules are correct [5, 9, 15]). Understanding this effect
is crucial in identifying bottlenecks in the data cleaning pipeline.
Just as important as suggesting potential data errors for humans
to verify, it is important to make it easy for humans to identify
faulty factors (rules, humans, external resources, etc.) that have
been involved to compute the inaccurate repairs.
Humans are not always right: Many human-driven data clean-
ing techniques assume that humans (e.g., experts) are perfect [26].
However, in practice, humans may make mistakes at various stages
of the data cleaning pipeline (e.g., in the detection, repairing, or
validation phases). Understanding how humans interact with the

https://doi.org/10.1145/3328519.3329133

EID Name BID Sal
e1 Jennifer b1 56000

e2 Mary b3 50000

e3 Tom b1 48000

e4 Joshua b2 61000

e5 Nathan b3 34000

e6 Tom b1 ?

Employees

e3 Tom b1 48000

e6 Tom b1 ?

Duplicates detection

Filling missing values
System detects that: (1) te3 has been validated and (2)
Dedup tool marked te3 and te6 as duplicates. The
system can automatically fill the missing value in te6
without the need to involve a human to do it

We have a tool, say Dedup, that
detects duplicate records with a
high confidence

Bob validates
record te3

BID Zip City
b1 47901 Lafayette

b2 46077 Indianapolis
b3 46077 Columbus
b4 47904 Lafayette
b5 47904 Attica

Branches

tb1

tb2

tb3

tb4

tb5

te1

te2

te3

te4

te5

te6

BID Zip City
b1 47901 Lafayette

b2 46077 Indianapolis

b3 46077 Indianapolis

b4 46904 Lafayette

b5 46904 Lafayette

Branches_v1

tb’1
tb’2
tb’3
tb’4
tb’5

Functional Dependency repairFunctional dependency:
Zip → City

EID Name BID Sal
e1 Jennifer b1 56000

e2 Mary b3 50000

e3 Tom b1 48000

e4 Joshua b2 61000

e5 Nathan b3 34000

e6 Tom b1 48000

Employees_v1

Repair FD violations
using an FD-repair
tool (R1)

Alice reports an
error in te’6[Sal]

Sam finds out that Alice’s reported error is indeed
an error and corrects te’6[Sal]. Ben, validates
Sam’s repair.
The system should reward Alice for reporting a
valid error, and should penalize Bob for incorrectly
validating te3. The System automatically sets
te’3[Sal] = te’6[Sal] since the two records are
duplicates.

System routes the reported
error to a person

knowledgeable in Salary
information other than Bob

EID Name BID Sal
e1 Jennifer b1 56000

e2 Mary b3 50000

e3 Tom b1 46000

e4 Joshua b2 61000

e5 Nathan b3 34000

e6 Tom b1 46000

Employees_v2

te’’1

te’’3
te’’4
te’’5
te’’6

Fill missing values

te’1
te’2
te’3
te’4
te’5
te’6

te’’2
Ben validates the
update Sam
made

Sam

Figure 1: Example data cleaning scenario involving various cleaning tasks and agents

data is important to judiciously involve them in the cleaning pro-
cess. For instance, an error reported in the Sales data by a person
working in the Sales department should have more weight than one
reported by a human working in another department. Therefore,
there are several nuances in the human feedback that need to be
dissected to effectively involve humans in the cleaning process.

Example 1.1. Refer to Figure 1. Table Employees contains em-
ployee data, e.g., name, salary, and the branch they belong to (BID).
Table Branches contains the list of branches (BID) and their location
(Zip, City). We assume all branches are based in the State of Indiana,
thus we omit the State attribute from Table Branches.
Scenario 1: As we illustrate in this example, there are many use
cases where it is useful to have a high-level, algorithm-agnostic
understanding of how different components in the cleaning pipeline
interact with each other. Because they were designed to solve a
specific data cleaning task, existing human-guided algorithms do
not capture those use cases. In this scenario, we present a mix of
data cleaning operations performed by various agents to repair the
tables Employees and Branches. The workflow is as follows:

(1) Bob validates record te3 as being correct.
(2) Table Employees is deduplicated using a tool, Dedup. This

latter reports records te3 and te6 as duplicates.
(3) We would like to fill in the missing values. Instead of assign-

ing a human to do it, the system should be able to notice that
since te3 and te6 are duplicates, and Bob previously marked
record te3 as being correct, then, the missing value te6[Sal]
can be set to te3[Sal]. The resulting table is Employees_v1.

