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ABSTRACT
The proliferation of mobile phones and location-based ser-
vices gives rise to an explosive growth of spatial data. This
spatial data contains valuable information, and calls for data
stream warehouse systems that can provide real-time ana-
lytical results with the latest integrated spatial data. In this
demonstration, we present the STAR (Spatial Data Stream
Warehouse) system. STAR is a distributed in-memory spatial
data streamwarehouse system that provides low-latency and
up-to-date analytical results over a fast spatial data stream.
STAR supports a rich set of aggregate queries for spatial
data analytics, e.g., contrasting the frequencies of spatial ob-
jects that appear in different spatial regions, or showing the
most frequently mentioned topics being tweeted in differ-
ent cities. STAR processes aggregate queries by maintaining
distributed materialized views. Additionally, STAR supports
dynamic load adjustment that makes STAR scalable and adap-
tive. We demonstrate STAR on top of Amazon EC2 clusters
using real data sets.
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1 INTRODUCTION
With the proliferation of GPS-equipped mobile devices and
location based services, there has been an explosive growth
in spatial data. Numerous social-media users upload posts on
Twitter or Facebook using their smart phones, giving rise to
a fast-arriving spatial-data stream. This spatially annotated
data contains valuable information, and it is beneficial for
performing spatial data analytics. Ad-hoc aggregate queries
provide very valuable insights on the data, and facilitate the
decision making process. For instance, consider a marketing
manager who wants to know the popularity of some product
in various regions so that she can decide whether to adjust
the advertising strategy or not. She can issue an ad-hoc
aggregate query that returns the frequencies grouped by
region of the newly uploaded posts on social networks that
talk about the product.
To minimize the gap between data production and data

analysis, a data streamwarehouse system (DSWS, for short) [1,
3, 4] provides real-time analytics over data streams. DSWSs
are designed to efficiently ingest data and enable online an-
alytical processing (OLAP) over the streamed data. A full-
fledged DSWS allows users to issue queries that monitor
changes in characteristics of streamed data (i.e., continuous
queries) as well as queries that ask for statistics of already
arrived data (i.e., snapshot queries).
Although spatial data is explosive in size, research on

distributed DSWSs that provide native spatial data stream
analytics is still lacking. Most existing distributed systems [6]
focus on developing spatial data management systems over
static data sets, and these systems are not designed for streamed
data and do not support continuous or snapshot ad-hoc ag-
gregate queries over spatial data streams. Existing distributed
spatial data stream systems, e.g., [2, 5], aim to support search
queries, e.g., continuous spatial-keyword range queries, but
are not optimized for or do not support ad-hoc aggregate
queries. Furthermore, they only support continuous queries
but not snapshot queries.

This demonstration presents STAR, a Spatial Data Stream
Warehouse) system for spatial data analytics over spatial
data streams. STAR supports both snapshot and continuous
types of aggregate queries that can have arbitrary constraints
over spatial, textual, and temporal data attributes. STAR sup-
ports algebraic aggregate functions, e.g., 𝐶𝑜𝑢𝑛𝑡 , 𝐴𝑣𝑔, and
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𝑆𝑢𝑚. Also, STAR supports holistic aggregate functions, e.g.,
𝑇𝑜𝑝𝐾 . STAR has a novel workload partitioning strategy that
materializes distributed views in-memory to efficiently parti-
tion the workload. In particular, STAR has following features:

• STAR is the first system that supports a rich set of
aggregate queries over spatial data streams. STAR sup-
ports both snapshot and continuous queries that are
composed of algebraic or holistic aggregate functions
and ad-hoc query constraints over spatial, textual and
temporal data attributes.

• STAR supports SQL-like queries. It allows users to in-
teract with the system in real-time. STAR achieves high
throughput and low-latency by adopting a new work-
load partitioning strategy and maintaining distributed
materialized views when processing and answering
aggregate queries over spatial data streams.

• STAR is scalable and adaptive. It repartitions the work-
load dynamically to adapt to changes in the workload.

