
https://doi.org/10.1007/s10707-019-00380-z

Local trend discovery on real-timemicroblogs
with uncertain locations in tightmemory environments

Abdulaziz Almaslukh1 ·Amr Magdy1 ·AhmedM. Aly2 ·Mohamed F. Mokbel3 ·
Sameh Elnikety4 ·Yuxiong He4 · Suman Nath4 ·Walid G. Aref5

Received: 15 January 2019 / Revised: 4 August 2019 / Accepted: 16 August 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper presents GeoTrend+; a system approach to support scalable local trend discov-
ery on recent microblogs, e.g., tweets, comments, online reviews, and check-ins, that come
in real time. GeoTrend+ discovers top-k trending keywords in arbitrary spatial regions from
recent microblogs that continuously arrive with high rates and a significant portion has
uncertain geolocations.GeoTrend+ distinguishes itself from existing techniques in different
aspects: (1) Discovering trends in arbitrary spatial regions, e.g., city blocks. (2) Considering
both exact geolocations, e.g., accurate latitude/longitude coordinates, and uncertain geolo-
cations, e.g., district-level or city-level, that represents a significant portion of past years
microblogs. (3) Promoting recent microblogs as first-class citizens and optimizes different
components to digest a continuous flow of fast data in main-memory while removing old
data efficiently. (4) Providing various main-memory optimization techniques that are able
to distinguish useful from useless data to effectively utilize tight memory resources while
maintaining accurate query results on relatively large amounts of data. (5) Supporting vari-
ous trending measures that effectively capture trending items under a variety of definitions
that suit different applications. GeoTrend+ limits its scope to real-time data that is posted
during the last T time units. To support its queries efficiently, GeoTrend+ employs an in-
memory spatial index that is able to efficiently digest incoming data and expire data that is
beyond the last T time units. The index also materializes top-k keywords in different spa-
tial regions so that incoming queries can be processed with low latency. In peak times, the
main-memory optimization techniques are employed to shed less important data to sustain
high query accuracy with limited memory resources. Experimental results based on real data
and queries show the scalability of GeoTrend+ to support high arrival rates and low query
response time, and at least 90+% query accuracy even under limited memory resources.

Keywords Microblogs · Trend · Spatial · Real-time · Indexing · Query processing ·
Adaptive memory optimization · Uncertainty · Uncertain location

� Abdulaziz Almaslukh
aalma021@ucr.edu

Extended author information available on the last page of the article.

Geoinformatica (2020) 24:301–337

Published online: 10 ptember 2019Se

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-019-00380-z&domain=pdf
http://orcid.org/0000-0002-2147-5772
mailto: aalma021@ucr.edu

1 Introduction

Timely discovering and understanding localized trending events from online microblogs,
e.g., tweets, comments, and check-ins, have become a reality. In fact, news agencies and
people have referred to Twitter (a prime microblogging service) to get timely news about
various events, e.g., Michael Jackson death [39], Boston explosions [6], tracking health
issues [21], and China floods [11]. This is so popular that it outstrips TV as a news source
for young people [5]. As a result, Twitter has released its own feature of localized trending
hashtags [48], which shows current trending hashtags in a country or a city. Following the
needs and importance of such a feature, various research efforts were dedicated to online
local event discovery from microblogs [1, 8, 17, 33, 45]. Unfortunately, current efforts are
tailored to finding events in pre-defined areas, where one needs to first specify the areas
of interest, e.g., California, then start to detect events and news in these areas. In order to
have worldwide high resolution coverage of such feature, there is a real need for a detection
technique that: (a) covers arbitrary ad-hoc areas that are not pre-specified to the system, and
(b) covers high resolution areas, e.g., finding events within part of the city, or events at the
street level.

Up to our knowledge, there are two main attempts to support localized trend discov-
ery with arbitrary spatial regions [26, 45]. However, one of these techniques ([45]) is built
on two simplistic assumptions: (1) It assumes a very simplistic definition of “trending”
queries as “frequent” queries, which can be computed through simple counting techniques,
and (2) it assumes that the underlying system has unlimited memory. Hence, it does
not account for expiring data from memory, which is crucial to ensure the accuracy of
trending queries on recent data. Meanwhile, the second approach ([26]) is designed in a
generic way to support trending queries for various contexts, where location can be con-
sidered as a context. Due to its generic nature, it has two main drawbacks: (1) It does
not take advantage of the distinguishing characteristics of the spatial dimension, and (2) It
is mainly designed to handle queries on arbitrarily large historical time periods, which
makes it poor in handling queries on recent data in terms of both query performance
and memory consumption, while recent data is the most important in discovering timely
trends.

In this paper, we present GeoTrend+; a holistic system approach that supports online
trending queries for arbitrary ad-hoc areas with limited memory resources. GeoTrend+
abstracts localized trending queries to be in the form: “Find the top-k trending keywords in
the last T time units in area R”, where R is an arbitrary ad-hoc area and the keyword search
is a proxy for trending events. For example, a tourist who visits New York city wishes to
discover what is trending in Manhattan district instead of the whole city. She might get
“Hamilton” and “Wicked” as local trending shows on Broadway. Another example is getting
first-hand access to local news, so users and news agencies search for local news in Boston
through social media during the Boston Marathon Explosions in 2013 [6]. In specific, peo-
ple might find out more information about the incident such as the suspects and the victims
as their names might be trending. A third example is localizing the tracking of health issues,
that is currently adopted by the US Department of Human and Health Services [21], in dif-
ferent districts within the city for earlier and faster response for epidemics. To serve such
diverse applications, GeoTrend+ adopts a wide definition of trending keywords that goes
beyond the simple counting assumption (i.e., frequent keywords) to consider trending as the
growth in number of appearances over the query period T . It is likely that trending keywords
are not among the frequent ones. For example, the keyword “love” is consistently frequent
in Twitter, and it appears much more frequent than the keyword “elections”, while the latter

Geoinformatica (2020) 24:301–337302

is considered trending over the election week. This particular property along with the focus
on supporting recent trending queries (i.e., last T time units) are the main distinctions of
GeoTrend+ over its main competitors [26, 45].

GeoTrend+ employs an in-memory partial pyramid index structure [4] that is able to
digest incoming real-time microblogs with high arrival rates. The partial pyramid hierarchy
divides the entire space into a set of multi-layers cells, where cells in each layer are non-
overlapping. To accommodate incoming data in limited memory resources, each index cell
is equipped with a novel and efficient count aggregation technique that maintains count-
based measures over the last T time units and expires data that is outside T . Injecting the
concept of expiration in our aggregation is a key to GeoTrend+ success, as it ensures dis-
covering trends from only recent data and ensures continuous digestion of fresh microblogs
in the limited memory. GeoTrend+ count aggregation technique distinguishes itself from all
previous sliding-window counting techniques (e.g., [3, 13, 20, 31]) by its simple and effi-
cient structure that uses low-overhead update techniques to digest/expire microblogs with
high rates; up to an order of magnitude higher than Twitter rate. In particular, it uses a con-
stant memory per keyword regardless of the length of time span T . This is in contrast to
existing techniques that have memory overhead proportional to T . This enables GeoTrend+
to support arbitrarily large time spans with millions of keywords while using much less
memory. For scalable query processing, each GeoTrend+ index cell maintains a material-
ized list of top-k trending keywords that appear within the cell spatial boundaries. Then,
incoming queries with arbitrary spatial regions efficiently merge the materialized top-k lists
to come up with a final top-k list.

GeoTrend+ extends GeoTrend [35] to provide two new functionalities: indexing
microblogs with uncertain locations and providing adaptive memory optimization that
enables scalable accurate queries in tight memory environments. Uncertain locations, e.g.,
geotagging a microblog with a whole city instead of an exact point location, have become
more popular with more restrictive privacy policies that prevent sharing exact user loca-
tions by default. In fact, the statistics on real Twitter data over the past three years show
that 85% of geotagged tweets are associated with uncertain locations. All existing trend
discovery techniques, including GeoTrend [35], approximate an uncertain location with a
representative point location, e.g., city center. However, such approximation is simplifying
both indexing and main-memory overheads as it avoids the expensive operations that repli-
cate the same data record in multiple locations. For example, a single city typically spans
several index cells and requires a microblog with city-level location to be represented in all
these cells, which adds overhead to real-time indexing and memory usage. Our extended
techniques in this paper provide indexing and memory optimization techniques that are able
to support uncertain locations in real time with limited resources.

Despite the low memory overhead that is provided by GeoTrend+ count aggregation
technique, the overwhelming amount of microblogs data still encounter high memory foot-
print in peak times. Thus, GeoTrend+ supports different settings; one of the most important
settings is employing memory optimization techniques that exploit the nature of user-
generated data to smartly select and shed less important keywords that are unlikely to
contribute to any incoming query. The new techniques extend GeoTrend [35] memory opti-
mizer to include parameter adaptivity that treats spatial areas at different spatial levels
differently to allow maximum memory saving with almost no loss in query accuracy as
verified in our experimental evaluation.

GeoTrend+ is experimentally evaluated based on a real system prototype with a real-
time feed of tweets and locations of Bing Mobile search queries. Our experiments show that
GeoTrend+ digests microblogs in high rates up to an order of magnitude higher than Twitter

Geoinformatica (2020) 24:301–337 303

rate, provides average query latency of few milli-seconds, and achieves much less memory
consumption than its competitors with 90+% query accuracy.

The rest of this paper is organized as follows. Section 2 highlights related work, Section 3
introduces our trending measures, and Section 4 gives an overview of GeoTrend+. The
GeoTrend+ indexing, memory optimization, and query processing are discussed in Sec-
tions 5, 6, and 7, respectively. Section 8 presents the experimental evaluation and Section 9
concludes the paper.

2 Related work

Related work to GeoTrend+ spans various areas, which include: trending items in data
streams, spatial queries on microblogs, and spatial aggregate queries.

Trending items in data streams Discovering trending items in data streams [7, 10, 25,
38] is a well-studied topic. However, the main focus of existing techniques on the entire
data stream, i.e., no support for old data expiration. Furthermore, there is no support for
the spatial aspect of incoming data streams. This renders all techniques in this category
not applicable for the problems addressed in GeoTrend+, which are: spatial querying with
uncertain geolocations, promoting recent data that encounter a high fraction of queries,
expiring old data as a necessity for digesting new microblogs, and providing efficient
indexing in tight memory environments.

Spatial queries on microblogs Microblog locations are exploited for either visualization,
where microblogs are plotted on the map [43, 50], geotagging, where geotags are extracted
from the microblog contents [24, 32], modeling, where a model is built between users, loca-
tions, and topics [22], local topic discovery, where collections of data items that relate to a
certain topic or event are discovered either in online or offline fashion [23, 28, 29, 44], or
real-time query processing [2, 8, 36, 45]. The topic discovery techniques mostly focus on
discovering cohesive clusters of related data items that are grouped into topics or events,
and generally involve expensive computations that make them inappropriate for handling
real-time streaming data continuously. The last category that addresses real-time query pro-
cessing is the most related to our work. However, none of the existing techniques addresses
either discovering trending items on recent microblogs or considering uncertain geoloca-
tions. In particular, Mercury [36] searches individual microblogs and does not support any
aggregate query. GeoScope [8] addresses an interesting, yet orthogonal, problem of find-
ing correlated location-topic pairs. Using GeoScope, we can support neither getting top-k
trending keywords as no ranking is employed nor handling arbitrary query regions as the
locations are considered as a predefined discrete set, e.g., cities. Finally, AFIA [45] sup-
ports getting the top-k frequent keywords on real-time data within arbitrary spatial regions.
However, AFIA [45] techniques cannot be extended to discover trending items as they
keep only top-k frequent keywords in their index with no other information about any
other keywords. kFST [2] extends AFIA to support large datasets that cannot fit in main-
memory, yet, it is still limited for only top-k frequent terms with no support for trending
items. The literature has other related work that is orthogonal from GeoTrend+. Firefly [53]
is an example that addresses the problem of data sparsity to identify effective keywords
that are related to local news. RefTopicSketch [56] is another example that focuses on
topic coherence of extracted trends. RevTopk [16] focuses on reverse frequent queries and
frequency estimation of certain keywords. [49] focuses on parallelizing query processing

Geoinformatica (2020) 24:301–337304

while consuming small memory overhead. [51, 52] identify users who have potential to
enhance news detection applications. All this work either focuses on different queries or
optimization goals and can be combined withGeoTrend+ to provide finer and more efficient
functionality.

Spatial aggregate queries There exists a lot of work in spatial aggregate queries, e.g.,
see [30, 34, 42, 46, 55], where the main focus is on building spatial index structures for disk-
resident data. Aggregate information is precomputed and maintained for easy retrieval. Data
is infrequently updated, and hence it is acceptable to use traditional spatial index structures
without additional features for high arrival rates. Unfortunately, none of these works can
support fast microblogs streams where high rates of digestion and expiration are cores issues
to address.