(4) Alice reports an error in cell te ′6[Sal] in table Employees_v1.
(5) The system should be able to automatically ask a human,

Sam, who is knowledgeable about the Salary data to repair
the reported error. The system should be able to notice that
it is better to choose a human other than Bob to examine
the error, so that it can then compare their decisions. Sam
then corrects the error and updates te ′6[Sal]. The system also
updates te ′3[Sal], since te

′
3 and te

′
6 were previously marked

as duplicates.
(6) Ben validates the repair Sam made.
(7) The system should be able to capture that Bob is not that

reliable when it comes to validating employee records, that

Alice reports valid errors, and that Sam is reliable in repair-
ing the salary data. Table Employees_v2 contains the fixed
errors.

(8) We would like to enforce a functional dependency (FD) rule
(ϕ1: Zip → City) on the Branches table. The cells marked in
boldface violate ϕ1. We use an FD repair tool, R1, to auto-
matically repair those violations. Table Branches_v1 is the
repaired instance.

Scenario 1 shows that it could be useful to have a holistic strategy
to deal with various cleaning agents acting on different parts of
the data. Such a framework has the potential to facilitate the hu-
man involvement in the cleaning pipeline at a high-level. However,
realizing such a framework poses several challenges. Particularly,
Scenario 1 raises several questions:

• How do we know how confident Bob is about the validation
he has performed on te3? Asking another human to ver-
ify Bob’s validation is expensive. How can we model Bob’s
knowledge on different parts of the data?

• How do we assess the quality of automatic tools, such as
Dedup and R1 so that we know if a human validation is
required after these tools are executed?

• How do we assess Alice’s knowledge on the data?
• How can the system automatically route reported errors to
humans with the right expertise to examine them?

• What if a certain repaired cell, say, tb ′3[City] is deemed in-
correct. Should we examine R1 or the FD rule ϕ1, or both?
In other words, how can the system isolate the culprits in
the data cleaning pipeline so that humans can easily debug
cleaning decisions?

The above questions are among many others that need to be ad-
dressed to effectively involve humans in the data cleaning pipeline.
To this end, we propose a vision for an end-to-end data cleaning
system that supports the following features:

• Heterogeneity: The system should be able to simultane-
ously support cleaning agents of different types, i.e., human,
automatic or semi-automatic. Since different parts of the
data can be cleaned by different agents, each agent receives
part or all of the data as input (Section 2).

• Isolation: The system should treat cleaning agents as black
boxes while still enabling humans to detect, repair, and verify
errors or bottlenecks (e.g., cleaning agents that are associated
with wrong repairs) in the cleaning process. Thus, humans

2

Detector 1
(auto)

Cleaning resources

Master data Knowledge baseSpecifications

Detector 2 Detector n
(auto)

View 1 View 2 View m

Repairer 1
(auto)

Repairer 2

Repairer k
(auto)

View is assigned a set of
Detectors and Repairers

Detect
Errors

Send
erroneous cells

to Repairers

External resources may be
used by detectors and repairers

Domain
expert

Domain expert
writes specifications
on how to identify
errors in data views

Detectors (humans/tools detect errors)

Repairers
(humans/tools
repair errors)

Raw data (relational)

Store repairs
and their
metadata

Data
validator

Validate
Assess
repair
factors

Suggest
similar
errors

Based on the
human’s

feedback, find
similar errors

Upd
ate

 ra
w da

ta

Repairs and
their metadata

Repair
provenance

(a) Architecture

Domain expert

Data curator

Data user Data validator

Provide instructions
to detect/repair errors

Ask for instructions
to detect/repair errors

Validate repairs
Report errors

(b) Example Human Interaction Model

Figure 2: Architecture (vision) and an example Human Interaction Model

are isolated from the specific cleaning logic of a specific
cleaning algorithm (Section 2, 6).

• Human Cost Optimization: The system should be able
to reason about the expertise of different humans when as-
signing cleaning tasks. It should also account for the cost
and expertise when involving a given human in a cleaning
task (Section 3- 5).