2 OVERVIEW OF STAR
Data Types: Each object in STAR has primitive and/or ex-
tracted or derived attributes. Primitive attributes store raw
streamed data while the extracted or derived attributes store
data that is extracted or derived from the data in the prim-
itive attributes. We assume that the raw data has at least
primitive attributes 𝑙𝑜𝑐 and 𝑡𝑖𝑚𝑒 , where 𝑙𝑜𝑐 represents the
geographical latitude and longitude, and 𝑡𝑖𝑚𝑒 represents
the timestamp. The raw data can also have other primitive
attributes, e.g., 𝑡𝑒𝑥𝑡 that contains a set of terms. STAR inte-
grates a set of tools to produce extracted data from primitive
ones. For example, data in Attribute 𝑡𝑜𝑝𝑖𝑐 can be extracted
from 𝑡𝑒𝑥𝑡 by employing a pre-trained Latent Dirichlet Allo-
cation (LDA) model. Figure 1 gives an example of primitive
and extracted attributes.
SupportedQueries: STAR is optimized for aggregate queries
with ad-hoc or arbitrary constraints over attributes, e.g., 𝑙𝑜𝑐 ,
𝑡𝑒𝑥𝑡 , and 𝑡𝑖𝑚𝑒 . STAR supports both algebraic and holistic ag-
gregate functions. Algebraic aggregate functions, e.g.,𝐶𝑜𝑢𝑛𝑡
can be computed over the disjoint data partitions, then the
partial results are aggregated to obtain the final aggregate re-
sults. In contrast, holistic aggregate functions, e.g.,𝑇𝑜𝑝𝐾 that
returns the 𝑘 most-frequent terms appearing in Attribute
𝑡𝑒𝑥𝑡 , aggregate over the entire data set to obtain the result.

STAR supports range and keyword constraints over At-
tributes 𝑙𝑜𝑐 and 𝑡𝑒𝑥𝑡 , respectively. For Attribute 𝑡𝑖𝑚𝑒 , STAR
focuses on the time-window constraint that focuses only
on the more recently streamed data. STAR expresses these
constraints using SQL-like syntax, e.g.,
SELECT aggr_func() FROM stream
WHERE condition(s) GROUP BY attribute(s)
[SYNC freq].

aggr_func() represents an aggregate function, condition(s)
represents the constraints, and attribute(s) represent the ones
used for grouping. STAR allows users to define a continuous
query by providing SYNC operator: SYNC freq indicates
that the query result is refreshed every 𝑓 𝑟𝑒𝑞 time.
For example, the following shows a snapshot query that

returns the popularity trend of iPhone in a certain region 𝑅
(The result is grouped by date):
SELECT Count(), 𝑑𝑎𝑡𝑒 FROM stream
WHERE 𝑙𝑜𝑐 INSIDE 𝑅 AND 𝑡𝑒𝑥𝑡 CONTAINS “iphone”
GROUP BY 𝑑𝑎𝑡𝑒 .
As another example, the following shows a continuous

query that finds the most frequent terms of each topic on
the objects that are within a region 𝑅 every 1 minute:
SELECT TopK(), 𝑡𝑜𝑝𝑖𝑐 FROM stream
WHERE 𝑙𝑜𝑐 INSIDE 𝑅
GROUP BY 𝑡𝑜𝑝𝑖𝑐 SYNC 1 minute.

3 SYSTEM ARCHITECTURE
Figure 2 gives the system architecture for STAR. We imple-
ment STAR on top of Apache Storm1, a popular distributed
stream processing system. We select Storm as it provides
great flexibility for extensibility. However, our work is not
limited to Strom and can be applied to other streaming pro-
cessing frameworks like Flink2.

3.1 The Parser
The parser component takes as input streamed spatial objects
and query requests from users. It parses primitive attributes
of each object, and generates extracted attributes accordingly.
A set of tools are embedded to support the procedure. The
query parser module is responsible for parsing user queries,
and transforms the SQL statements into a pre-defined data
structure in STAR. The parsed queries are forwarded to the
router component for further evaluation.

3.2 The Router
The router component is responsible for workload distribu-
tion and dynamic load adjustment.
The Global Index Manager. The index manager module
maintains a global index structure to facilitate workload dis-
tribution that is built based on the workload partitioning
strategy. The workload of STAR is composed of object pro-
cessing, query processing, and view maintenance.