3 Trendingmeasures

Discovering trending items in microblogs currently depends on keyword count [8, 38, 47],
within a limited time period, due to its simple computations that scales for massive numbers
of microblogs. However, absolute count measure does not capture trending items effectively.
In fact, it promotes keywords that are immortally top frequent ones, e.g., job and love, while
ignoring other keywords that encounter considerable increasing count over time but they are
not among the top frequent ones. For example, consider two keywords love and elections.
Taking their count in hourly basis, over the last three hours, love has appeared 1000, 1150,
and 950 times, while elections has appeared 200, 400, and 600 times. While love is the most
frequent, it is clear that elections is a trending one. Yet, depending on absolute count does
not capture this.

To overcome such limitation, trending items in the broader context of streaming data [10,
25] are detected based on changes in items behavior over time. This correctly detects ris-
ing keywords even if they are not top frequent. However, existing popular measures usually
include expensive computations, e.g., Singular Value Decomposition, which is not effi-
cient to maintain incrementally. In fact, efficient incremental computations is crucial for
microblogs environments scalability, so that measures are not recomputed with new arrivals
of keywords that come in fast rates. For this, GeoTrend+ uses an efficient and effective
measure that is based on the keyword rate of count increase over time. Count is easy to
compute and maintain incrementally over time. So, measures that depend on count are suit-
able to scale in microblogs environments. GeoTrend+ can adapt several trending measures
as long as each of them is based on counting. Thus, GeoTrend+ is equipped with two mea-
sures: either rate of count increase over time, or weighted count over recent time period,
introduced in Sections 3.1 and 3.2, respectively.

3.1 Rate of increasemeasure

Rate of count increase over time is measured using a trend line slope that is computed based
on the statistical linear regression [27]. Assume the last T time units are divided into N

equal time intervals, trend line slope gauges the increase in keyword count in recent intervals
compared to the oldest interval as follows:

T rendreg = 6
∑N−1

i=1 [i × (ci − c0)]
N(N + 1)(2N + 1)

(1)

Geoinformatica (2020) 24:301–337 305

WhereN is the number of time intervals on which the count change is gauged over the last T
time units. ci , 0 ≤ i < N , is the count at time interval i, and for all i > j , interval i is more
recent than interval j , so that c0 is the oldest counter and cN−1 is the most recent counter.
The detailed derivation of Eq. 1 based on linear regression slope is shown in Appendix.

The value of N controls the accuracy of discovering trending items, as it represents the
number of counts for which the regression slope is calculated. The higher the value of N ,
the more accurate the regression output. Setting N=T gives the highest accuracy, yet it is
the most expensive computationally and memory-wise. On the contrary, setting N=2 is the
least expensive option that divides the whole T time units into two intervals, yet it provides
the least accuracy and might miss the actually rising keywords.

T rendreg measure that is presented in Eq. 1 is also efficiently maintainable in an incre-
mental way on the arrival of new appearances of the keyword. As a new keyword appearance
increase the count of just the most recent counter cN−1, the only affected term in T rendreg

would be (N − 1) × (cN−1 − c0). With increasing cN−1 by one, this term is increased by
(N − 1) and thus the whole T rendreg value is increased by 6(N−1)

N(N+1)(2N+1) (per Eq. 1). In
case N value is fixed through the processing of a microblog stream, which is the realis-
tic case, the increase in T rendreg is a constant value that guarantees efficient incremental
maintenance of T rendreg in real-time environments.

3.2 Weighted count measure

As an extensible framework for any count-based aggregate measure, GeoTrend+ can
employ weighted count over recent time period to detect frequent keywords in different spa-
tial regions. Assume the last T time units are divided into N equal time intervals, keyword
weighted count can be measured as follows:

T rendf req =
N−1∑

i=0

ci × wN−1−i (2)

Where 0 < w ≤ 1 is a weighting parameter, and N is the number of time intervals on
which the count is gauged over the last T time units. ci , 0 ≤ i < N , is the count at time
interval i, and for all i > j , interval i is more recent than interval j , so that c0 is the oldest
counter and cN−1 is the most recent counter.

T rendf req is an exponentially weighted sum of the N counters, where recent keyword
counts have higher weight than older ones. The weight of counter ci iswi , where i = (N−1)
is the most recent time period that has the highest weight w0 = 1, regardless the value of w.
Smaller w gives lower weight to older counts, and setting w to 1 gives equal weights to all
counts and produces total count over the last T time units. Similar to T rendreg , the value of
T rendf req is also efficiently maintainable in an incremental way where each new instance
of a keyword simply adds one to both cN−1 and T rendf req values.

For presentation simplicity, we assume to maintain a single trending measure T rendreg

(Eq. 1). However, GeoTrend+ can easily maintain more than one measure simultaneously
to support queries that get either recently rising keywords or absolute frequent keywords
using the same indexing data structures.

4 GeoTrend+Overview

This section gives GeoTrend+ system architecture (Section 4.1) and query formulation
(Section 4.2).

Geoinformatica (2020) 24:301–337306

4.1 System architecture

Figure 1 gives the architecture of GeoTrend+, which consists of a preprocessor and
three main components: an in-memory spatial index that embeds count aggregation and
expiration module, a memory optimizer module, and a query processor module.

Preprocessor Each incoming microblog first goes through a preprocessor that extracts its
timestamp, location, and keywords. A microblog location could be exact latitude/longitude
coordinates or uncertain location represented with a minimum bounding rectangle (MBR)
that determines a spatial range in which the microblogs is located, e.g., Chicago boundaries.
This location could be directly associated with the incoming microblog, if available, or asso-
ciated with the user profile who issued the microblog. Keywords are taken from hashtags
associated with microblogs, if present, or a random word of its text.

In-memory Index The preprocessed microblogs are digested, with high arrival rates, in
the in-memory spatial index with both exact and uncertain locations. The index divides
the space into multiple levels, each level consists of a set of non-overlapping cells. Each
index cell is equipped with efficient count aggregation and expirationmodule that maintains
trending measures for the cell’s keywords over the last T time units. So, any data that is older
than T is expired and thrown out of memory. Details of indexing are presented in Section 5.

Memory Optimizer In case of scarce memory resources, the memory optimizer module
is invoked on all index cells to shed keywords that are less likely to contribute to query
answers. This saves significant memory space while keep highly accurate queries. The
memory optimizer employs both fixed and adaptive parameters that provide different lev-
els of memory savings and query accuracy based on the available resources. The adaptive
parameters allow to deal differently with different spatial levels to shed the maximum
amount of useless data without hurting the query accuracy. Details of memory optimizations
are presented in Section 6.

Query Processor Users post their queries to the query processor module, that efficiently
exploits the index materialized aggregate measures to return query answers to the users.
Instead of processing excessive lists of all keywords, only k local keywords in each query
sub-region are exploited to aggregate the final top-k list in the query region. Details of query
processing are presented in Section 7.

4.2 Query formulation

GeoTrend+ users can post queries in the form “Find the most trending keywords within a
spatial region R.” Internally, the system beefs up this query with three parameters: (1) k; the

Fig. 1 GeoTrend+ Architecture

Geoinformatica (2020) 24:301–337 307

number of keywords to be returned, (2) a time span T ; where the trending keywords should
be posted within the last T time units, and (3) a trending measure T rend; where the returned
k keywords should be highest ranked based on T rend . The query answer is then retrieved
based on indexed locations, either precise point locations or uncertain locations, that are
extracted from microblogs through a pre-processing step (as highlighted in Section 4.1).
Formally, GeoTrend+ query is defined as follows:

Query Definition Given an arbitrary spatial region R, an integer k, a time span T time
units, and a trending measure T rend , GeoTrend+ finds k keywords such that: (1) The k key-
words are posted within the region R. (2) The k keywords are posted within the last T time
units. (3) The k keywords are the highest ranked based on T rend measure among keywords
that are posted within R and T .

Our query limits its answer size to k as a natural consequence for the plethora of key-
words that come with microblogs, which calls to selectively provide end users with the most
relevant results (top-k items) based on a certain ranking function. In fact, for the same rea-
son, all research efforts on microblogs are limiting their answer size to k [8, 9, 36, 45, 54]
to be useful for end users. Furthermore, our query retrieves its answer from only recent
keywords that are posted within the last T time units. This basically promotes real-time
nature of microblogs as a first-class citizen, which is a distinguishing property for nowadays
microblogging services, to discover trends that are happening now on social media websites.

Upon initialization, a system administrator sets default values for parameters k, T , and
T rend . Users may still change the default values of k and T , yet a query may have less per-
formance if the new values consider larger search space than the default values. Optimizing
the index performance for a pre-set parameter values is a common design choice for major
web services. For example, Twitter gives the most recent k tweets to a user, where k=10,
and so in a keyword search result. If a user would like to get more than k results, an extra
query response time will be paid on demand.

5 Real-time indexing

GeoTrend+ employs a spatial pyramid index [4] to efficiently support queries in arbitrary
spatial regions. The index divides the space into multi-layers cells of different spatial gran-
ularity, where each layer consists of a set of non-overlapping cells. For each incoming
microblog in real time, GeoTrend+ stores only its keywords and their aggregate informa-
tion, distributed over all index cells that span the microblog location, rather than storing
the microblog itself. To support fast digestion of microblogs streams and low query latency,
the index is wholly resident in main-memory. However, main-memory resources are limited
and cannot accommodate microblogs aggregate information for infinite time. Consequently,
GeoTrend+ limits its index content to data that arrived only in the last T time units, where
old data that is outside the time span T is expired. The length of window T depends on
the available memory resources, and typical values range from several hour to few days
of microblogs data. Indexing data of multiple days, that have hundreds of millions of
microblogs, is feasible as the index does not store individual data records, but stores only
aggregate information. Yet, such fast data rates impose scalability challenges on both index
insertion and expiration.

Insertion and expiration in microblogs environments are so challenging that residing in
main-memory is not enough to scale for microblogs high arrival rates. In particular, inserting
keywords can be performed in a traditional way [4], where each new keyword is traversing

Geoinformatica (2020) 24:301–337308

the pyramid structure from its root cell passing by all intermediate cells reaching leaf cells
that include its location to update cells contents, either point location that is located in a
single leaf cell or uncertain location that could span multiple cells. However, this is expen-
sive given the large number of keywords that arrive every second in microblogs, where a
significant portion span multiple index cells. To overcome this, GeoTrend+ employs a bulk
insertion technique that reduces the insertion cost so that it scales for digesting high arrival
rates. Similarly, expiring contents from GeoTrend+ index should be ideally performed in
similar rates like insertion so that the index storage is stable in the system steady state. With
large number of cells and high data rates, proactive expiration that iterates all index cells is
very expensive and put significant overhead on the index performance in real time. To scale
up, GeoTrend+ employs a lazy expiration that dramatically reduces the expiration cost.

The rest of this section presents the index structure (Section 5.1), insertion (Section 5.2),
and expiration (Section 5.3).

5.1 Index structure

GeoTrend+ pyramid index structure is similar to a partial quad tree and consists of a single
root cell that represents the entire geographic area, level 1 partitions the space into four
equi-area disjoint cells, and so forth. As a partial tree structure, any index level could have
both leaf and intermediate cells. Figure 2 depicts an instance of GeoTrend+ pyramid index.
The figure shows a partial pyramid that divides the space into three levels, where light gray
cells indicate intermediate cells, dark cells indicate leaf cells, and white cells replace areas
that are not actually maintained at that level. The pyramid shape is determined based on the
spatial distribution of microblogs, through its index shaping process. Then, index real-time
operation is started in which the index continuously digests incoming real-time data. Each
stage is outlined below.

Index shaping process This is a one-time process that determines how pyramid cells are
divided to cover the space at different levels of granularity. Areas with dense data distribu-
tion are divided into smaller cells at deeper levels of the pyramid. On the contrary, areas with
sparse data are divided into large cells that span only a few pyramid levels. To determine the
pyramid shape, we insert a sample of one day microblogs so that any cell stores maximum
number of microblogs, called cell’s Capacity. Capacity has been chosen experimentally
to range from 1000 to 2000 for fine granular space division. Thus, each cell maintains a
data counter that accumulates the number of inserted microblogs in the cell. When the data

Fig. 2 GeoTrend+ index structure and cell contents

Geoinformatica (2020) 24:301–337 309

counter of any cell exceeds Capacity, the cell is divided further into four disjoint children
cells. Inserted microblogs could have either exact point locations or uncertain locations rep-
resented with minimum bounding rectangles (MBR). In case of an exact point location, the
microblog is inserted in a single index cell and its data counter is incremented by one. If the
microblog has an uncertain location, then all cells that intersect with its MBR are consid-
ered for inserting this microblog. Although each of these cells overlaps with a fraction of the
microblog uncertain location, the shaping process accommodates a conservative approach
that replicates the same microblog in each cell. Therefore, the data counter in each cell is
incremented by one. This conservative approach is intended not to underestimate the den-
sity of data in any index cell. In fact, it overestimates the data density so all index cells
that span the city of Minneapolis, for example, replicate all microblogs that are tagged with
Minneapolis although the overall Minneapolis region contains this data only once. Such
overestimation leads only to dividing Minneapolis to a finer granular index cells so no cell
is overloaded during the index real-time operation. The replicated microblogs are actually
removed from all cells on concluding the shaping process and only aggregate information
accumulates in these cells while digesting real-time data. After each insertion in a cell, the
total number of microblogs is compared against the cell Capacity to decide on dividing the
cell. Once there are no more cell divisions, all the individual microblogs are wiped and the
shaping process is concluded.