• Accountability: There are many factors involved in com-
puting a given repair. Based on human feedback (e.g., human
reports an error in a repaired cell), the system should au-
tomatically assess the reliability of different factors (e.g.,
agents, rules, etc.) that were involved in computing a repair
over time. This assessment is crucial for humans to identify
bottlenecks, i.e., factors associated with inaccurate repairs,
in the data cleaning process (Section 6).

2 ARCHITECTURE OVERVIEW
2.1 Terminology
Consider a relational database D containing relations R1, R2, ..., Rn .
Every relation Ri (1 ≤ i ≤ n) contains a set of attributes Ai1, A

i
2, ...,

Aik with domains dom(Ai1), dom(Ai2), ..., dom(Aik) respectively. For
the instance Ii of Ri containing tuples T , a cell c is the value of a
tuple t ∈ T in attribute A ∈ Ri , denoted t[A].
Detector: Detectors are humans or programs that, given a set of
cells as input, provide a set of cells that are potentially erroneous as
output. Example detector programs are those that use data quality
rules (e.g., Denial Constraints) to identify the cells that violate those
rules.
Repairer: Repairers are humans or programs that update the input
cells in a way that “fixes" the data errors.
Repair: We refer to an update to a set of cellsC made by a Repairer
R as a repair.

Accurate Repair: A repair is accurate if it contains cells with
values that match the ground truth.

2.2 Architecture
Figure 2a illustrates the proposed architecture to implement our
system vision. In a nutshell, there are four main components: Detec-
tors, Repairers, Cleaning resources and Validators. All the Detectors
and Repairers are treated as pluggable black boxes. One could use
any number of detection and repairing algorithms to clean the data.
Since different agents can be involved to detect/repair different
parts of the data, Detectors and Repairers are applied to different
data views. Furthermore, Detectors and Repairers may use cleaning
resources such as rules, masterdata, etc., to detect and/or repair the
data. Cleaning resources are commonly produced by humans. We
explore in Section 6 how the envisioned system should make it easy
for humans to identify agents or cleaning resources that produce
inaccurate repairs. Finally, in addition to detecting and fixing errors,
humans are also able to validate the computed repairs, and based
on their feedback, the system assesses the reliability of different
factors that were involved in computing the repairs.
Data Cleaning job: The envisioned system allows humans to
declaratively specify a data cleaning operation as a function of
several parameters. Specifically, a data cleaning job is represented
as the quadruplet ⟨C,D,R,V ⟩ where: C is the set of input cells
(cannot be empty), D is the set of Detectors to be used to detect
errors in C , R is the set of Repairers to repair the errors found in
C , V is the set of humans to validate the produced repairs. Using
this representation, we can capture most of the cleaning scenarios.
For example, if D and R are empty and V is not empty, then, the
job will be a validation task on the cells in C .

Example 2.1. In Example 1.1 (scenario 1), the cleaning jobs are
represented as:
job1 : ⟨C = ∗, D = ∅, R = ∅, V = {“Bob”}⟩

3

job2 : ⟨C = ∗, D = {“Alice”}, R = ∗, V = ∗⟩

job3 : ⟨C = {tb[Zip] = ∗, tb[City] = ∗}, D = {ϕ1}, R = {R1},
V = ∅⟩

job1 states that “Bob” can validate any cell in the data.
job2 states that “Alice” can report errors in any data cell, and

if she does, the system should automatically assign a repairer to
update the data, and a validator to verify the update.

job3 states that we are using ϕ1 (in practice, there is a program
that projects ϕ1 on the data to extract violations, but for simplicity,
we are only including the rule) to detect errors in all the Zip and
City cells. The errors are then repaired using the FD-repair tool R1.
The repairs are not subjected to validation (V = ∅).

3 HUMANS IN THE CLEANING PROCESS
While several research efforts involve the human in specific clean-
ing problems (e,g,. Entity Resolution [24], Integrity Constraints [26],
Data Fusion [18]), there is no proposal that involves humans for
general data cleaning (regardless of the cleaning problem at hand).
Furthermore, characterizing human expertise for the purpose of
general data cleaning remains unexplored. Particularly, data clean-
ing efforts that use crowdsourcing [8, 24] assume that crowd work-
ers are non-experts. On the other end of the spectrum, we have data
cleaning methods [22, 26] that assume humans are experts whose
feedback is assumed to be always correct. In practice, humans can
have different degrees of expertise on different parts of the data.
We shed some light to highlight key challenges that need to be
addressed to realize this characterization.