STAR uses a quadtree to partition the workload for its
efficiency in both querying and updating. The workload par-
titioning algorithm performs two phases. In the first phase,
it initializes a quadtree as one root node, and recursively
partitions the nodes until the number of nodes exceeds the
1http://storm.apache.org/
2https://flink.apache.org/
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Primitive Attributes Extracted Attributes

𝑙𝑜𝑐 𝑡𝑒𝑥𝑡 𝑡𝑖𝑚𝑒 𝑐𝑖𝑡𝑦 𝑡𝑜𝑝𝑖𝑐 𝑑𝑎𝑡𝑒
40.7, 74.0 Can’t wait to see the NBA final. 2020-01-02 13:12:02 New York sport 2020-01-02

42.3, 71.0 The iPhone X looks amazing. 2020-01-02 09:03:32 Boston IT 2020-01-02

34.0, 118.2 I am watching the latest Star War movie. 2020-01-03 18:02:49 Los Angeles movie 2020-01-03

Figure 1: Example of primitive and extracted attributes.
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Figure 2: System Architecture of STAR.

number of workers. It decides which node to partition based
on the load information. It estimates the load of a node
as |𝑂 | × |𝑄 |, where 𝑂 and 𝑄 are the objects and queries,
respectively, that are inside or overlap the node. Let 𝛿 be
a load imbalance threshold, and 𝐿𝑚𝑎𝑥 (resp. 𝐿𝑚𝑖𝑛) be the
maximum (resp. minimum) load of the candidate nodes. If
𝐿𝑚𝑎𝑥/𝐿𝑚𝑖𝑛 > 𝛿 , then the workload partitioning algorithm
chooses the node with maximum load to partition as, other-
wise it would result in load imbalance. If 𝐿𝑚𝑎𝑥/𝐿𝑚𝑖𝑛 ≤ 𝛿 , then
the workload partitioning algorithm chooses the node that
invokes the minimum sum of loads after being partitioned.
In the second phase, it assigns the leaf nodes of the quadtree
to different partitions. It uses depth-first search to allocate
adjacent cells into the same partition. The goal is to reduce
the total load as some queries may overlap multiple adjacent
cells, and assigning them to different partitions may increase
the computation overhead. For each partition, we select a
set of views to be materialized, and compute the load of each
partition. We check if the load balance constraint can be sat-
isfied. In this case, we produce as output, the quadtree index
and the corresponding partitions. Else, we further partition
the leaf nodes, and repeat the above procedure.

The quadtree acts as a global index for workload distribu-
tion. To determine the destination worker(s) where an object
or a query should be sent to, the router needs to traverse from
the root to the leaf node(s). This procedure takes 𝑂 (ℎ) time,

where ℎ is the height of the quadtree. This imposes heavy
burden on the router when the arrival speeds of objects and
queries are fast.

To reduce the load on the router, we transform the quadtree
into a grid index. The granularity of the grid index is decided
by the leaf nodes of the quadtree. Figure 3 gives a quadtree
and its corresponding grid index. The grid index partitions
the global space into 4 × 4 cells as the height of the quadtree
is 2. By using a grid index, the router takes 𝑂 (1) time to
locate the local worker for an object. The time complexity
of deciding the local worker(s) for a query is 𝑂 (𝑅/𝑐), where
𝑅 is the area of the query range, and 𝑐 is the cell size.

𝑤" 𝑤"

𝑤" 𝑤#
𝑤#

𝑤$
𝑤$ 𝑤$

𝑤% 𝑤%

𝑤$𝑤$

𝑤" 𝑤"

𝑤" 𝑤#

𝑤$ 𝑤$

𝑤$ 𝑤$

𝑤# 𝑤#

𝑤# 𝑤#

𝑤% 𝑤%

Figure 3: The quad-tree and corresponding grid index.

Load Monitor. The load monitor is responsible for dynamic
load adjustment. It monitors the load of each worker. When
it detects load imbalance among workers, it notifies the most
loaded worker, say𝑤𝑜 , to transfer part of𝑤𝑜 ’s workload to
other workers. We adjust the workload by migrating leaf
nodes of the global index into other workers.
After receiving notification from the router, Worker 𝑤𝑜 ,

having the maximum load, computes the amount of load that
needs to be transferred. Let 𝐵 be the cells bordering𝑤𝑜 .𝑤𝑜

sorts 𝐵 in descending order of 𝑙𝑜𝑎𝑑 (𝑔)/𝑠𝑖𝑧𝑒 (𝑔), where 𝑔 ∈ 𝐵.
For each 𝑔 ∈ 𝐵,𝑤𝑜 transfers 𝑔 to the router, and the router
sends 𝑔 to another worker that contains cells being adjacent
to 𝑔. If multiple candidates exist, the one having minimum
load is selected. This procedure repeats until the load balance
constraint is satisfied, or until𝑤𝑜 has finished transferring
𝐵 to other workers.