Index real-time operation After its shaping, the index then starts to continuously receive
real-time data and stores only aggregate information about incoming keywords rather than
storing individual microblogs. Keyword aggregate information are stored in both leaf and
intermediate cells, so that information of the same keyword are aggregated at different lev-
els of spatial granularity. Each index cell C, both leaf and non-leaf cells, stores four data
structures: a hash table H , a sorted list T opK , a rotating pointer p, and a timestamp tlast ,
described below:

Hash table H Each hash entry h ∈ H represents a single keyword arrived to cell C in the
last T time units. With each hash entry h, we maintain the following:

1. A set of N counters, c0 to cN−1. The N counters divide the time window T into a
set of equal temporal intervals, each of T

N
time units. Each counter maintains the

number of times that the hash entry h has appeared in its corresponding T
N

time units.
N is a system parameter that trades query accuracy with computation efficiency as
discussed in Section 3. A larger value of N gives more accurate results, yet, it comes
with processing and storage overhead in maintaining more counters. Every T

N
time

units, the current counter is concluded, another current counter is created with a zero
value, and the oldest counter is expired. Details of inserting and expiring data are given
in Sections 5.2 and 5.3, respectively.

2. A trending value T rend that is calculated based on hash entry h counters ci’s according
to Eq. 1.

List TopK A sorted list of size k that maintains the top-k trending keywords in this cell
ranked based on the trending value T rend . This is mainly to materialize the top-k answer
of this cell to speed up the query processing significantly.

Rotating pointer p An integer value, in the range of 0 to (N −1), that points to the current
(i.e., most recent) counter. Thus, the most recent counter is cp and the oldest counter is

Geoinformatica (2020) 24:301–337310

c(p−1)%N . Maintaining p saves huge efforts in shifting the counter values and expiring old
counters every T

N
time units as discussed in Section 5.3.

Timestamp tlast The starting timestamp of the time interval of the last expiration of C

contents, where it is used to decide which counters need to be expired in the following
expiration cycle.

Figure 2 shows the contents of two index cells, one intermediate cell and one leaf cell.
Both cells enclose exactly the same data structures that are described earlier. The interme-
diate cell encounter more keyword arrivals as it lies one level higher than the leaf cell, and
so it covers four times larger space area. The intermediate cell in Fig. 2 contains five hash-
tags, Summer, CLS, Refugee, CampRoc, and HopeHick, each maintains four counters, N=4,
and T rend value. It also maintains a top-2 list, CLS and Refugee, of the most trending key-
words in the cell sorted based on T rend value, and an integer pointer p=3 that indicates c3
as the most recent counter in which data is digested during the latest insertion. The leaf cell
in Fig. 2 contains three hashtags, Summer, ENGSLO, and Tronc, which also maintain four
counters per hashtag and a top-2 list, Summer and ENGSLO, with similar semantic to the
list in the intermediate cell. So, N and k values are fixed for all index cells. Yet, the leaf
cell integer pointer p=0, which is a different value than the intermediate cell. The p value
is updated on data expiration, which happens in a lazy fashion piggybacked on the inser-
tion, so different cells expire their data at different times based on insertions in the cell. The
details of data expiration and updating p value in each cell are discussed in Section 5.3.

5.2 Index insertion

To reduce the index update cost and scale for digesting high arrival rates, GeoTrend+ spa-
tial index employs an efficient bulk insertion technique that saves thousands of comparison
operations for keyword locations with spatial cell boundaries compared to the traditional
way of inserting individual data records. The bulk insertion process consists of two steps:
(1) traversing pyramid index cells with batches of keywords, and (2) while traversing,
keywords are inserted in their corresponding cells. Each step is described below.

Pyramid traversal To reduce the pyramid traversal cost, the incoming keywords are
buffered for t seconds before being inserted in bulk. t represents a trade-off between the
insertion overhead and the delay between a microblog arrival and being available to search
results. Typical values of t is 1-2 seconds which is an acceptable delay for real-time appli-
cations, and still sufficient to collect several thousands of keywords to insert as a batch.
For example, Twitter receives ∼12,000 tweets every 2 seconds, which is a reasonable batch
size that saves significant insertion cost. During the buffering, a spatial minimum bound-
ing rectangle (MBR) is maintained around locations that are associated with the keywords,
either point or uncertain locations. We then traverse the pyramid levels through comparing
the MBR boundaries, instead of locations of individual microblogs, and insert keywords in
the corresponding cells.

The buffered keywords are first inserted in the root cell C, as shown in cell insertion
below. If C is not a leaf cell, the new keywords are recursively inserted in C’s children
cells. The new keywords are divided based on their locations into four MBRs, each MBR
encloses a subset of the keywords that corresponds to one of the children cells. Then, the
same cell insertion process is applied to each of the children cells. This leads to replicating
all keywords across all index levels. Such replication significantly reduces the query latency
for large query areas as it minimizes number of processed cells for large query regions.

Geoinformatica (2020) 24:301–337 311

On another hand, it increases both index insertion time and memory consumption. Our
experiments study the impact of this replication on indexing overhead, query processing,
and memory consumption.

Dividing buffered keywords could be based on exact point locations or uncertain MBR
locations. In case of point locations, each keyword is routed to a single child cell that cor-
responds to its point location. In case of uncertain locations, a keyword location might
correspond to one or more children cells. If the keyword location is wholly contained
inside a single child cell, it is inserted in this cell similar to exact-location keywords. If
the keyword location spans multiple cells, a fraction fCi

for each cell Ci is calculated
to reflect the overlap between the keyword MBR location and the cell Ci boundaries.
Assume an MBR L that represents the keyword uncertain location, fCi

= Area(L∩Ci)
Area(L)

.
Thus, fCi

represents the ratio of intersection between L and Ci , where
∑

∀i fCi
= 1.

Then, the keyword is forwarded to each cell Ci , during the cell insertion, associated with
the corresponding fCi

value. For example, if the keyword location L spans four cells with
equal intersection areas, the keyword is forwarded to each of these cells associated with
a fraction of 0.25 indicating that one quarter of L lies in this cell. In a general case,
the keyword is associated with any values of fractions fCi

’s so their summation remains
one.

Cell insertion On the arrival of new keywords to any cell C, two steps are performed:
(1) inserting the new keywords in the hashtable C.H , and (2) updating the list C.T opK that
maintains C’s top-k keywords.

(1) Insertion in hashtable C.H . For each newly arrived keyword, if there is no corre-
sponding hash entry in the hashtable C.H , it is added to C.H with zero-initialized N

counters and T rend value. Then, regardless of whether there was a prior hash entry
or not, its most recent counter cp is incremented to reflect the new arrival update. The
increment of cp value is dealt differently for exact and uncertain locations. For exact
location, cp value is incremented by one as the keyword is wholly contained inside
this cell. This leads its T rend value to be incremented by 6(N−1)

N(N+1)(2N+1) (per Eq. 1).
For uncertain locations, the keyword is associated with a fraction fC as described
in the pyramid traversal phase. This fraction represents the portion of the uncertain
location that overlaps with C. Thus, we increment the value of cp by fC instead of
one. In addition, T rend value is incremented by fC × 6(N−1)

N(N+1)(2N+1) . In both cases
of exact and uncertain locations, the update of T rend value involve only a constant
increment. This makes our trending measures very efficient to be maintained incre-
mentally as discussed in Section 3 and suitable to scale in real-time environments such
as microblogs.

The described insertion process of data with uncertain locations increases the over-
head of both indexing and main-memory consumption compared with considering
only exact locations as in existing techniques. The main source of overhead is repli-
cating the same keyword in all cells that intersect with its uncertain location. This
replication adds hash entries to multiple cells, at multiple spatial levels, instead of a
single cell in each level, which consumes both additional memory and higher inser-
tion time. From another hand, representing uncertain locations in all cells enhances
the query accuracy as it reflects the actual location information without approximat-
ing large MBRs with a single point. Our experimental evaluation studies the effect
of handling uncertain locations on indexing overhead, main-memory consumption,
and query results, showing the scalability of GeoTrend+ in terms of indexing and

Geoinformatica (2020) 24:301–337312

memory consumption and the effectiveness of the new query results compared to the
approximate techniques with different similarity measures.

(2) Updating list C.T opK . For each new keyword inserted in C.H , we check its T rend

value to update C.T opK list, if needed, so that it keeps maintaining the most trending
k keywords in C. If C.T opK has less than k keywords, the new keyword is inserted
in C.T opK directly. Once C.T opK has k keywords, the T rend value of each new
keyword is compared to T rendmin: the lowest trending value in C.T opK . If the new
keyword’s T rend is larger than T rendmin, then it is inserted in C.T opK replacing the
keyword that corresponds to T rendmin.

Example 1 Figure 3a shows an example for index insertion. The figure shows the content
of the leaf cell shown in Fig. 2 after inserting hashtag Brexit with an exact location. As
the hashtag is not previously present in the cell, a new entry is added to the hashtable H

with zero-initialized counters. Then, the most recent counter, c0, is incremented and T rend

value is computed. As the new T rend value is eligible for the top-2 list, the hashtag Brexit
is inserted into the list.

5.3 Data expiration

As GeoTrend+ index limits its contents to data of the last T time units, it needs to periodi-
cally expire old data that is outside the time span T . Thus, every T

N
time units, GeoTrend+

should hold on inserting new data, iterate over all index cells, and expire the old contents.
However, this causes a significant interruption for index real-time insertion and terribly
reduces its digestion rates. To prevent such interruption, GeoTrend+ skips such an expen-
sive expiration that expires all cells at once and employs a lazy expiration technique that
postpones expiring any index cell contents until: (1) either an insertion occurs in this cell,
or (2) a query comes to this cell and hence an expiration is necessary so as not to consider
old data in the query answer. In both cases, expiration is necessary, and performed, only in
a single cell. This minimally interrupts real-time insertion of GeoTrend+ index as it expires
only one cell at a time, and even consumes no index traversal cost as it piggybacks this
cost on either insertion or query processing. The effect of putting this overhead on query
response is minimal as expiration is performed once and it pays off for all incoming queries.
However, this lazy expiration does not guarantee to expire all old contents. In fact, cells

Fig. 3 Example of GeoTrend+ index insertion and expiration

Geoinformatica (2020) 24:301–337 313

that encounter neither insertions nor queries during the T time units, e.g., low dense spa-
tial regions like suburbs, would keep very old contents. To overcome this, GeoTrend+ runs
an additional cleaning process, every T time units, that is very light and efficient, so that it
does not put an overhead on the index performance. Both lazy expiration and periodic light
cleaning are described below.

Lazy expiration The contents of a cell C is expired only if it is last expired more than a
complete period of T

N
time units ago. This is checked through C.tlast timestamp, that is the

starting timestamp of the period when C.H is last expired. If nc =
⌊

NOW−tlast

T /N

⌋
≥ 1, then

the oldest nc counters need to be expired and C.tlast is updated to be tlast=tlast+nc × T
N
.

For presentation simplicity, assumes nc=1, i.e., we expire only the oldest counter. Then, the
oldest counter c(p−1)%N should expire for all entries in the hashtable C.H . This requires
to set the value of c(p−1)%N to zero, the value of pointer p is decremented to be p =
(p − 1)%N , and the aggregate T rend value is recomputed. This is repeated nc times when
nc >1.

Maintaining p saves huge efforts in expiration. A traditional way is to shift the counter
values for each hash entry. With p, we keep all counter values intact in their positions, and
we just shift left (i.e., rotate) the value of p to replace the oldest expiring counter with a
new one. With this, it is always the case that counter cp represents the current T

N
time units

while counter c(p−1)%N represents the oldest T
N

time units within the time span T .
Expiring the contents of hashtable C.H leads to invalidating the contents of C.T opK

list. Thus, C.T opK is recomputed with each expiration of C.H contents. However, recom-
puting C.T opK list comes with a very little overhead on the lazy expiration process. While
updating T rend value of each hash entry h, h is considered as a potential candidate for
C.T opK . If C.T opK has less than k keywords, then h is inserted in C.T opK right away.
If C.T opK has k keywords, then h.T rend is compared to T rendmin: the lowest trending
value inC.T opK . If h.T rend is larger than T rendmin, then it is inserted inC.T opK replac-
ing the keyword that corresponds to T rendmin. This repeats for each hash entry h while its
counters are updated.