3.1 Characterizing Human Expertise
Cleaning tasks: Humans interact in various ways in the cleaning
process. Based on our vision, we list four human-driven tasks, re-
ferred to in this paper by cleaning tasks, that a human-centric data
cleaning system needs to support: (1) Detection: Humans should
be able to report errors in a given set of cells; (2) Repairing:When
errors are reported, humans should be able to fix those errors by up-
dating the data to reflect accurate values; (3) Validation: Humans
should be able to verify a repair that has been made by another
cleaning agent (human or automatic); and (4) Specification: Hu-
mans should be allowed to write specifications (e.g., FD rules) to
detect data errors.
Human roles: Wedistinguish four human roles (Figure 2b): (1) Data
User: person using the data; (2) Data Curator: person fixing data
errors; (3) Data Validator: validates fixes made by the Data Curator;
and (4) Domain Expert: the person writing specifications (e.g., in
the form of rules).
Data Expertise: Humans have different knowledge about differ-
ent parts of the data. For example, a person working in the Sales
department is probably more aware of the Sales data than someone
working in the Marketing department. When assigning humans to
cleaning tasks, it is important the system makes sure the assigned
humans are knowledgeable enough in the data they are asked about.
In a human-centric data cleaning system, every human has a history
of the data cells they helped clean. Through the Validation task, the
system can learn how good a given human is for a certain cleaning
task and for a given cell. We believe that the framework should
(1) support rules to assign data items to human groups (e.g., sales

data is reviewed by sales people); and (2) score the human expertise
for a given data cleaning task. For example, a simplistic measure to
quantify the expertise of a human h on data cells C , for a task T , is
the following (there are several sophisticated models in the litera-
ture to capture human expertise, and the following equation is only
presented to illustrate a naive way to capture human expertise):

Expertise(h,C,T) =
#(h,C,T)

#validated(C,T)
(1)

Equation 1 calculates the ratio of cells in which a human h per-
formed a task T over the number of cells in C that were subject to
validation.

For example, we would like to measure the expertise of a hu-
man h in the detection task for a set of cells C . Assume h cor-
rectly reported errors in two of these cells. The total number of
cells that were validated by a Data Validator in C is 4. Therefore:
Expertise(h,C,T = “Detection”) = 2

4 = 0.5
Cost Model. Involving humans is generally expensive. It is im-
portant to be able to characterize the cost of involving a human
to perform a certain cleaning task. For example, involving domain
experts is generally more costly than involving ordinary data users.
This cost should also take into consideration the availability of dif-
ferent human roles. For instance, if we have very few data curators,
we would want to make sure they are assigned the most critical
tasks only. Furthermore, it would be interesting to incorporate the
cognitive effort of looking at the data to perform a cleaning task.
Human Budget. The human budget for a data cleaning job j
could be expressed as a combination of many factors including the
maximum number of humans available to perform a certain task,
the total money cost to spend to perform a task, time limit, etc.

We are now ready to formally define a Human characterization
of a human h.

Definition 3.1. Human Characterization. A human h in a data
cleaning scenario is represented as h: ⟨Role, Data,Cost , Expertise⟩
where Role is the role of the human, Data is the set of cells h is
knowledgeable about, Cost is the cost of involving h, Expertise is
a score that reflects how good h is for the role Role in cells Data.

Suggesting possible errors: Given a set of initial labels (cor-
rect/wrong) on data items, the system should be able to benefit
from active learning classifiers [6] to interactively suggest interest-
ing data items to label by the data validator (Figure 2a) and refine a
classification model to predict possibly faulty data items.

4 TASK ALLOCATION
The envisioned system should allow users to define data cleaning
jobs without explicitly stating the humans involved. Specifically,
the system should be able to select from a pool of humans H with
different characterizations, the right human for the right task. An
example job is defined as follows:

job4 = ⟨C = ∗, D = {“Alice”}, R = ∗, V = ∅⟩

In job4, The set of repairers includes all the humans H available
for this task. This makes the system responsible for assigning a
repairer for the errors thatAlice detects. In our system, we are only
interested in automatically assigning humans to cleaning tasks.
Assigning automatic agents to cleaning tasks is outside the scope
of the proposed vision.

4

Given a set of humans with their characterizations, the proposed
system should be able to automatically assign cleaning tasks to them.
We now discuss key building blocks that are needed to effectively
assign cleaning tasks to humans.