3.3 The Worker
The worker component is responsible for processing objects
and queries, and maintaining materialized views.
The Local Index Manager. This module maintains an in-
memory local index structure to process objects and queries.
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It also maintains a set of materialized views in-memory to
accelerate answering the queries.
First, the objects are categorized over the timeline into a

set of time slots, where different time slots have different
granularities. The more recent data has a finer granularity
while the older data has coarser granularity. The granularity
follows an exponential function 𝑓 (𝑥) = 2𝑥 , where 𝑥 repre-
sents the lifetime of the data in the system (#hours). The
system periodically checks whether adjacent time slots can
bemerged. Two adjacent time slots can bemergedwhen their
granularities are the same. Since users usually focus more
on the more recent data, they can tolerate minor accuracy
loss in the old data. The system periodically checks the data
size and deletes the oldest data when the data size exceeds
a predefined threshold, which can be efficiently achieved
by deleting the oldest time slot(s). This design is good for
memory efficiency of STAR and allows efficient deletion of
old data.
In each time slot, a quad-tree is employed to index the

objects. Objects having the 𝑡𝑒𝑥𝑡 attribute are further catego-
rized using an inverted index. Each node of the quad-tree
may maintain a set of materialized views, which can be used
for answering queries whose range constraints fully cover
the spatial range of the node. The materialized views are
stored as key-value pairs.
Query Processor. On receiving a query 𝑞, the query pro-
cessor checks whether the materialized views can be used to
answer 𝑞. Then, it selects the view(s) that incur the minimum
cost to process 𝑞. Otherwise, it processes 𝑞 by using the index
structure that stores the objects and outputs an intermedi-
ate result. Then, the intermediate result is forwarded to the
aggregator to compute the final result.

4 DEMO SCENARIO
Wedemonstrate the capabilities of STAR using two additional
application scenarios. STAR is the first system that natively
supports both snapshot and continuous types of such queries
and we are not aware of other existing systems supporting
such queries. Figure 4 shows the map assisted user interface
of STAR.
Taxi Service. In this scenario, a manager of a taxi company
wants to adjust the distribution of taxis in a region. To maxi-
mize the profit, the manager would like to distribute taxis
according to the number of customers in different streets.
The manager can issue the following query to track the num-
ber of customers on each street in a region every minute.
SELECT 𝐶𝑜𝑢𝑛𝑡 (), 𝑠𝑡𝑟𝑒𝑒𝑡𝑁𝑎𝑚𝑒 ,𝑚𝑖𝑛𝑢𝑡𝑒 FROM 𝑠𝑡𝑟𝑒𝑎𝑚

WHERE 𝑙𝑜𝑐 INSIDE 𝑅 AND 𝑡𝑖𝑚𝑒 AFTER “10 mins ago”
GROUP BY 𝑠𝑡𝑟𝑒𝑒𝑡𝑁𝑎𝑚𝑒 ,𝑚𝑖𝑛𝑢𝑡𝑒 SYNC 1 minute.

News Recommendation. In this scenario, a system man-
ager of a news recommendation system wants to provide
localized news recommendation service. For the quality of
service, the manager would like to recommend news on the
latest “hot topic”. The manager can issue the following query
to find the hot topics for a region in the last 10 minutes.
SELECT 𝐶𝑜𝑢𝑛𝑡 (), 𝑡𝑜𝑝𝑖𝑐 ,𝑚𝑖𝑛𝑢𝑡𝑒 FROM 𝑠𝑡𝑟𝑒𝑎𝑚

WHERE 𝑙𝑜𝑐 INSIDE 𝑅 AND 𝑡𝑖𝑚𝑒 AFTER “10 mins ago”
GROUP BY 𝑡𝑜𝑝𝑖𝑐 ,𝑚𝑖𝑛𝑢𝑡𝑒
ORDER BY 𝐶𝑜𝑢𝑛𝑡 () DESC.

Query

Draw a region to define R

Submit Cancel

SELECT Count(), topic, minute
FROM stream
WHERE loc INSIDE R
AND time AFTER “10 mins ago”
GROUP BY topic, minute
ORDER BY Count() DESC;

Figure 4: Map assisted user interface.
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