Example 2 Figure 3b gives the contents of Fig. 3a cell after c0’s time period expires. In this
case, (a) c0 is concluded, (b) the oldest counter c3 would expire its old values and reset to
zero for all keywords, (c) the current pointer p becomes 3 as c3 becomes the current active
counter, and (d) T rend values are recomputed based on the new counter positions, where
c2 is the oldest counter. Meanwhile, the top-2 list is recomputed, based on the new T rend

values, to include Brexit and ENGSLO keywords.

Light cleaning To account for sparse cells that rarely encounter insertions and queries,
and hence do not encounter any lazy expiration, we run a light periodic cleaning. Every T

time units, a light expiration process is traversing all index cells. If the cell is last expired
older than T time units ago, then all cell contents are wiped, otherwise, nothing is done.
This process intentionally overlook contents that is within the last T time units but still
old enough to be expired, i.e., older than T

N
time units ago. This is intended to make it

very light and efficient, while this contents are left for the next lazy or periodic expira-
tion in the cell. Although some cells would contain unneeded contents for T time units,
practically this does not cause much overhead as they are very sparse cells. As the light
cleaning process wipe all cells contents, so no T opK update is needed as T opK is wiped
as well.

Geoinformatica (2020) 24:301–337314

6 Memory optimization

As GeoTrend+ index is wholly resident in main-memory, it might be the case that during
peak times, e.g., local events in major cities, available memory resources are limited to store
the vast amount of incoming data. In that case, some applications are willing to remove
a portion of memory content that minimally affects query accuracy, still sustain the index
real-time performance in peak times. Thus, GeoTrend+ employs a main-memory optimiza-
tion technique, called TrendMem, that reduces memory footprint significantly while keep
query answers highly accurate. TrendMem is based on a key observation that identifies
a very interesting spatial property for microblogs data. Such property is used to smartly
identify victim data to expel from main-memory with slight loss in query accuracy. Further-
more, GeoTrend+ equips its index with AdaptiveTrendMem that extends TrendMem with
parameter adaptivity to treat different spatial index cells differently based on their con-
tent to significantly decrease the loss in query accuracy encountered by TrendMem while
maintaining the low memory footprint. In the rest of this section, Section 6.1 presents
the key observation and key idea behind TrendMem and AdaptiveTrendMem. Then, Sec-
tions 6.2 and 6.3 present the details of realizing TrendMem and AdaptiveTrendMem inside
GeoTrend+ index, respectively.

6.1 Key ideas

Key observation Memory optimization in GeoTrend+ takes advantage of the observa-
tion that keywords popularity in microblogs follows a Zipf distribution [12, 19, 40, 41],
i.e., small percentage of keywords appear with high frequency while the majority of key-
words appear very few times. Interestingly, Zipf distribution holds not only for the entire
microblogs collection over the entire world, but also over those appearing in smaller spatial
regions. We demonstrate such interesting property in Fig. 4. The figure shows the fre-
quency distribution of millions of real tweets at four different levels of spatial granularity,
Level 1 is the entire USA, Level 2 is the four quarters of the USA, Level 3 has sixteen
tiles dividing each tile in Level 2 into four quarters, and so on. The figure shows that the
majority of keywords in Twitter are infrequent across all levels of spatial granularity. Such

1

10

10
2

10
3

10
4

10
5

10
6

1 10 10
2

10
3

10
4

10
5

10
6

N
u
m
b
e
r
 o
f
K
e
y
w
o
r
d
s

Keyword Frequency

Level-1

Level-2

Level-3

Level-4

Fig. 4 Zipf distribution of Twitter keywords at different spatial levels

Geoinformatica (2020) 24:301–337 315

majority of infrequent keywords consume large percentage of the memory for their coun-
ters. Our memory optimization techniques exploit the existence of such infrequent keywords
in a smart way to identify a subset of them that are very unlikely to contribute to trend-
ing query answers. This subset is shed from main-memory without hurting the accuracy of
query answers.

Key idea The key idea of our memory optimization techniques that some keywords with
low frequency are unlikely to be trending ones. Those keywords must satisfy a crucial con-
dition: they must encounter low frequency in all sub-intervals of the last T time units. This
condition is sufficiently working as it judges count change over time, which is the same
as our trending measures (Section 3). To elaborate, if we decide on a keyword importance
only through its total count during the last T time units, it might be the case that a keyword
encounter low total count, yet, its count is rising significantly over time. Thus, we may end
up removing trending keywords from main-memory. However, if we ensure that the key-
word count is low in all the sub-interval of the last T time units, then it is very unlikely that
growth of count of this keyword makes it a potential trending one. Then, it is unlikely to
contribute to query results and it can be removed without affecting the query accuracy.

6.2 TrendMem technique

Main idea In each cell C in GeoTrend+ index, TrendMem periodically removes keywords
that are ε-infrequent in all theN time intervals of the last T time units. ε-infrequent keyword
is a keyword that has count less than ε · n, where ε is a small fraction, e.g., 0.001, and n is
the total number of keyword arrivals in cell C in the corresponding time interval. For exam-
ple, if C received total of ni keyword arrivals during time interval i, 0 ≤ i ≤ (N − 1), then
a keyword W is considered ε-infrequent if its counter ci < ε · ni , for all 0 ≤ i ≤ (N − 1).
Removing infrequent items from a cell C is invoked every 1

ε
insertion cycles in C. This

ensures to limit the size of the hashtable C.H to O(1
ε
log(ε · n)) entries (inspired by the

same ideas presented in LossyCounting algorithm [37]). Also, any keyword with total count
> (ε ·n) at any sub-interval of T is guaranteed to be maintained. In fact, checking a keyword
to be infrequent in each of the N sub-intervals independently ensures the consistency of
the keyword infrequency along the whole time window T and thus guarantees not to expel
any possibly trending keywords as discussed in Section 6.1. In addition, employing a per-
centile threshold ε, which means keyword importance is identified based on a percentage of
frequencies of its neighbor keywords within the spatial locality. This guarantees that dense
spatial areas do not affect suburb areas and leads to maintain an accurate top-k keyword list
in each spatial locality. This makes TrendMem provides highly accurate query answers.

Impact on the index To realize TrendMem inside GeoTrend+ index, two main operations
are added to the index insertion: (1) periodic cleaning of infrequent keywords inside each
cell every 1

ε
insertion cycles in the cell, and (2) checking on ε-infrequent keywords in each

sub-interval to decide on removing which keywords. To this end, each index cell maintains
an insertion cycles counter that is initialized to zero. The counter is incremented by one
with every insertion in the cell, either the insertion is for a whole microblog with an exact
point location or for a fraction of microblog with an uncertain location (as described in
Section 5.2). Once it reaches 1

ε
, the cleaning procedure is triggered and the counter is reset to

zero. The cleaning procedure goes through a complete scan for all hash entries in hashtable
H and removes any keyword that is consistently infrequent during all the N intervals. To
check for the keyword infrequency in each sub-interval independently, each cell maintains

Geoinformatica (2020) 24:301–337316

additional N counters ni , 0 ≤ i ≤ (N −1), that keep the total number of keyword arrivals in
each of the N sub-intervals of the time window T . Thus, with each insertion to the cell, the
counter of the current interval is incremented by the number of new keywords. Using this,
the infrequency check is then performed very cheap by comparing ε · ci of each keyword
counters to the counter ni , for all 0 ≤ i ≤ (N − 1). It worth noting that the new counters
are maintained per a whole cell not per each individual keyword inside this cell. This means
adding a negligible memory overhead for TrendMem compared with the significant memory
saving as shown in our experimental evaluation.

The value of ε is fixed for all index cells. A typical value of ε would be around 0.001,
which is considered large enough to limit the memory footprint without really affecting the
accuracy of the query result. Although introducing ε saves significant storage, apparently,
executing the periodic cleaning procedure incurs additional computational overhead during
the index insertion operation. Since we adjust the triggering of our cleaning procedure to
be every 1

ε
insertions, a lower value of ε implies less frequent cleaning, i.e., less insertion

overhead and less storage saving, but higher query accuracy. For example, when ε is 0.01,
we run the cleaning procedure every 100 insertions. Yet, when ε is 0.0001, we perform
the cleaning every 10,000 insertions, which is cheaper in computation cost, achieves higher
query accuracy, but consumes more memory. We study in details the effect of varying ε

on the insertion overhead, storage saving, and query accuracy experimentally to provide a
reasonable compromise for both memory consumption and insertion overhead. In addition,
we develop an adaptive version of TrendMem (Section 6.3) that varies the value of ε for
different cells to eliminate any unnecessary cleanup cycles and provide better selectivity for
victim keywords to shed from main-memory.

Indexing uncertain locations is another factor that affects the frequency of invoking the
memory optimization module. The reason is that a single microblog with uncertain location
is potentially inserted in multiple cells, which increments multiple insertion counters on
the contrary to an exact-location microblog that increments only one insertion counter in
a single cell. This leads many insertion counters to reach the threshold 1

ε
much faster than

the case of indexing only exact locations. Therefore, the memory optimization module is
invoked more frequently, which increases the cleaning overhead during real-time insertion
and gets rid of infrequent keywords faster as well.

6.3 AdaptiveTrendMem technique

Main idea GeoTrend+ replicates keywords across all index levels to speed up query pro-
cessing. This means that each parent cell in the index maintains a union of all keywords
that are maintained in all cells in its sub-tree, which is typically a massive number up to
hundreds of millions in high levels of the tree. For example, the root node maintains aggre-
gate information for all keywords that arrive to the index, while each of its children cell
maintains a fraction of these keywords (roughly a quarter of them), and each cell in each
subsequent level maintains a smaller fraction and so on. So, there is a high variation in the
amount of maintained information in different cells based on the level of spatial granular-
ity. This is shown in Fig. 4 where Level 3 in the pyramid index maintains ∼5 times more
keywords than Level 4, while Level 2 and Level 1 maintains higher numbers up to 10 times
and 50 times number of keywords, respectively.

Despite that high variability in the amount of maintained information in different cells,
what is really processed during query processing (as detailed in Section 7) is only k key-
words from each cell regardless the cell level. These keywords are maintained in a top-k list
at indexing time and represent the highest trending keywords in the cell ranked based on

Geoinformatica (2020) 24:301–337 317

T rend measure. This list is a subset of highly frequent keywords and infrequent keywords
do not mostly contribute to this list. In fact, the main idea of TrendMem that is introduced in
Section 6.2 depends on removing such infrequent keywords, based on a percentile frequency
threshold ε in each time interval, as they do not contribute to query answers. However,
TrendMem uses the same threshold ε for all cells regardless their data content. Therefore,
using small values of ε will keep many infrequent keywords in high levels cells that do not
contribute to query answers and hurt the memory consumption. For example, Fig. 4 shows
the root cell at Level 1 maintains 5 times infrequent keywords as much as its children cells
at Level 2, and so on for subsequent levels. On another hand, using large values of ε could
aggressively remove rising keywords from lower levels cells and hurt the query accuracy.
This makes the index content is highly sensitive to ε value.

To overcome this problem, the AdaptiveTrendMem technique employs adaptive ε values
for cells at different spatial levels of the index. This depends on the fact that the practical
values of k are much smaller than the number of keywords maintained in any cell. There-
fore, finding the actual top-k trending keywords in cells of high levels of the index uses
much smaller percentage of the data compared with cells at lower levels. AdaptiveTrend-
Mem then assigns large ε values for cells at high levels and smaller ε values for cells at lower
levels. This allows to remove many infrequent keywords from excessive amounts of data
in high levels of the index and reduce the number of cleanup cycles at lower levels where
less data should be removed. This parameter adaptivity provides much better selectivity for
victim keywords to spill from main-memory, which leads to almost perfect query accuracy
while still ensures low memory footprints in tight memory environments, as shown in our
experimental evaluation.

Impact on the index To realize AdaptiveTrendMem, GeoTrend+ index structure maintains
a different ε value for each index level during the index shaping process instead of using a
single value for the whole index. This adds a single lookup table that maintains one ε value
per index level and makes a minor change to the cleanup process. In particular, the cleanup
process remains the same except it looks up the ε value to use from the new lookup table
depending on the cell level. In addition, as the cleanup process is invoked every 1

ε
insertions

in the cell, the frequency of invoking cleanup becomes different across levels and depends
on its corresponding ε value. Thus, for high levels of the index, that have large ε, the cell
content is cleaned up more frequently to remove the plethora of infrequent keywords and
improve memory consumption. On the contrary, for lower index levels, less cleanups are
performed to reduce the memory optimization overhead on inserting real-time data.