4.1 Human-to-Human Interactions
It is crucial to develop an interaction model between different hu-
man roles to optimize the cleaning effort. Ideally, the interaction
model should produce the best cleaning results with the least human
cost. In particular, a “good” interaction model should (1) minimize
the communication overhead between different human roles; and
(2) account for all possible human-to-human interaction cases in
the cleaning scenario. We understand that in the real world, inter-
actions between humans are often complex and not well-defined,
however, we would like to explore some key human-to-human sce-
narios. For instance, as illustrated in Figure 2b and using the roles
we defined previously, the possible human-to-human interaction
scenarios are the following: Data User reports errors to the Data
Curator; Domain Expert provides specifications (e.g., rules, etc.)
to the Data Curator to enforce on the data; Data Curator reports
errors found in specifications to the Domain Expert; and the Data
Validator validates fixes performed by the Data Curator.

4.2 Task Assignment
Given a data cleaning job j for cellsC , a pool of humans, say H , and
a budget, say B, the framework should assign automatically cells in
C to humans in H (e.g., job4 defined above). The assignment should
guarantee the following properties: (1) Coverage: If the job is to be
performed by humans only, every cell in C should be covered by at
least one human; (2)Maximize expertise: The assigned humans
should have good knowledge about cells in C; (3)Minimize cost:
The human cost should not exceed Budget B.

Example 4.1. Assume that we have a validation task on all the
Sal cells of Table Employees in Figure 1 defined as the data cleaning
job job5 as follows:

job5 = ⟨C = Employees[Sal], D = ∅, R = ∅, V = ∗⟩

Consider a pool of humans H = {Alice , Bob, and Sam}, and a
human budget (B = 1) for job5 expressed (for simplicity) as the
maximum number of humans involved in the task. Alice , Bob, and
Sam have good knowledge on the following sets of cells {te ′1[Sal],
te2[Sal],te3[Sal], te4[Sal], te5[Sal]}, {te3[Sal], te4[Sal]}, and {te5[Sal]},
respectively. In this scenario, the system should assign job5 toAlice
only (since B = 1 and Alice covers all the cells of Sal).

5 CROSS-AGENT COST OPTIMIZATION
Minimizing the human cost to repair the data has been the cor-
nerstone of numerous research efforts [26]. However, when the
human is not aware of the cleaning algorithm’s logic, it becomes
hard to achieve this goal. For instance, consider a Detector Dedup
that detects duplicate records using a clustering algorithm. Dedup
uses some similarity measure Sim to decide if a set of data points
belong to the same cluster. Knowing how Dedup works, if we want
to validate its output, we could ask a human to verify if the closest
points (using Sim) between the clusters are indeed not duplicates.
In the case of our envisioned system, Dedup would simply pro-
vide its output as clusters expressed in terms of records (duplicate

records would share the same value of a designated attribute). In
this case, involving the human usefully becomes more challenging.
In general, the optimization problem is intractable and we only
shed some light on key questions to address when building such
an optimizer.

We need to answer the following questions: (1) When we have
human and automatic cleaning agents, what are the consequences
of involving one over the other on human cost and data quality?
(2) Given multiple humans that are assigned the same set of cells
to repair, which human do we choose? (3) How do we schedule
different cleaning jobs in order to achieve an optimal human cost
and data quality?

5.1 Quantitative Cost Optimization
When we have humans and automatic agents that are assigned
overlapping input data, which one should we prioritize? and what
are the consequences for each choice? For example, in Example 1.1,
what if Sam has also been assigned to repair cells tb2[City], tb3[City],
tb2[Zip], tb3[Zip]. In this case, the input to R1 (automatic agent)
overlaps with the input to Sam. This overlap is possible in practice.
For example, one may want an automatic agent to clean a large
amount of data while requiring the human to repair only a small
subset of it. If we want to minimize human intervention, we can
simply prioritize automatic agents over humans for a given set of
cells. As a result, because Sam is assigned cells that are part of the
input to R1, we can simply save cost by not asking Sam to repair
tb2[Zip], tb2[City], tb3[Zip], tb3[Zip], but we would still ask him
to fix the Salary value in te ′6[Sal] because this cell is not input to
an automatic agent. While human intervention is minimized in this
strategy, we note: (1) The human cost is minimized at the expense of
data quality. That is, humans generally perform better repairs than
automatic agent. (2) This strategy can be suitable if the automatic
agents provide high repair accuracy.