A challenging problem in realizing AdaptiveTrendMem is selecting the correct value of
ε for different index levels. Our realization proposes two schemes to assign these values:
(1) variable decimal digit (VDD), and (2) variable level number (VLN) schemes. First,
VDD scheme takes two values of ε from a system administrator, a minimum value and a
maximum value. The maximum value is assigned to the root level. Then, each of the sub-
sequent levels is assigned the value of the preceding level divided by ten to add a single
decimal digit to the value of ε. However, any level cannot be assigned lower than the mini-
mum value of ε to limit the effect of the fast ε value reduction at lower levels from assigning
negligible ε values and suppress the memory optimization effect. Second, VLN scheme
takes a single value of ε that is assigned to the root index cell at level 1, called εr . Then, any
subsequent level i is assigned a value εi , that is εi = εr

i
. Thus, level 2 is assigned half of εr ,

level 3 is assigned one third of εr , and so on. This scheme reduces the value degradation of
ε at lower levels. Both schemes are evaluated in our experimental evaluation, highlighting
their relative pros and cons.

Geoinformatica (2020) 24:301–337318

7 Query processing

This section discusses query processing in GeoTrend+. As GeoTrend+ index already mate-
rializes top-k items in each spatial cell, processing top-k queries is simple, efficient, and
provides low response time. In fact, GeoTrend+ query processing depends on getting top-k
keywords in the query region R by manipulating only the top-k lists that are maintained in
the index cells that overlap with R. Our hypothesis is that it is highly unlikely that a key-
word that did not make it to any of the top-k lists in any cell would make it to the final
answer. The main reason is that our trending measures are additive (per Eqs. 1 and 2),
which means the trending value of a certain keyword W over an arbitrary region R equals
the summation of W ’s trending values in all index cells that overlap with R. Thus, top-k
items within each cell have much better chances to be the global top-k items in R. This
hypothesis is supported empirically by our experimental results, where the vast majority
of queries can get the true top-k trending keywords in R from the ones that appear in any
top-k list.

GeoTrend+ query processing is composed of two main steps. In the first step,GeoTrend+
finds a set of pyramid index cells S that cover the query spatial region R in a way that
minimizes the number of cells in S while maximizes the coverage ratio withR. In the second
step, it finds the top-k keywords in R by aggregating the values from only top-k lists that
are maintained in S cells. Details of the two steps are described below.

Step 1 takes the query spatial region R and the root cell of the spatial pyramid index as
input and outputs a set of cells S that completely cover R, such that: (a) the number of cells
in S is minimal, which reduces the aggregation cost in Step 2, and (b) the cells in S have
the highest overlap ratio with R, which maximizes the accuracy of the retrieved results. We
define the overlap ratio between a cell C and the query region R as the area of the part of
C that is inside R divided by the area of C, i.e., C∩R

C
. Starting at the pyramid root cell,

we recursively visit the children overlapping with R. A cell C is added to S if one of the
following two conditions is satisfied: (1) C is a leaf cell, or (2) C is completely inside R,
i.e., overlap ratio of 100%. In both cases, we know that C has the best covering area which
is the same coverage we can get from C’s children. So, to minimize the number of cells in
S, we just add C, and skip all its children. Otherwise, we visit children cells applying the
same selection procedure.

Step 2 takes the set of cells S from Step 1 as input and produces the final answer of
the top-k keywords that appear in S. In this step, we only consider keywords that have
appeared in at least one top-k list of all the cells in S. Following the spirit of Fagin’s
TA algorithm [15], the main idea of this step is to employ a max-heap priority queue,
initiated by the top item in each list in S. The key of the priority queue is the trend-
ing value. Then, we keep extracting items from the queue one by one. For each extracted
item T op, we do the following: (1) We compute the total trending value of T op as the
sum of its values in all cells in S. (2) If the total value of T op is among the highest k

found so far, we update our final answer accordingly. (3) We replace T op in the prior-
ity queue by the next item in the top-k list of its cell, if any. This is repeated until either
exhausting all top-k lists in S or the maximum possible total value for any remaining key-
word is less than the kth entry in the current final answer. This maximum value is upper
bounded by the summation of the existing keys in the max-heap. On concluding Step 2,
the final top-k list is returned as the query answer. Evaluating only top-k lists of dif-
ferent cells significantly reduces the query response time as shown in our experimental
evaluation.

Geoinformatica (2020) 24:301–337 319

8 Experimental evaluation

This section evaluatesGeoTrend+ experimentally. We compareGeoTrend+with AFIA [45]
and GARNET [26], which are the state-of-the-art and the closest to our work in the litera-
ture. Our AFIA implementation uses two spatial grid levels of granularity of 1km × 1km

and 10km × 10km, and four levels of temporal resolution, hour, day, week, and month.
GARNET is primarily proposed for queries of any generic context, where we instanti-
ated context as location to use a one-level spatial grid index of resolution 10km × 10km

per cell. We use GARNET memory components and limit our evaluation to its in-
memory performance, which is the main focus of GeoTrend+ queries and components.
With our comparison to competitor systems, we also evaluate different design choices
and modules of GeoTrend+, including replicating keywords across index level, material-
izing top-k list at indexing time, memory optimization techniques, and indexing uncertain
locations.

The rest of this section organized as follow. Section 8.1 presents experimental setup.
Section 8.2 evaluates query processing. Sections 8.3 and 8.4 evaluate both fixed parameter
and adaptive memory optimization techniques. Section 8.5 evaluates indexing uncertain
locations. Finally, Section 8.6 evaluates combining both adaptive memory optimization and
indexing uncertain locations.

8.1 Experimental setup

Our experiments are based on two real GeoTrend+ prototypes, one implemented during
the course of initiating this work in Microsoft Research and the other during extending
this work for uncertain locations and adaptive memory optimization, both implemented
in multi-threaded servers that use latches for concurrency control. The first prototype is
deployed on a server running Windows Server 2012 on Intel 2.40GHZ Core i7 CPU with
64GB RAM, while the second is deployed on a server running Ubuntu 16.04 (64 bit) on
Intel Xeon(R) with CPU E5-2637 v4 (3.50 GHz) and 128GB RAM. We use 152 million
geotagged tweets obtained from the Twitter archive. The tweets are used to simulate an
incoming stream of microblogs with high arrival rates. Each tweet is associated with either
an exact point location (latitude and longitude) or uncertain location represented with a
minimum bounding rectangle (MBR). By default, exact locations and centroid points of
MBRs are used to represent each tweet with a single point location. For keywords, we use
hashtags (if present) or select a random word from the tweet text. For queries, we use a
query log from Bing Mobile containing actual point locations (latitudes and longitudes) of
user search queries on Bing. This query log is used to compose a default query load of
1000 MBR queries (centered around the point locations) with different area sizes that range
from 4mi2 to 400Kmi2, containing 15% with large areas (40Kmi2 to 400Kmi2). Unless
mentioned otherwise, the default value of k is 100, N is 8 counters per hash entry, T is 24
hours, and ε is 0.001.

All experimental results are collected during steady state after running GeoTrend+ for at
least T time units. All measurements are done in real time, i.e., while the tweet stream is
flowing. Our main performance metrics are the supported microblogs arrival rate, memory
overhead, query latency, and query result accuracy. Accuracy is calculated as the percentage
of entries in the received result that are included in the correct top-k answer computed with
infinite resources.

Geoinformatica (2020) 24:301–337320

8.2 Query processing

This section evaluates GeoTrend+ index design decisions that affects query processing.
We evaluate the GeoTrend+ pyramid index (denoted with prefix GT) against AFIA [45]
(denoted as AFIA) and GARNET [26] with and without employing its ε memory cleaning
process (denoted with prefixes GRN-ε and GRN, respectively). GARNET ε-cleaning pro-
cess is similar toGeoTrend+ ε-cleaning with a fixed ε value for all index cells. Section 8.2.1
evaluates the effect of replicating keywords across index levels. Section 8.2.2 evaluates the
effect of maintaining top-k list inside each index cell.

8.2.1 Keyword replication

In this section, we evaluate the replication of keywords in all pyramid index levels. To
this end, we compare the pyramid index with a partial quad-tree index [18] that has simi-
lar cell structure to the pyramid, yet, keywords are maintained only in leaf cells (denoted
as GT-QT). The two indexing structures favor different objectives: (1) The pyramid index
maintains keywords aggregates in all leaf and non-leaf cells, increasing both memory and
insertion overhead, but its query processor accesses far fewer cells, from higher levels, to
compute the final answer. (2) The quad-tree index maintains keywords aggregates only in
leaf cells, reducing both memory and insertion overhead, but increasing the query latency
as the query processor accesses many cells to compute the final answer. The experiments
results show that the quad-tree would not be able to provide low query latency although it
has much lower memory and insertion overhead.

Figure 5 denotes the pyramid index, with and without ε-cleaning, as GT and GT-ε, quad
tree as GT-QT, and GARNET as GRN-ε, excluding AFIA from query evaluation due to
its different aggregate measure. Figure 5a and b show one to three orders of magnitude
better query latency for GT and GT-ε than GT-QT and GRN-ε with varying answer size
k and query region area R, respectively. GT and GT-ε consistently outperform both GT-
QT and GRN-ε for different k values. With changing the area of spatial location under
consideration, by varying the value of R starting from 0.004 K mi2 to 40 K mi2 as shown
in Fig. 5b, the improvement ratio changes: For small areas, all indexes have almost the
same average query latency as the number of processed cells is similar or close. When the
area increases, GT and GT-ε use far fewer cells than both GT-QT and GRN-ε, as they have
a chance to use larger non-leaf cells contained in R, and therefore they give much lower
query latency. This clearly shows the superiority of GeoTrend+ with increasing the spatial
location size up to 10000 times while the query latency remains under 5 milli-seconds.

This lower query latency comes with the cost of higher insertion overhead and larger
memory footprint than GT-QT. Figure 5c and d show that this is a favorable trade-off with
affordable indexing overhead and memory footprint. For different values of k, GT and GT-ε
still support up to an order of magnitude higher arrival rate than Twitter rate. Furthermore,
GT-ε incurs only around three times memory overhead compared toGT-QT. On the contrary,
GRN-ε still encounter high memory footprint due to the large number of cells in a fine-
divided grid index with high resolution. This shows the effectiveness of GeoTrend+ design
decisions to provide an excellent compromise in both memory overhead and query latency.

8.2.2 Materializing Top-k lists

The query answer can be computed either by using all keywords within the cell, which
are expected to be huge with many keywords, or by exploiting only top-k items in each

Geoinformatica (2020) 24:301–337 321

 0.1

 1

 10

 100

 1000

 10000

 10 50 100

Q
u
e
r
y
 L
a
te
n
c
y
 (
m
s
)

k

GT

GT-ε
GT-QT

GRN-ε

(a) Query Latency vs. k

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.004 0.04 0.4 4 40

Q
u
e
r
y
 L
a
te
n
c
y
 (
m
s
)

R (K mi
2
)

GT

GT-ε
GT-QT

GRN-ε

(b) Query Latency vs. R

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 50 100

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

k

GT

GT-ε
GT-QT

GRN-ε

(c) Arrival Rate

 0

 2

 4

 6

 8

 10

 12

 10 50 100

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

k

GT

GT-ε
GT-QT

GRN-ε

(d) Memory Overhead

Fig. 5 Impact of keyword replication across pyramid index levels

cell as introduced in Section 7. We show that maintaining these lists reduces query latency
significantly at the cost of acceptable overhead to store and maintain the sorted lists while
continuously inserting new keywords and deleting old information and acceptable reduction
in query accuracy. In this section we evaluate the effect of maintaining top-k lists on query
latency, query accuracy, and insertion overhead, excluding memory overhead effect as the
storage of top-k is negligible compared to the cell all keywords storage. The experimental
results show two orders of magnitude improvement in query latency with sublinear increase
in insertion overhead.

Figure 6 compares GeoTrend+ (denoted as GT), AFIA (denoted as AFIA), and GAR-
NET (denoted as GRN), with and without maintaining top-k lists (denoted with suffix K
and NK, respectively). Note that AFIA has only top-k option as this is the only maintained
data structure in its index cell. It is also excluded from query measures as it supports only
top-k frequent queries and cannot adapt our trending measure. Figure 6a depicts the query
latency of all alternatives for different k values. We observe that maintaining the top-k
lists reduces query latency of GeoTrend+ alternatives from 850 msec for all values of k to
between 1 and 3 msec, which is two orders of magnitude reduction. GRN query latency is
consistently much higher than GeoTrend+ for two reasons. First, the large number of cells
processed from its fine-divided grid index compared to cells of high levels of GeoTrend+
index which is much smaller in number. Such inefficient division for the space is a result for
GRN generic framework for any context, so it is not tailored for location queries and thus
cannot make maximum use of the spatial properties of the data. Second, GRN computes its

Geoinformatica (2020) 24:301–337322

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 50 100

Q
u
e
r
y
 L
a
te
n
c
y
 (
m
s
)

k

GT-K

GT-NK

GRN-K

GRN-NK

(a) Query Latency

 0

 20

 40

 60

 80

 100

 10 100 1000

Q
u
e
r
y
 A
c
c
u
r
a
c
y
 (
%
)

k

GT-K

GT-NK

GRN-K

GRN-NK

(b) Query Accuracy

 0

 50

 100

 150

 200

 250

 300

 350

 10 100 1000

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

k

GT-K

GT-NK

GRN-NK

GRN-K

AFIA-K

(c) Arrival Rate

Fig. 6 Impact of maintaining top-k lists

aggregate measures from different temporal cells, as it is originally proposed and optimized
for arbitrary temporal periods, which increase the aggregation time.

Figure 6b shows that for k ≥ 100, aggregating from top-k lists provides at least 90%
accuracy, providing an empirical evidence for the effectiveness of using top-k lists with an
acceptable accuracy loss. Figure 6c show the overhead of maintaining the top-k lists on
index insertion. AFIA supports the lowest arrival rates due to its cell replication over both
spatial and temporal dimensions. For GeoTrend+ and GARNET, the significant reduction
in query latency comes at the cost of 50% reduction in the supported arrival rate. For the
worst case (k=1000) in Fig. 6c, GeoTrend+ index supports at least 40,000 microblog/sec
which is seven times the current Twitter rate.

8.3 Memory optimization

This section and the following section evaluate the impact of our memory optimization
techniques, both TrendMem and AdaptiveTrendMem, on memory overhead, index scala-
bility, and query accuracy. The evaluation of TrendMem against the competitors AFIA
and GARNET uses the first system prototype while the comparing TrendMem with
AdaptiveTrendMem uses the second system prototype.

Figure 7 shows the memory usage of GeoTrend+’s TrendMem against AFIA (denoted as
AFIA) and GARNET with and without employing its ε memory cleaning process (denoted
as GRN-ε and GRN, respectively). Figure 7a and b depict the memory usage for different
values of k and ε, respectively. For different values of k (Fig. 7a), only AFIAmemory usage

Geoinformatica (2020) 24:301–337 323

 0

 5

 10

 15

 20

 25

 10 100 1000

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

k

GT

GT-ε
AFIA

GRN-ε

(a) Memory Usage vs. k

 0

 2

 4

 6

 8

 10

 12

 1e-006 0.0001 0.01

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

ε

GT

GT-ε
AFIA

GRN-ε

(b) Memory Usage vs.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1e-006 0.0001 0.01

Q
u
e
r
y
 A
c
c
u
r
a
c
y
 (
%
)

ε

GT

GT-ε
GRN

GRN-ε

(c) Query Accuracy

 0

 50

 100

 150

 200

 250

 1e-006 0.0001 0.01

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
/s
e
c
)

ε

GT

GT-ε
AFIA

GRN-ε

(d) Arrival rate

Fig. 7 Impact of memory optimization module

increase significantly while the rest of technique encounter relatively stable memory usage.
The highest AFIA memory usage (at k=1000) is around 24GB excluding programming lan-
guage overhead. Such large overhead comes for two reasons. With increasing k, the number
of items in archived dynamic summaries are increasing significantly and hence it consumes
more memory. In addition, such dynamic summaries are replicated in multi-resolution over
both spatial and temporal dimensions per its index structure. This even amplifies the effect
of increasing k and encounter high memory consumption. Both GT and GRN-ε encounter
nearly 40% of AFIA memory. Yet, GT-ε can significantly improves this and consumes less
than 10% of AFIA memory. The amount of memory saving is actually changing with dif-
ferent ε values as Fig. 7b shows. This figure shows memory usage of GT-ε is reducing
dramatically with increasing ε as more keywords are removed from all index cells. How-
ever, GRN-ε consumes relatively high memory due to the large number of cells it maintain.
Also, ε value does not have significant effect on its memory overhead as its spatial cell size
is much smaller, then each cell receives much less keywords and so ε removes relatively
stable amount of keywords.

The effect of reducing memory overhead is shown in Fig. 7c and d on query accuracy and
supported arrival rates of incoming microblogs. AFIA is not included in query accuracy as
it support only top-k frequent queries and cannot adapt our trending measure. For different
values of ε > 0.01, query accuracy exceeds 90% for both GT-ε and GRN-ε. In Fig. 7d,
GRN-ε supports the highest arrival rate due to its simple index structure (one-level grid
index) while AFIA still supports the lowest arrival rates due to its high replication overhead
on both spatial and temporal dimensions as mentioned earlier.GeoTrend+ alternatives come

Geoinformatica (2020) 24:301–337324

in the middle of both and still can support up to 50K microblog/second which is an order of
magnitude higher than current Twitter rate.

8.4 Adaptive memory optimization

This section evaluates the impact of AdaptiveTrendMem technique that changes the ε value
over different index levels, compared to GeoTrend+ without any memory optimization
and with TrendMem that has a fixed ε value for the whole index. The evaluation includes
memory overhead, index scalability, and query accuracy. GeoTrend+ is denoted as GT.
TrendMem is denoted as GT-ε. AdaptiveTrendMem has two evaluated variations (described
in Section 6.3): the variable decimal digit scheme (VDD) is denoted as GT-VDDε and the
variable level number scheme (VLN) is denoted as GT-VLNε.

Figure 8 shows the impact of the four alternatives on supported arrival rate, memory
usage, and query accuracy. Figure 8a and b show that GT-ε outperforms the other three
alternatives in both memory usage and supported arrival rate. This is interpreted by the
small ε value in the deep levels of the index of GT-VDDε and GT-VLNε, while ε is zero
in all GT cells. This small value triggers less frequent periodic cleaning cycles and each
cycle removes fewer keywords, which leads to slightly more content in main-memory and
less efficient insertions in turn. However, the arrival rate for all alternatives, except GT, is
increasing with increasing ε as the index removes more useless content more frequently.
GT-VLNε outperforms GT-VDDε in both figures, showing the superiority of variable level

 0

 10

 20

 30

 40

 50

1e-006 0.0001 0.01

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

ε

GT

GT-ε
GT-VDDε
GT-VLNε

(a) Memory Usage

 0

 50

 100

 150

 200

1e-006 0.0001 0.01

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

ε

GT

GT-ε
GT-VDDε
GT-VLNε

(b) Arrival Rate

 0

 20

 40

 60

 80

 100

1e-006 0.0001 0.01

Q
u
e
r
y
 A
c
c
u
r
a
c
y
 (
%
)

ε

GT

GT-ε
GT-VDDε
GT-VLNε

(c) Query Accuracy

Fig. 8 Impact of adaptive memory optimization module

Geoinformatica (2020) 24:301–337 325

number scheme over variable decimal digit scheme. The slight performance loss of adaptive
optimization techniques comes with lifting query accuracy to almost 100% for all values of ε
as shown in Fig. 8c. The figure shows robust and perfect accuracy forGT-VLNε for all values
of ε, equivalent to GT that does not remove any content. This shows the ability of GT-VLNε

to spill only the useless data without spilling any data that serves incoming queries. GT-
VDDε though still performs very well with slight decrease in query accuracy at a relatively
large ε = 0.01. On the contrary, GT-ε accuracy is drastically decreased to 50% for that ε

value. For small values of ε, all the alternatives perform about the same. These experiments
show that the introduced adaptive memory optimization techniques are able to distinguish
the correct useless data to spill frommain-memory, for different ε values, to maintain perfect
query accuracy while still reducing the overall memory footprint significantly.

8.5 Indexing uncertain locations

This section evaluates the impact of indexing tweets associated with uncertain locations,
where locations are represented as minimum bounding rectangles (MBR) that cover a spa-
tial range, such as a district or a city, rather than an exact point location. We evaluate the
impact of location uncertainty on the indexing overhead, memory usage, and query top-k
answer similarity compared to using exact locations. The top-k answer similarity gauges the
importance of considering uncertain locations. Considering uncertainty locates each tweet
in as many index cells as its location spans. On the contrary, representing an MBR with the
centroid point, each tweet is located only in one index cell even if it spans a wide area such
as a city. We compare answers in both cases to evaluate whether considering uncertainty
makes a difference or the two answers are closely similar. We use two similarity measures,
Jaccard coefficient and Kendall Tau similarity [14]. Jaccard measure considers the intersec-
tion between the two top-k lists regardless the rank of each item in the list. On the contrary,
Kendall Tau measure considers the similarity of items’ ranks in the two lists.

Figures 9 , 10 and 11 compare two versions of GeoTrend+ memory optimized index,
one that approximates all locations with an exact point (denoted as GT-ε) and the other
index uncertain locations as a whole area (GT-Uε) as described in Section 5. Figure 9
shows the similarity between query answers that are retrieved based on both ways with dif-
ferent ε values (Fig. 9a) and k values (Fig. 9b). The peak similarity between answers of
the two alternatives is 80% at ε ≤ 10−5, which are small values approaching zero and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1e-006 0.0001 0.01

S
im
il
a
r
it
y
 S
c
o
r
e

ε

Jaccard

Kendall Tau

(a) Answer Similarity vs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100 1000

S
im
il
a
r
it
y
 S
c
o
r
e

k

Jaccard

Kendall Tau

(b) Answer Similarity vs. k

Fig. 9 Impact of indexing uncertain locations on query answers

Geoinformatica (2020) 24:301–337326

 0

 0.5

 1

 1.5

 2

 10 100 1000

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

k

GT-ε
GT-Uε

(a) Memory Usage

 80

 90

 100

 110

 120

 130

 140

 10 100 1000

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

k

GT-ε
GT-Uε

(b) Arrival Rate

Fig. 10 Impact of indexing uncertain locations on indexing for different k values

give low memory optimization performance. This similarity is significantly decreasing with
increasing ε to below 20%. The different values of k do not highly affect this number to
remain around the 20% as depicted in Fig. 9b. This means missing over 80% of the cor-
rect answer when approximating uncertain locations with a single point with low ε values,
which might be unacceptable for several applications. These low similarity numbers moti-
vate the importance of indexing uncertain locations to get results that reflects the actual
location distributions. It is obvious that even with encountering high memory overhead of
keep almost all data, at low values of ε in Fig. 9a, we are still missing over 20% of the correct
answer when approximating uncertain locations, which is still significant. Given that our
GeoTrend+ index is encountering reasonable overhead for indexing uncertain locations, as
we are going to elaborate in the rest of this section, this small additional overhead provides
a great compromise for enhancing the query result.

Figure 10 shows their performance in terms of memory overhead and index arrival rate
for different values of k. Figure 10a shows the memory consumption of the two alterna-
tives. The memory consumption of GT-Uε is always lower than GT-ε. The main reason is
that insertion cycle counters are incremented in much higher frequency in case of GT-Uε

because inserting a single microblog increment insertion counters in multiple cells at once.
As both alternatives perform a periodic cleaning of infrequent keywords based on number

 0

 10

 20

 30

 40

 50

 60

 70

 80

1e-006 0.0001 0.01

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

ε

GT-ε
GT-Uε

(a) Memory Usage

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1e-006 0.0001 0.01

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

ε

GT-ε
GT-Uε

(b) Arrival Rate

Fig. 11 Impact of indexing uncertain locations on indexing for different ε values

Geoinformatica (2020) 24:301–337 327

of insertions in the cell, GT-Uε triggers this cleaning more frequently than GT-ε and wipe
up more useless data from main-memory, and in turn consumes less memory overhead.
Figure 10b depicts the supported arrival rates of incoming microblogs of the two alterna-
tives for different k values. GT-ε starts with 125K microblog/second (at k=10) and then it
decreases with increasing k, whileGT-Uε starts with 100K microblog/second (at k=10), and
it follows the same decrease pattern as GT-ε. The reason that both alternatives support less
arrival rates with increasing k is the overhead of maintaining longer top-k list. In addition,
Fig. 10b shows that the cost of indexing uncertain location data is around 20% reduction
in the supported arrival rate. The consistent lower rate supported by GT-Uε is due to the
overhead of inserting the same microblog in multiple index cells instead of only one cell
and invoking ε-cleaning more frequently due to incrementing insertion counters in these
multiple cells at once. However, even with this 20% reduction, we are still able to support
high data rate, much higher than Twitter arrival rates. This reasonable reduction comes with
advantages in query answers as discussed earlier in this section.

Figure 11 shows the effect of different ε values on the memory consumption and index
arrival rate. Figure 11a shows the memory consumption for different ε values. As expected,
with weak memory optimization at small values of ε, GT-Uε encounter higher memory
storage as it replicates the same keyword in multiple cells. However, slightly increasing the ε

value reverses this situation, whereGT-Uε start to invoke memory cleaning more frequently,
as described earlier, and gets rid of larger amounts of useless data, and so encounter less
memory overhead than GT-ε. Figure 11b shows that increasing ε value leads to digesting

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1e-006 0.0001 0.01

S
im
il
a
r
it
y
 S
c
o
r
e

ε

Jaccard

Kendall Tau

(a) TrendMem

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-006 0.0001 0.01

S
im
il
a
r
it
y
 S
c
o
r
e

ε

Jaccard

Kendall Tau

(b) AdaptiveTrendMem with VDD scheme

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-006 0.0001 0.01

S
im
il
a
r
it
y
 S
c
o
r
e

ε

Jaccard

Kendall Tau

(c) AdaptiveTrendMem with VLN scheme

Fig. 12 Impact of combining adaptive memory optimization and indexing uncertain locations on query
answers

Geoinformatica (2020) 24:301–337328

more data as the index becomes lighter due to triggering more frequent cleaning, and the
insertion is less costly. GT-ε still outperforms GT-Uε due to the same reasons mentioned
earlier. However, GT-Uε still encounter a slight decrease in supported rates and can support
much higher than Twitter rates.