5.2 Qualitative Cost Optimization
This strategy gives preference to humans over automatic agents.
As a result, the human cost will be higher compared to the previous
strategy. In this strategy, when the input cells for an automatic
agent overlap with those for a human agent, the system first in-
vokes the automatic agent, and then asks the human to correct the
overlapping cells. This way, the human updates will be ordered last
and will not be undone by the automatic agent. Using this strategy,
we note: (1) Because humans are prioritized over automatic agents,
it is expected that this strategy results in better data quality com-
pared to the previous one. (2) Human cost is high in this strategy.
This strategy is suitable when invoking the automatic agents would
result in a low repair quality.

6 IDENTIFICATION OF BOTTLENECKS
There are several factors involved in repairing a cell, say c . We refer
to these factors as f actors(c), and include: (1) Detectors: Human
or automatic agents that have flagged c’s old value as erroneous;
(2) Repairers: Agents (humans or automatic) that have computed
the repair in c ; (3) Cleaning resources: Resources used to compute c ,
which include Rules, Metadata, etc. (4) Data Validators: Humans that
validated c as a correct repair (if c has been subject to validation).
Therefore, the framework has to keep track of the provenance of

5

every computed repair expressed in terms of all the factors that
were involved to compute the repair for given cells.

After human validation, if a repair for c is deemed accurate (re-
spectively, inaccurate), then every factor in f actor (c) should be
rewarded (respectively, penalized). Providing this accountability
will help identify factors that are commonly associated with inac-
curate repairs. This assessment is crucial for humans as it helps
them identify bottlenecks in the cleaning pipeline as a whole.
Scoring factors: One way to capture the reliability of different
factors is to compute a score for each one of them that reflects how
“good” each factor is. A simple way to capture the quality of a given
factor f ∈ f actor (c) is the following:

Quality(f) =
#correct(f)

#validated(f)
(2)

Equation 2 calculates the ratio of correct cells (as validated by a
human) where f was involved over the total number of validated
cells where f was involved.

Since they would result in inaccurate repairs, the “bad” factors
would elicit more human feedback than the “good” ones. There-
fore, identifying them is crucial to minimize the human cost in the
cleaning process.
Scenario 2: Consider Example 1.1. We want to perform a new
cleaning iteration with an additional FD rule that will be enforced
on table Branches_v1 (Figure 1). Let us add an incorrect FD rule:
ϕ2 : City → Zip. This rule states that records that share the same
City should have the same Zip code. This is in reality not cor-
rect because a city can have multiple zip codes. We now create a
new data cleaning job: job6 : ⟨C = {tb ′[Zip] = ∗, tb ′[City] = ∗},
D = {ϕ1,ϕ2}, R = {R1}, V = ∅⟩

The set of violating cells will beC ̸ |= = {tb ′1[Zip], tb
′
1[City], tb

′
4[Zip],

tb ′4[City], tb
′
5[Zip], tb

′
5[City]} . Let us assume that R1 lifts the vi-

olation by setting tb ′1[Zip] = 47904. Let us call the repaired cell
tb ′′1 [Zip].

If we want to ask Jen, a human validator about the repairs com-
puted by R1, which violating cells should we ask her to validate?
More importantly, how does the choice of cells we choose to vali-
date affect the ability to isolate troublesome factors? Furthermore,
how can we adjust the choice of cells to validate to our available
human budget? To shed some light on answering those questions,
we discuss the following key cases:
(1) If we validate cells that were computed using many factors,

we get an aggregate feedback on all the involved factors. For
instance, asking Jen to validate tb ′5[City] would provide a feed-
back about ϕ1, ϕ2 and R1 (that cell was involved in two viola-
tions across different cleaning iterations). This is useful to get
a feedback about many factors at once, however, it may not
be good at isolating factors to identify the bottlenecks causing
inaccurate repairs. This strategy is suitable when the cost of
involving human validators is high. Therefore, this strategy al-
lows us to have an idea about as many factors as possible using
the least number of cells to hopefully identify a combination of
factors that produced inaccurate repairs.