8.6 Combining uncertain locations with adaptive memory optimization

The previous two sections evaluate the impact of adaptive memory optimization and index-
ing uncertain location separately to show the pros and cons of each technique in isolation
from other factors. However, GeoTrend+ index is equipped with the two sets of techniques
in the same structure. This section evaluates different versions of GeoTrend+ index that
combines both techniques revealing new insights on different performance measures.

Figure 12 shows the impact of combining adaptive memory optimization and indexing
uncertain locations on query answers. The similarity is measured between top-k answers
with and without indexing uncertain locations as described in Section 8.5. Figure 12a shows
the effect with TrendMem technique, and it is duplicated from Fig. 12a for better readability,
while Fig. 12b and c show the effect of adaptive memory optimization, AdaptiveTrend-
Mem technique, with the two variations: the variable decimal digit scheme (VDD) and the
variable level number scheme (VLN), as described in Section 6.3. The figure shows that
adaptive ε memory optimization enhances query answer similarity for relatively large ε val-
ues compared with fixed ε memory optimization. AdaptiveTrendMem with VDD (Fig. 12b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1e-006 0.0001 0.01

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

ε

GT-ε
GT-Uε

(a) TrendMem

 0

 20

 40

 60

 80

 100

1e-006 0.0001 0.01

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

ε

GT-VDDε
GT-UVDDε

(b) AdaptiveTrendMem with VDD scheme

 0

 10

 20

 30

 40

 50

 60

 70

 80

1e-006 0.0001 0.01

M
e
m
o
r
y
 U
s
a
g
e
 (
G
B
)

ε

GT-VLNε
GT-UVLNε

(c) AdaptiveTrendMem with VLN scheme

Fig. 13 Impact of combining adaptive memory optimization and indexing uncertain locations on memory
usage

Geoinformatica (2020) 24:301–337 329

is the most robust technique, followed by AdaptiveTrendMem with VLN (Fig. 12c), and
finally TrendMem (Fig. 12a). Figure 12b sustains the maximum similarity, 80%, for up to
ε =0.001, while its worst similarity at ε =0.01 is 40%. This is much better performance
compared with other alternatives where similarity drops below 20%. This answer similarity
performance is interpreted by the corresponding memory usage performance that is depicted
in Fig. 13. Figure 13 denotes GeoTrend+ with TrendMem as GT-ε, and with AdaptiveTrend-
Mem asGT-VDDε for VDD scheme and asGT-VLNε for VLN scheme, where all alternative
has U to indicate uncertain locations. AdaptiveTrendMem with VDD (Fig. 13b) encounters
higher memory footprint up to ε =0.001. This extra memory content sustains the answer
of approximated locations similar to the answer of non-approximated locations for large
variation of parameter values. On the contrary, other alternatives (in Fig. 13a and c) keep
lower memory footprints by spilling content that demonstrates the effect of approximating
location. In all cases, the answer similarity does not exceed 80%, which shows that approx-
imating locations leads to missing a significant portion of the correct answer. However,
varying memory content with different optimization techniques changes the robustness of
this missing part for different parameter values.

Figure 14 shows the impact of combining adaptive memory optimization and indexing
uncertain locations on arrival rate. TrendMem (Fig. 14a) shows the lowest decrease in arrival
rate for indexing uncertain locations compared to AdaptiveTrendMem with VDD (Fig. 14b)
and with VLN (Fig. 14c). The main reason is the lower values of ε that are employed
in lower index levels in AdaptiveTrendMem. However, this effect is being demoted with

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1e-006 0.0001 0.01

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

ε

GT-ε
GT-Uε

(a) TrendMem

 0

 20

 40

 60

 80

 100

 120

 140

1e-006 0.0001 0.01

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

ε

GT-VDDε
GT-UVDDε

(b) AdaptiveTrendMem with VDD scheme

 0

 20

 40

 60

 80

 100

 120

 140

 160

1e-006 0.0001 0.01

A
r
r
iv
a
l
R
a
te

(
K
 m
ic
r
o
b
lo
g
s
/s
e
c
)

ε

GT-VLNε
GT-UVLNε

(c) AdaptiveTrendMem with VLN scheme

Fig. 14 Impact of combining adaptive memory optimization and indexing uncertain locations on arrival rate

Geoinformatica (2020) 24:301–337330

increasing ε value. With the default ε =0.001, all techniques still digest high rates that are
at least eight times Twitter rate. This shows the scalability of all GeoTrend+ components
with all different settings even with providing significant memory optimization and high
query accuracy.

9 Conclusion

In this paper, we presented GeoTrend+; a scalable system that supports spatial trending
queries on recent microblogs. GeoTrend+ supports a variety of trending measures that suit
different applications. It also supports queries on arbitrary spatial regions using data that
has recently arrived in the last T time units. For this, it employs an efficient main-memory
spatial index that digests and expires data with high rates. The index is able to digest
data with both exact point locations and uncertain locations. In peak times, where main-
memory is overwhelmed, it employs a smart memory optimizer that sheds less important
data while keeping highly accurate query answers. The memory optimizer employs both
fixed and adaptive parameters to distinguish useless from useful data at different spatial lev-
els. The experimental evaluation shows the scalability of GeoTrend+ to digest much higher
rates than prominent microblogging services, while providing average query latency of few
milliseconds and sustaining high performance with limited memory. Compared to exist-
ing competitors, GeoTrend+ has a clear advantage in both main-memory optimization and
query latency in all parameter settings. These two optimization goals ensure sustainability
of digesting new real-time streaming data in tight memory environments, while still serv-
ing scalable applications with low query latency. In addition, GeoTrend+ trades-off this
low resources overhead with indexing time and effective query accuracy that are still effi-
cient and applicable in microblogs applications as they support multiple times higher rates
compared to average Twitter data.

Acknowledgments Amr Magdy acknowledges the support of the National Science Foundation under
Grants Number IIS-1849971, SES-1831615, and CNS-1837577. Mohamed Mokbel acknowledges the
support of the National Science Foundation under Grants Number IIS-1525953, CNS-1512877, and IIS-
1907855. Walid Aref acknowledges the support of the National Science Foundation under Grants Number
III-1815796, and IIS-1910216.

Appendix: Trend Line Slope

GeoTrend+ uses statistical linear regression slope to measure the trendiness of a certain
keyword. The following Lemma derives the equation that determines the trendiness of a
keyword:

Lemma 1 Given a keyword consecutive frequencies vector f = [f0, f1,..., fN], the keyword
trend line can be estimated with the following formula:

T rendreg =
∑N

i=1[i × (fi − f0)]
N(N + 1)(2N + 1)

(3)

Proof The simple linear regression slope T rendreg of x and y is given with the following
equation:

T rendreg = Mean(xy)

Mean(x2)
(4)

Geoinformatica (2020) 24:301–337 331

Where Mean(x) is the average value of the vector and xy is a vector that results from
value-wise multiplication of the vectors x and y. In GeoTrend+, the vector x values are
always constants while the vector y contains the frequencies of a keyword W . Thus values
of vector x are always be [1, 2, 3, ..., N] while values of vector y are [f1, f2, f3, ..., fN].
Thus, Mean(x2) can be simplified as (N+1)(2N+1)

6 . On the other hand, Mean(xy) can be

calculated as
∑N

i=1 i×fi

N
. Substitutes both variables to Equation 1:

T rendreg =
∑N

i=1i×fi

N

(N+1)(2N+1)
6

= 6
∑N

i=1i × fi

N(N + 1)(2N + 1)
(5)

The equation above assumes that the measurement is used from the start of the stream and
each keyword W starts from frequency 0. However, in GeoTrend+, we need to consider
the start position of a keyword W by using the previous frequency, namely f0. Thus, the
equation above can be modified to:

T rendreg = 6
∑N

i=1[i × (fi − f0)]
N(N + 1)(2N + 1)

(6)

References

1. Abdelhaq H, Sengstock C, Gertz M (2013) EvenTweet: Online Localized Event Detection from Twitter.
In: VLDB

2. Ahmed P, HasanM, Kashyap A, Hristidis V, Tsotras VJ (2017) Efficient Computation of Top-k Frequent
Terms over Spatio-temporal Ranges. In:s SIGMOD

3. Arasu A, Manku GS (2004) Approximate counts and quantiles over sliding windows. In: PODS
4. Aref WG, Samet H (1990) Efficient processing of window queries in the pyramid data structure. In:

PODS
5. Social media ’outstrips TV’ as news source for young people. http://www.bbc.com/news/uk-36528256,

2016
6. After Boston Explosions, People Rush to Twitter for Breaking News. http://www.latimes.com/business/

technology/la-fi-tn-after-boston-explosions-people-rush-to-twitter-for-breaking-news-20130415,0,
3729783.story, 2013

7. Budak C, Agrawal D, El Abbadi A (2011) Structural trend analysis for online social networks. PVLDB
4(10):646–656

8. Budak C, Georgiou T, Agrawal D, El Abbadi A (2014) GeoScope: Online detection of Geo-Correlated
information trends in social networks. In: VLDB

9. Busch M, Gade K, Larson B, Lok P, Luckenbill S, Lin J (2012) Earlybird: real-time search at twitter In:
ICDE

10. Chi Y, Tseng BL, Tatemura J (2006) Eigen-Trend: trend analysis in the blogosphere based on singular
value decompositions. In: CIKM, pp 68–77

11. Weibo S China Twitter, comes to rescue amid flooding in Beijing. http://thenextweb.com/asia/2012/07/
23/sina-weibo-chinas-twitter-comes-to-rescue-amid-flooding-in-beijing/, 2012

12. Cunha E, Magno G, Comarela G, Almeida V, Gonçalves MA, Benevenuto F (2011) Analyzing the
dynamic evolution of hashtags on twitter: a language-based approach. In: Proceedings of the Workshop
on Languages in Social Media, pp 58–65

13. Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding windows
(extended abstract). In: SODA

14. Fagin R, Kumar R, Sivakumar D (2003) Comparing Top k Lists. SIAM J Discret Math 17(1):134–160
15. Fagin R, Lotem A, Naor M (2001) Optimal aggregation algorithms for middleware. In: PODS, pp 102–

113
16. Farazi S et al (2019) Top-K Spatial term queries on streaming data. In: ICDE
17. Feng W, Han J, Wang J, Aggarwal C, Huang J (2015) STREAMCUBE: Hierarchical Spatio-temporal

Hashtag Clustering for Event Exploration Over the Twitter Stream. In: ICDE

Geoinformatica (2020) 24:301–337332

http://www.bbc.com/news/uk-36528256
http://www.latimes.com/business/technology/la-fi-tn-after-boston-explosions-people-rush-to-twitter-for-breaking-news-20130415,0,3729783.story
http://www.latimes.com/business/technology/la-fi-tn-after-boston-explosions-people-rush-to-twitter-for-breaking-news-20130415,0,3729783.story
http://www.latimes.com/business/technology/la-fi-tn-after-boston-explosions-people-rush-to-twitter-for-breaking-news-20130415,0,3729783.story
http://thenextweb.com/asia/2012/07/23/sina-weibo-chinas-twitter-comes-to-rescue-amid-flooding-in-beijing/
http://thenextweb.com/asia/2012/07/23/sina-weibo-chinas-twitter-comes-to-rescue-amid-flooding-in-beijing/

18. Finkel RA, Bentley JL (1974) Quad Trees: A Data Structure for Retrieval on Composite Keys. ACTA,
4(1)

19. Gao H, Tang J, Liu H (2012) Exploring Social-Historical ties on Location-Based social networks. In:
The 6th Intl AAAI Conf on Weblogs and Social Media

20. Golab L, DeHaan D, Demaine ED, López-Ortiz A, Ian Munro J (2003) Identifying frequent items in
sliding windows over on-line packet streams. In: Internet Measurement Comference

21. Us department of health and human services disease tracking. https://nowtrending.hhs.gov
22. Hong L, Ahmed A, Gurumurthy S, Smola AJ, Tsioutsiouliklis K (2012) Discovering geographical topics

in the twitter stream. In: WWW
23. Huang J, Peng M, Wang H, Cao J, Gao W, Zhang X (2017) A probabilistic method for emerging topic

tracking in microblog stream. World Wide Web 20(2):325–350
24. Ikawa Y, Enoki M, Tatsubori M (2012) Location inference using microblog messages. In: WWW
25. Indyk P, Koudas N, Muthukrishnan S (2000) Identifying representative trends in massive time series

data sets using sketches. In: VLDB, pp 363–372
26. Jonathan C, Magdy A, Mokbel M, Jonathan A (2016) GARNET A holistic system approach for trending

queries in microblogs. In: ICDE
27. Kenney JF, Sydney E (1962) Keeping. Mathematics of Statistics, Part 1, chapter 15, pp 252–285. van