(2) If we validate cells that were computed using few factors, we
get a more fine-grained feedback about the involved factors.
For example, asking Jen to validate tb ′′1 [City] and tb ′′1 [Zip]
(which represent the repairs for cells tb ′1[City] and tb ′1[Zip]

respectively) would isolate ϕ2 as a problematic FD rule (since
tb ′1[Zip] and tb ′1[City] violated ϕ2 only). While this strategy
provides a better isolation of factors, it involves more cells to be
validated which translates into spending a higher human cost.

7 RELATEDWORK
There is a rich literature on Data Cleaning techniques and theory [1,
4, 13, 14, 16, 21]. We discuss a few papers in two areas: general data
cleaning systems and human-assisted data cleaning techniques.
General Data Cleaning Systems: A strongly related system to
our proposal is the data cleaning system NADEEF [10]. Like our
envisioned system, NADEEF adopts a system-approach to realize
an end-to-end data cleaning framework that supports a number
of data cleaning tasks (rule-based repairing, deduplication, etc.).
NADEEF offers a programming interface so that users can imple-
ment detection and repairing components. As opposed to NADEEF,
our framework not only supports automatic agents, but supports
involving humans in all the stages of the data cleaning pipeline.
Another related system is KATARA [8] which leverages the crowd
and knowledge bases (KB) to clean dirty tables. KATARA is not
rule-driven and can repair any cells in the input tuples (hence its
categorization as a general data cleaning system). KATARA jointly
uses the KB and the crowd feedback to identify correct and er-
roneous data in the input dirty table. Our vision is different from
KATARA as we are considering humans with different expertise and
roles (as opposed to using non-expert crowd workers). Furthermore,
our envisioned system supports any number of cleaning agents for
different cleaning tasks (integrity constraints, deduplication, etc.).
Human-Guided Data Cleaning: The idea of assisting humans in
specific data cleaning problems (Entity Resolution, Schema trans-
formations, etc.) has been widely studied [3, 11, 19, 22, 23, 26].
However, human involvement in these proposals is coupled to the
underlying cleaning logic. Our proposal complements this line of
work by enabling any number of cleaning tools to co-exist in the
same platform while supporting multi-tool, algorithm-agnostic use
cases that are otherwise not captured when using a tool to perform
a specific data cleaning task.

The crowdsourcing literature [17] focuses mainly on scenar-
ios that involve non-expert humans. However, in our framework,
humans have multiple roles with varying degrees of expertise. Fur-
thermore, our setup supports non-human agents as well.
8 ACKNOWLEDGMENT
Walid Aref acknowledges the support of the National Science Foun-
dation under Grant Number III-1815796.
9 CONCLUSIONS
Scaling the generation and processing of big data often comes at
the cost of its quality. We presented our vision for a framework that
assists humans in all the major stages of the cleaning pipeline. We
proposed several properties that need to be met to unlock the full
potential of mixing humans and cleaning tools in the data cleaning
pipeline. We raised key questions that need to be addressed to bring
the vision to life. There are still many other questions that were not
addressed in this vision such as data privacy, i.e., how can humans
clean the data in the presence of privacy constraints? But we believe
the vision raises central questions that we need to answer to realize
a human-centric data cleaning system.

6

REFERENCES
[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where are we and what needs to be done? PVLDB 9, 12
(2016), 993–1004. http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf

[2] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker. 2016.
DataXFormer: A robust transformation discovery system. In ICDE.

[3] A. Assadi, T. Milo, and S. Novgorodov. 2017. DANCE: Data Cleaning with
Constraints and Experts. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). 1409–1410. https://doi.org/10.1109/ICDE.2017.199

[4] Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noel Novelli, and Sara-
vanan Thirumuruganathan. 2018. Discovery of Genuine Functional Dependencies
from Relational Data with Missing Values. PVLDB 11 (2018), 880–892.

[5] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. 2005. A
Cost-based Model and Effective Heuristic for Repairing Constraints by Value
Modification. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’05). ACM, New York, NY, USA, 143–154.
https://doi.org/10.1145/1066157.1066175

[6] Q. Gu J. Han P. Yu C. Aggarwal, X. Kong. 2014. Active Learning: A Survey, Data
Classification: Algorithms and Applications. In CRC Press.

[7] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013. 458–469. https://doi.org/10.1109/
ICDE.2013.6544847

[8] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In SIGMOD Conference.

[9] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving
Data Quality: Consistency and Accuracy. In Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27,
2007. 315–326. http://www.vldb.org/conf/2007/papers/research/p315-cong.pdf

[10] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F.
Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: A Commodity Data
Cleaning System. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’13). ACM, New York, NY, USA, 541–552.
https://doi.org/10.1145/2463676.2465327

[11] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh
Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon
Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to
Build Cloud Services. In SIGMOD Conference.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. 2007. Duplicate Record
Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering
(2007).

[13] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Morgan & Claypool Publishers.

[14] Ihab F. Ilyas and Xu Chu. 2015. Trends in Cleaning Relational Data: Consistency
and Deduplication. Found. Trends databases 5, 4 (Oct. 2015), 281–393. https:
//doi.org/10.1561/1900000045

[15] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On Approximating Optimum
Repairs for Functional Dependency Violations. In Proceedings of the 12th Inter-
national Conference on Database Theory (ICDT ’09). ACM, New York, NY, USA,
53–62.

[16] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and EugeneWu. 2017. Boost-
Clean: Automated Error Detection and Repair for Machine Learning. CoRR
abs/1711.01299 (2017). arXiv:1711.01299 http://arxiv.org/abs/1711.01299

[17] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. 2016. Crowdsourced Data Manage-
ment: A Survey. IEEE Transactions on Knowledge and Data Engineering 28, 9 (Sept
2016), 2296–2319.

[18] Romila Pradhan, Siarhei Bykau, and Sunil Prabhakar. 2017. Staging User Feedback
toward Rapid Conflict Resolution in Data Fusion. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017. 603–618.

[19] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Inter-
active Data Cleaning System. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 381–390. http://dl.acm.org/citation.cfm?id=645927.672045

[20] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[21] Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch Cher-
niack, Stanley B. Zdonik, Alexander Pagan, and Zhan Xu. 2013. Data Curation at
Scale: The Data Tamer System. In CIDR.

[22] Saravanan Thirumuruganathan, Laure Berti-Equille, Mourad Ouzzani, Jorge-
Arnulfo Quiane-Ruiz, and Nan Tang. 2017. UGuide: User-Guided Discovery of
FD-Detectable Errors. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD ’17). ACM, New York, NY, USA, 1385–1397.
https://doi.org/10.1145/3035918.3064024

[23] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. 2014. Crowdsourcing Algo-
rithms for Entity Resolution. Proc. VLDB Endow. 7, 12 (Aug. 2014), 1071–1082.
https://doi.org/10.14778/2732977.2732982

[24] JiannanWang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. 2012. CrowdER:
Crowdsourcing Entity Resolution. Proc. VLDB Endow. 5, 11 (July 2012), 1483–1494.
https://doi.org/10.14778/2350229.2350263

[25] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers
in Aggregate Queries. Proc. VLDB Endow. 6, 8 (June 2013), 553–564. https:
//doi.org/10.14778/2536354.2536356

[26] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani,
and Ihab F. Ilyas. 2011. Guided Data Repair. Proc. VLDB Endow. 4, 5 (Feb. 2011),
279–289. https://doi.org/10.14778/1952376.1952378

7

http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf
https://doi.org/10.1109/ICDE.2017.199
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
http://www.vldb.org/conf/2007/papers/research/p315-cong.pdf
https://doi.org/10.1145/2463676.2465327
https://doi.org/10.1561/1900000045
https://doi.org/10.1561/1900000045
http://arxiv.org/abs/1711.01299
http://arxiv.org/abs/1711.01299
http://dl.acm.org/citation.cfm?id=645927.672045
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1145/3035918.3064024
https://doi.org/10.14778/2732977.2732982
https://doi.org/10.14778/2350229.2350263
https://doi.org/10.14778/2536354.2536356
https://doi.org/10.14778/2536354.2536356
https://doi.org/10.14778/1952376.1952378

	Abstract
	1 Introduction
	2 Architecture Overview
	2.1 Terminology
	2.2 Architecture

	3 Humans in the Cleaning Process
	3.1 Characterizing Human Expertise

	4 Task Allocation
	4.1 Human-to-Human Interactions
	4.2 Task Assignment

	5 Cross-Agent Cost Optimization
	5.1 Quantitative Cost Optimization
	5.2 Qualitative Cost Optimization

	6 Identification of Bottlenecks
	7 Related Work
	8 Acknowledgment
	9 Conclusions
	References