Nostrand 3rd edn
28. Kim K-S, Kojima I, Ogawa H (2016) Discovery of local topics by using latent spatio-temporal

relationships in geo-social media. Int J Geogr Inf Sci 30(9):1899–1922
29. Krumm J, Eyewitness EH (2015) Identifying local events via space-time signals in twitter feeds. In:

Proceedings of the 23rd Sigspatial International Conference on Advances in Geographic Information
Systems, ACM, p 20

30. Lazaridis I, Mehrotra S (2001) Progressive approximate aggregate queries with a Multi-Resolution tree
structure. In: SIGMOD, pp 401–412

31. Lee L-K, Ting HF (2006) A simpler and more efficient deterministic scheme for finding frequent items
over sliding windows. In: PODS

32. Li G, Jun H, Feng J (2014) Kian-lee tan effective location identification from microblogs. In: ICDE
33. Li R, Lei KH, Khadiwala R, Chen-Chuan K (2012) Chang. TEDAS: a twitter-based event detection and

analysis system. In: ICDE
34. López IFV, Snodgrass RT, Moon B (2005) Spatiotemporal Aggregate Computation: A Survey. TKDE

17(2):271–286
35. Magdy A, Aly AM, Mokbel MF, Elnikety S, He Y, Nath S, Aref WG (2016) GeoTrend: Spatial Trending

Queries on Real-time Microblogs. In: SIGSPATIAL
36. Magdy A, Mokbel MF, Elnikety S, Nath S, Mercury YH (2014) A memory-constrained spatio-temporal

real-time search on microblogs. In: ICDE
37. Manku GS, Motwani R (2002) Approximate frequency counts over data streams. In: VLDB
38. Mathioudakis M, TwitterMonitor NK (2010) Trend detection over the twitter stream. In: SIGMOD
39. How Michael Jackson’s Death Shut Down Twitter, Brought Chaos to Google, and Killed Off Jeff Gold-

blum. https://www.dailymail.co.uk/sciencetech/article-1195651/How-Michael-Jacksons-death-shut-Twit
ter-overwhelmed-Google–killed-Jeff-Goldblum.html, 2009

40. Nath S, Lin F (2013) Lenin ravindranath, and jitu padhye. Smartads: Bringing contextual ads to mobile
apps. In: ACM Mobisys

41. Nguyen K, Tran DA (2011) An analysis of activities in Facebook. In: IEEE Consumer communications
and networking conference (CCNC)

42. Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient OLAP operations in spatial data warehouses. In:
SSTD, pp 443–459

43. Sankaranarayanan J, Samet H, Teitler BE, Lieberman MD, TwitterStand JS (2009) News in tweets. In:
GIS

44. Shin S, Choi M, Choi J, Langevin S, Bethune C, Horne P, Kronenfeld N, Kannan R, Drake B, Park H et
al (2017) Stexnmf: Spatio-temporally exclusive topic discovery for anomalous event detection. In: 2017
IEEE International Conference on Data Mining (ICDM), IEEE, pp 435–444

45. Skovsgaard A, Sidlauskas D, Jensen CS (2014) Scalable top-k spatio-temporal term querying. In: ICDE,
pp 148–159

46. Tao Y, Kollios G, Considine J, Li F, Papadias D (2004) Spatio-Temporal Aggregation using sketches.
In: ICDE, p 214–225

47. Trends 24. http://trends24.in
48. Twitter Location Trends. https://support.twitter.com/articles/101125#Trend Location
49. Le HV, Takasu A (2018) Parallelizing top-k frequent spatio-temporal terms computation on key-value

stores. In: SIGSPATIAL

Geoinformatica (2020) 24:301–337 333

https://nowtrending.hhs.gov
https://www.dailymail.co.uk/sciencetech/article-1195651/How-Michael-Jacksons-death-shut-Twitter-overwhelmed-Google--killed-Jeff-Goldblum.html
https://www.dailymail.co.uk/sciencetech/article-1195651/How-Michael-Jacksons-death-shut-Twitter-overwhelmed-Google--killed-Jeff-Goldblum.html
http://trends24.in
https://support.twitter.com/articles/101125#Trend_Location

50. Weber I, Garimella VRK (2014) Visualizing user-defined, discriminative geo-temporal twitter activity.
In ICWSM

51. Wei H, Sankaranarayanan J, Samet H (2017) Finding and tracking local twitter users for news detection.
In: SIGSPATIAL

52. Wei H, Sankaranarayanan J, Samet H (2017) Measuring spatial influence of twitter users by interactions.
In: Proceedings of the 1st ACM SIGSPATIAL Workshop on Analytics for Local Events and News

53. Wei H, Sankaranarayanan J, Samet H (2018) Enhancing local live tweet stream to detect news. In:
Proceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics for Local Events and News

54. Lingkun W, Lin W, Xiao X, Yabo X (2013) LSII An indexing structure for exact Real-Time search on
microblogs. In: ICDE

55. Zhang Donghui, Tsotras VJ, Gunopulos D (2002) Efficient aggregation over objects with extent. In:
PODS, pp 121–132

56. Zhang T, Zhou B, Huang J, Jia Y, Zhang B, Li Z (2017) A refined method for detecting interpretable
and Real-Time bursty topic in microblog stream. In: WISE

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Abdulaziz Almaslukh received the MSc degree from the Depart-
ment of Computer Science, University of Southern California, Los
Angeles, in 2014. He is currently pursuing a Ph.D. degree in Com-
puter Science at the University of California, Riverside. His research
interests include big data management, spatial data management, and
spatio-temporal data indexing Techniques.

Amr Magdy is an Assistant Professor of Computer Science and
Engineering and a co-founding faculty member of the Center for
GeoSpatial Sciences at UC Riverside. His research interests include
database systems, spatial data management, big data management,
large-scale data analytics, indexing, and main-memory management.
His research is published in prestigious research venues, including
ACM SIGMOD, ACM SIGSPATIAL, IEEE ICDE, IEEE TKDE, and
VLDB Journal. His research is recognized among best papers in IEEE
ICDE 2014 and has been incubated by several industrial collabora-
tors, including a patented system that is commercialized by a social
media analytics company with access to all Twitter data. His research
is supported with multiple NSF awards, including NSF CRII 2019
award.

Geoinformatica (2020) 24:301–337334

Ahmed M. Aly obtained his PhD from Purdue University in 2015
and joined Google right afterwards. Ahmed’s research interests lie
in the broad area of database systems, with a focus on the prob-
lems related to query optimization as well as the management of
big data. Ahmed’s research has been published and demonstrated in
prestigious research venues, including VLDB, IEEE ICDE, EDBT,
WSDM, ACM SIGSPATIAL, and ACM TSAS.

Mohamed F. Mokbel received the BSc and MS degrees from
Alexandria University, Egypt,and the PhD degree from Purdue Uni-
versity. He is a professor at the University of Minnesota. His current
research interests focus on providing database and platform support
for spatio-temporal data, location-based services2.0, personalization,
and recommender systems. His research work has been recognized
by four Best Paper Awards at IEEE MASS 2008, IEEEMDM 2009,
SSTD 2011, and ACM MobiGIS Workshop 2012, and by the US
National Science Foundation (NSF)CAREER award 2010. He is/was
general co-chair of SSTD 2011, pro-gram co-chair of ACM SIG-
SPAITAL GIS 2008-2010, and MDM 2014,2011. He has served in
the editorial board of the ACM Transactions on Spatial Algorithms
and Systems, IEEE Data Engineering Bulletin, Distributed and Paral-
lel Databases Journal, and Journal of Spatial Information Science. He
has held various visiting positions at the Microsoft Research, Hong
Kong Polytechnic University, and Umm Al-Qura University, Saudi
Arabia. He was elected a chair of ACM SIGSPATIAL 2014-2017. He

is a senior member of the ACM and IEEE, and a founding member of the ACM SIGSPATIAL. For more
information, please visit: www.cs.umn.edu/∼mokbel.

Sameh Elnikety received the MS degree from Rice University in
Houston, Texas, and the PhD degree from the Swiss Federal Institute
of Technology (EPFL) in Lausanne, Switzerland. He is a researcher at
Microsoft Research in Redmond, Washington. His research interests
include distributed server systems and database systems. His work on
database replication received the best paper award at Eurosys 2007.

Geoinformatica (2020) 24:301–337 335

www.cs.umn.edu/~mokbel

Yuxiong He received the PhD degree in computer science from the
Singapore-MIT Alliance, in 2008. She is a researcher at Microsoft
Research in Redmond, Washington. Her research interests include
resource management, algorithms, modeling, and performance evalu-
ation of parallel and distributed systems. Her research work has been
selected among best papers in ICDE 2014.

Suman Nath received the MS degree and PhD degree from Carnegie
Mellon University (CMU). He is a senior researcher at Microsoft
Research in Redmond, Washington. His research interests include
sensor/time-series data management, data privacy and security, and
flash memory. His research work has been recognized by best paper
awards at BaseNets Workshop 2004, NSDI 2006, ICDE 2008, SSTD
2011, Grace Hopper 2012, and MobiSys 2012.

Walid G. Aref is a professor of computer science at Purdue. His
research interests are in extending the functionality of database
systems in support of emerging applications, e.g., spatial, spatio-
temporal, graph, biological, and sensor databases. He is also inter-
ested in query processing, indexing, data streaming, and geographic
information systems (GIS). Walid’s research has been supported by
the National Science Foundation, the National Institute of Health,
Purdue Research Foundation, Qatar National Research Foundation,
CERIAS, Panasonic, and Microsoft Corp. In 2001, he received the
CAREER Award from the National Science Foundation and in 2004,
he received a Purdue University Faculty Scholar award. Walid is a
member of Purdue’s CERIAS. He is the Editor-in-Chief of the ACM
Transactions of Spatial Algorithms and Systems (ACM TSAS), and
an editorial board member of the Journal of Spatial Information Sci-
ence (JOSIS), and has served as an editor of the VLDB Journal and
the ACM Transactions of Database Systems (ACM TODS). Walid
has won several best paper awards including the 2016 VLDB ten-year

best paper award. He is a Fellow of the IEEE, and a member of the ACM. Between 2011 and 2014, Walid
has served as the chair of the ACM Special Interest Group on Spatial Information (SIGSPATIAL).

Geoinformatica (2020) 24:301–337336

Affiliations

Abdulaziz Almaslukh1 ·Amr Magdy1 ·AhmedM. Aly2 ·Mohamed F. Mokbel3 ·
Sameh Elnikety4 ·Yuxiong He4 · Suman Nath4 ·Walid G. Aref5

Amr Magdy
amr@cs.ucr.edu

Ahmed M. Aly
aaly@google.com

Mohamed F. Mokbel
mokbel@umn.edu

Sameh Elnikety
samehe@microsoft.com

Yuxiong He
yuxhe@microsoft.com

Suman Nath
sumann@microsoft.com

Walid G. Aref
aref@cs.purdue.edu

1 Department of Computer Science and Engineering, University of California, Riverside, CA, USA
2 Google Inc., Menlo Park, CA, USA
3 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
4 Microsoft Research, Redmond, WA, USA
5 Department of Computer Science, Purdue University, West Lafayette, IN, USA

Geoinformatica (2020) 24:301–337 337

http://orcid.org/0000-0002-2147-5772
mailto: amr@cs.ucr.edu
mailto: aaly@google.com
mailto: mokbel@umn.edu
mailto: samehe@microsoft.com
mailto: yuxhe@microsoft.com
mailto: sumann@microsoft.com
mailto: aref@cs.purdue.edu

	Local trend discovery on real-time microblogs with uncertain locations in tight memory environments
	Abstract
	Introduction
	Related work
	Trending items in data streams
	Spatial queries on microblogs
	Spatial aggregate queries

	Trending measures
	Rate of increase measure
	Weighted count measure

	GeoTrend+ Overview
	System architecture
	Preprocessor
	In-memory Index
	Memory Optimizer
	Query Processor

	Query formulation
	Query Definition

	Real-time indexing
	Index structure
	Index shaping process
	Index real-time operation
	Hash table H
	List TopK
	Rotating pointer p
	Timestamp tlast

	Index insertion
	Pyramid traversal
	Cell insertion

	Data expiration
	Lazy expiration
	Light cleaning

	Memory optimization
	Key ideas
	Key observation
	Key idea

	TrendMem technique
	Main idea
	Impact on the index

	AdaptiveTrendMem technique
	Main idea
	Impact on the index

	Query processing
	Experimental evaluation
	Experimental setup
	Query processing
	Keyword replication
	Materializing Top-k lists

	Memory optimization
	Adaptive memory optimization
	Indexing uncertain locations
	Combining uncertain locations with adaptive memory optimization

	Conclusion
	Appendix I Trend Line Slope
	References
	Affiliations

