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Abstract�

A partitioning problem on chordal graphs that arises in the solution of sparse tri�
angular systems of equations on parallel computers is considered� Roughly the problem
is to partition a chordal graph G into the fewest transitively orientable subgraphs over

all perfect elimination orderings of G� subject to a certain precedence relationship on
its vertices� In earlier work� a greedy scheme that solved the problem by eliminating
a largest subset of vertices at each step was described� and an algorithm implementing

the scheme in time and space linear in the number of edges of the graph was provided�
A more e�cient greedy scheme� obtained by representing the chordal graph in terms of
its maximal cliques� is described here� The new greedy scheme eliminates in a speci�ed
order a largest set of �persistent leaves�� a subset of the leaf cliques in the current graph�

at each step� Several new results about minimal vertex separators in chordal graphs�
and in particular the concept of a critical separator of a leaf clique� are employed to
prove that the new scheme solves the partitioning problem� We provide an algorithm
implementing the scheme in time and space linear in the size of the clique tree�
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�� Introduction� We consider a partitioning problem on chordal graphs that

arises in the design of parallel algorithms for solving sparse triangular systems of equa�
tions� Given a chordal graph G with its vertices numbered in a perfect elimination
ordering �PEO�� we obtain a directed acyclic graph �DAG� by directing every edge
from its lower�numbered to its higher�numbered endpoint� �De�nitions of chordal graph

terms are included in the next section�� Roughly the problem is to partition the chordal
graph G into the fewest transitively closed subgraphs� subject to a certain precedence
relationship on the vertices� over all DAGs that may be obtained from PEOs of G in
this manner� In earlier work ��� we designed a greedy algorithm for solving this prob�

lem that uses an adjacency list representation of the graph� Here we describe another�
more e�cient� greedy algorithm obtained by viewing the chordal graph as a collection
of maximal cliques�

We will need to introduce some notation before we can state the problem more
precisely�

Let Gd � �V� F � be a DAG� If there exists a directed path from a vertex j to
another vertex i in Gd� then j is a predecessor of i� and i is a successor of j� Given a

set X � V � let FX � F be the set comprising every edge directed from a vertex in X to
any vertex in the graph� The edge subgraph induced by FX is the subgraph of Gd with
edge set FX and vertex set consisting of all vertices which are end�points of these edges�
�We will call this the edge subgraph induced by X�� A directed graph is transitively

closed or transitive if the existence of edges �u� v� and �v�w� implies the existence of
edge �u�w��

The chordal graph partitioning problem is the following�
Problem �� Given a chordal graph G � �V�E�� compute a PEO� the associated

DAG Gd� and an ordered partition R�� R�� � � � � Rt of its vertices such that
�� for every v � V � if v � Ri then all predecessors of v belong to R�� � � � � Ri�
�� the edge subgraph induced by each Ri is transitively closed� and

�� t is minimum over partitions of all DAGs obtained from PEOs of G�
Problem  and a simpler DAG partitioning problem arose in the design of algorithms

for solving sparse triangular systems of equations on highly parallel computers� The
papers ��� �� �� ��� discuss various aspects of this problem� and a survey is provided

in ���
An algorithm for solving this partitioning problem in time and space O�jV j� jEj�

has been described in ���� This greedy algorithm eliminates all vertices that are �eli�
gible� for elimination at each step� hence the set of vertices eliminated at the ith step�

Ri� has the largest cardinality possible� Let Gi � G n �i��j��Rj denote the reduced graph
at the beginning of the ith step� The set Ri includes all the simplicial vertices of Gi�
in addition� it includes the neosimplicial vertices of Gi� a subset of the vertices that
become newly simplicial when the simplicial vertices of Gi are eliminated� �A precise

de�nition will be given in Section ���
Here we present a more e�cient greedy algorithm that can be implemented using

a clique tree representation of G in O�jV j� q� time� where q ��
P

K�KG
jKj� and KG

is the set of maximal cliques of G� The number q is the size of the clique tree� and
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typically q � jEj� Since the algorithm is conceptually quite simple� we now provide a

high�level description of the algorithm �assuming some knowledge of the clique graph
representation of chordal graphs described in Section ���

Let Gi denote the reduced graph at the beginning of the ith step� The algorithm
considers only the leaf cliques in the clique graph representation of Gi for elimination

at this step� These cliques are processed by decreasing size of the unique maximal
separator contained in each leaf� When a leaf clique K is considered for elimination� all
the currently simplicial vertices in K are eliminated in the order in which they became
simplicial� It then becomes a non�maximal clique and is deleted from the clique graph�

The deletion of K could in�uence a clique P that contains the maximal separator of
K in three ways� If P is a current leaf� and continues to be a leaf after the deletion of
K� then the maximal separator size of P is updated as necessary� If P changes from a

leaf to a non�leaf� then it is removed from the set of �persistent leaves�� and will not
be considered for elimination at this step� If P becomes a new leaf� then it will be a
candidate for elimination only at the next step� This process of eliminating persistent
leaves from the current graph is repeated until the graph is empty�

This �persistent leaf elimination scheme� is a natural greedy algorithm from the
clique graph viewpoint in that it deletes all eligible cliques from the current graph at each
step� The hard part of the paper is proving that this simple leaf elimination algorithm
solves Problem � We do this by making a careful study of minimal vertex separators

in terms of the clique graph� by introducing the concept of a critical separator� and by
partitioning leaves into cohorts using their critical separators�

The rest of this paper is organized into three major parts� The �rst part� consisting
of Sections �� �� and �� develops the fundamental results necessary to characterize the

unique �rst member of maximum cardinality in a vertex partition� R�� This character�
ization is obtained in terms of the cliques of G and the minimal vertex separators in G�
The second part� which includes Sections 
� 	� and �� progressively develops a persistent

leaf clique elimination scheme that eliminates a subset of vertices that belong to R��
ordering them in an appropriate ordering� The third part� consisting of Sections � and
�� describes a greedy leaf clique elimination algorithm that solves Problem  by recur�
sively eliminating persistent leaves at each step� The �nal section contains a discussion

of graphs for which Problem  has the solution R� � V �
We now describe the individual sections in more detail�
In Section � we describe the concepts and results from ��� that we require� Section �

introduces properties of clique intersection graphs� clique trees� and minimal vertex

separators of chordal graphs� A vertex v eligible to belong to R� was characterized in
��� in terms of the length of a longest chordless path in G in which v is an interior
vertex� Section � characterizes such a vertex v in terms of the minimal vertex separators
of G� The important concept of a critical separator is introduced in Section �� and a

nonsimplicial vertex belonging to R� is characterized in terms of critical separators�
Section 
 introduces a simple leaf clique elimination scheme and considers how the

set of separators� the set of simplicial vertices� and the set of leaf cliques change upon

the elimination of a single clique� In Section 	 this simple elimination scheme is re�ned

	



by carefully ordering the elimination process� and the cliques and vertices eliminated

by the scheme are characterized� It is shown in Section � that the re�ned elimination
scheme removes a transitively closed edge subgraph�

In Section � we describe a greedy leaf clique elimination scheme that employs the
persistent leaf elimination scheme recursively to obtain a solution to Problem � An

implementation of this greedy scheme that makes uses of a rooted clique tree and runs
in O�jV j� q� time is then brie�y described in Section ��

�� Background� In this section we brie�y review chordal graph terminology and
the results from ��� that we require in this paper� This section begins the �rst part
of this paper� which includes the next two sections as well� The characterization of
the �rst member of a partition R� leads to the concept of a neosimplicial vertex� We

characterize neosimplicial vertices in terms of the separators in the chordal graph in the
latter sections�

We will assume throughout that the graphs we consider are connected� A chord of a
cycle �path� in a graph G is an edge of G joining two vertices that are not consecutive on

the cycle �path�� A graph G is chordal if every cycle containing more than three edges
has a chord� A cycle or path is chordless if it has no chord� Discussions of chordal
graphs may be found in Berge ���� Duchet ���� and Golumbic ��� Peyton ��� and
Lundquist �	� discuss the clique graph representation of chordal graphs� and Blair and

Peyton �	� provide a recent primer with applications to sparse matrix computations�
An important concept in the solution of Problem  is the length of a vertex de�ned

in terms of chordless paths� A vertex v is an interior vertex of a path if it lies on the

path but is not an endpoint of the path� Any vertex v is either an interior vertex of
some chordless path in the graph� or else it is an endpoint of every chordless path on
which it lies� In the former case� let ��v� denote the length of a longest chordless path
in G which includes v in its interior� note that ��v� � � for all such vertices� In the

latter case� de�ne ��v� � � �We will see later that the latter vertices are simplicial �
i�e�� vertices whose adjacency set is a clique�� We will refer to ��v� as the length of a
vertex v� and write �G�v� when we want to make clear that the underlying graph is G�

We will use the chordal graph shown in Figure �� to illustrate various concepts

throughout the paper� A �hypergraph� representation of the graph in terms of its
maximal cliques is also shown� We use this example throughout this paper to illustrate
several new concepts� The hypergraph representation helps to provide insight into the
concepts involving separators and leaf cliques� The reader can easily verify from the

chordal graph that ��ki� �  for i � � � � �� �� ��s�� � ��s�� � �� and ��s�� � ��s�� � ��
The vertices v � V for which ��v� � � have certain properties that will play a

crucial role in our solution to Problem � The �rst of these is that for such vertices in

a chordal graph� there is an interesting partition of adj�v�� the adjacency set of v�
The neighborhood of a vertex v is nbd�v� � fvg�adj�v�� A vertex u � adj�v� is said

to be indistinguishable from v if nbd�u� � nbd�v�� the set of neighbors indistinguishable
from v will be denoted by adj��v�� A vertex u � adj�v� is said to strictly outmatch v if

nbd�u� � nbd�v�� The set of vertices that strictly outmatch v will be written adj��v��
the set of vertices strictly outmatched by v will be written adj��v�� Finally� let adj��v�
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Fig� ���� A chordal graph with maximal cliques K� � fk�� s�� s�� s�� s�g� K� � fk�� s�� s�� s�� s�g�
K� � fk�� s�� s�g� and K� � fk�� s�� s�g� A hypergraph representation of the graph in terms of its

maximal cliques is also shown� since it helps in visualizing the new concepts involving the structure and

classi�cation of separators�
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consist of the vertices u � adj�v� for which nbd�u� and nbd�v� are incomparable� It

should be clear that the subsets adj��v�� adj��v�� adj��v�� and adj��v� partition adj�v��
where v is a vertex in any graph G�

Lemma ���� If v is a vertex of a chordal graph G� then the subsets adj��v�� adj��v��
and adj��v� partition adj�v� if and only if ��v� � �� �

The second result concerns vertices with length one or two�
Lemma ���� Let v be a vertex of a chordal graph�
�� ��v� �  if and only if v is simplicial� in which case adj��v� � 	�
�� If ��v� � � then jadj��v�j � �� and for every vertex u � adj��v� there exists a

vertex u� � adj��v� for which �u� u�� 
� E� �

The �rst� but not the second� of these properties is true for a vertex in any graph�
The cycle on four vertices provides a non�chordal counter�example for the latter� since

every vertex has ��v� � � and adj��v� equal to the empty set�
We now turn to a characterization of the largest set of vertices whose edge subgraph

is transitively closed in the graph G� We need two additional concepts to state the
results� transitive perfect elimination orderings and T	sets�

Let jV j � n� An incomplete ordering of G relative to a vertex set X � V is a
mapping

� � V � f� �� � � � � jXj  � jXj� n� g

such that � restricted to X is a bijection from X to f� �� � � � � jXjg and ��v� � n � 
for each vertex v � V  X� For convenience we shall refer to an incomplete ordering

of G as an ordering of G�X�� �If X � V � then we obtain an ordering of the vertices
of G�� Given an ordering of the vertices of a graph� we denote by hadj�v� the set of
higher�numbered neighbors of v� A perfect elimination ordering of G�X� is an ordering
of G�X� such that hadj�v� is complete in G for every vertex v � X� �The reader should

not confuse G�X� with the subgraph induced by the vertex set X��
A transitive ordering of G�X� is a vertex ordering for which the following property

holds� If ��u� � ��v� � ��w� and �u� v�� �v�w� � E� then �u�w� � E� Note that the
vertices u and v are necessarily taken from X �because ��u� � ��v� � n��� while the

vertex w may be taken from either X or V X�
A transitive perfect elimination ordering �TEO� of G�X� is an ordering of G�X�

that is both a PEO and a transitive ordering of G�X�� Any vertex set X � V for
which there exists a TEO of G�X� shall henceforth be called a T	set of G� An example

of a T�set is X � SimG 
� 	� where SimG is the set of simplicial vertices of G� It is
easy to verify for this example that any ordering of G�X� is a TEO of G�X�� The
set X � fk�� k�� k�� k�� s�g is a T�set of the graph in Figure ��� since if the vertices

are numbered in increasing order as listed� then the ordering is a TEO� Note that X
includes a nonsimplicial vertex s� of G�

If X is a T�set of G� order the vertices of G�X� in a TEO� and direct each edge
that has at least one endpoint in X from the lower to the higher�numbered endpoint�

Let EX denote the subset of edges of G with at least one endpoint in X� Then the
edge subgraph of G�X� induced by EX is a transitively closed subgraph� The following
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theorem characterizes the largest possible transitively closed subgraph of G that can be

obtained in this manner�
Theorem ���� The unique T	set of maximum cardinality in the graph G is

R � fv � V j ��v� � �� and ��u� � � for every u � adj��v�g� �����

In the example in Figure ��� R � fk�� � � � � k�� s�g� The T�set R includes simplicial
vertices� which are vertices of length one� and neosimplicial vertices� vertices v with
length two such that vertices that strictly outmatch v have length less than or equal to
two as well�

The next result characterizes a greedy solution to Problem � Consider reducing
the graph G by choosing a T�set �R of G and removing the vertices in �R from G in the
order speci�ed by a TEO of G� �R�� we can then complete the reduction of G to the null

graph by applying this process recursively to the reduced graph G n �R�
Suppose the graph G is reduced to the null graph after the removal of t distinct

T�sets� each ordered by a TEO� De�ne G� �� G� and let G�� G�� � � � � Gt�� � 	 be the
sequence of reduced graphs obtained at the end of each �block� elimination step� Let
�R�� �R�� � � � � �Rt be the corresponding sequence of T�sets� so that �Ri is removed from Gi

by a TEO of Gi� �Ri� to obtain the reduced graph Gi�� � Gi n �Ri� We shall refer to any
partition �R�� �R�� � � � � �Rt obtained by this process as a T	partition of V � A PEO � of V
can be obtained through this process by ordering for each  � i � t � the vertices in
�Ri�� in a TEO after �Ri has been ordered in a TEO� The resulting PEO is a compound
TEO of G with respect to the T�partition �R�� �R�� � � � � �Rt�

Denote by the greedy vertex elimination scheme a scheme that eliminates the max�
imum cardinality T�set Ri from each graph Gi in this sequence�

Theorem ���� The greedy vertex elimination scheme generates a minimum	
cardinality T	partition of V � �

	� Clique graphs and vertex lengths� We begin this section with a description
of clique graph and clique tree representations of a chordal graph� and then describe
the relationships between vertex separators and clique trees� These will enable us to
obtain a result relating vertices with speci�ed lengths to the structure of the separators

they belong to�

	��� Clique trees and separators� Let the set of maximal cliques of the chordal
graph G � �V�E� be denoted by KG� We de�ne a clique intersection graph with

vertex set KG by joining two cliques K and K � by an edge �K�K �� if the intersection
K �K � is not empty� The weight of the edge is the size of the intersection� A clique
tree T � �KG�E� is a maximum weight spanning tree �mst� of the clique intersection
graph �Bernstein and Goodman ����� Every clique tree T of G satis�es the intersection

property� For every pair of cliques K�� K�� the intersection K� � K� is contained in
every clique on the path joining K� and K� in T � We denote the set of all clique trees
of G by TG� Background material on clique trees may be found in Blair and Peyton �	��

The maximal cliques of the graph G in Figure �� are listed in the �gure caption�
The clique intersection graph ofG is a complete graph with weight four on edge �K��K���
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one on edge �K��K��� and two on all other edges� The clique trees of G are obtained

by choosing the edge �K��K��� one edge from the set f�K��K��� �K��K��g and another
edge from f�K��K��� �K��K��g� Note that the edge �K��K�� belongs to none of the
clique trees of G�

Let K�u� denote the set of maximal cliques of G that contain the vertex u� The

following lemma characterizes the adjacency set partition in Lemma �� in terms of the
maximal cliques of G�

Lemma ���� For any pair of vertices u� v of a chordal graph G

�� K�u� � K�v� if and only if u � adj��v��

�� K�u� � K�v� if and only if u � adj��v��
We omit the simple proof� �

If a and b are non�adjacent vertices in a connected graph G� an a� b	separator is

a set of vertices S such that a and b belong to two distinct connected components in
G n S� The set S is a minimal a� b	separator if no proper subset of S has this property�
We will call S a minimal vertex separator or separator if it is a minimal a� b�separator
for some pair of non�adjacent vertices a� b � V  S�

Ho and Lee ����� Lemma ��� proved the following result�
Proposition ���� The set S � V is a minimal vertex separator in the chordal

graph G if and only if in every clique tree T � TG there exists some edge �K�K �� such
that S � K �K �� �

The edge �K�K �� in the proposition may depend on T � Let K� and K� denote the
sets of cliques in the two subtrees obtained when the edge �K�K �� is removed from T �
De�ne V� � V �V� � V � to be the set of vertices belonging to the cliques in K� �K��
but excluding vertices in S� Then S � K �K � is a minimal a� b�separator for any pair

a � V�� b � V� �Ho and Lee ���� Lundquist �	���
The separators in the example are K� � K� � fs�� s�� s�� s�g � S�� K� � K� �

K� � K� � fs�� s�g � S�� and K� � K� � K� � K� � fs�� s�g � S�� Note that

K� �K� � fs�g is not a separator since the corresponding edge does not belong to any
clique tree of G�

For any clique tree T � �KG�E�� consider the multiset

MT � fK �K � j �K�K �� � Eg�

From the previous proposition we have that MT is a multiset of minimal vertex sep�
arators of G� If T�U � TG are two clique trees of G� Ho and Lee further showed that

the multisets MT and MU are identical� Hence we let MG denote the multiset of
separators associated with every clique tree in TG�

Let the set of cliques containing a set S � V be K�S� � fK � KG � S � Kg
�usually S will be a separator�� and let the set of separators belonging to a clique K
be S�K� � fS � MG � S � Kg� The set S�K� contains one copy of each distinct
separator in MG contained in K�

In the example in Figure ��� each clique K� and K� contains the separators S� �

fs�� � � � � s�g� S� � fs�� s�g� and S� � fs�� s�g� The set of cliques containing the separator
S� is fK��K��K�g�





We will require the following lemma in proving subsequent results�

Lemma ���� If S � S�K�� then there exists a clique K � � KG such that S � K�K ��
furthermore� S is a minimal u� v	separator for every pair of vertices u � K n K � and
v � K � nK�

Proof� Let T be a clique tree of the chordal graph G� By Proposition ���� since

S �MG there exists an edge �K��K�� in the clique tree T such that S � K� �K�� If
either one of these cliques is identical to K� then we are done� Hence assume that K is
distinct from these two cliques�

Let K� and K� denote the sets of cliques in the two subtrees obtained by removing

the edge �K��K�� from T � and without loss of generality� let K� and K belong to K��
Since vertices in S belong to both K and K�� we have that K � K� � S� From the
clique intersection property of clique trees� K �K� is contained in every clique on the

path in T from K to K�� and hence K �K� belongs to K�� But K� �K� � S implies
that K �K� � S� Now the tree T � obtained by replacing the edge �K��K�� by the edge
�K�K�� in T is also a maximum weight spanning tree of the clique intersection graph�
and hence is a clique tree� It follows that if we let K� � K �� then �K�K �� is an edge

of a clique tree� and thus S is a separator for every pair of vertices u � K  K � and
v � K � K� �

A clique K is a leaf clique of G if there exists a clique tree T � TG in which K

is a leaf� Note that such a clique K may not be a leaf in some other clique tree T ��

We let LG denote the set of leaf cliques of the chordal graph G� and LT denote the
set of leaves of a speci�ed clique tree T � Blair and Peyton �
� obtained the following
characterization of a leaf clique�

Proposition ���� A clique K is a leaf clique of G if and only if it contains a

unique separator S that is maximal among the separators in S�K�� �

We will refer to the unique maximal separator contained in a leaf K as the leaf sep	
arator of K� and denote it by SepG�K�� The vertices in a leaf K can be partitioned into

two subsets� the set of simplicial vertices which belongs to no other clique� SimG�K��
and the set of vertices which belongs to other cliques� all contained in the leaf separator
SepG�K�� and therefore contained in some clique K � such that K �K � � SepG�K�� If
K is not a leaf of G� then we will call it a non	leaf � From Proposition ���� a non�leaf

clique contains at least two maximal separators that are pairwise incomparable�
In Figure ��� LG � fK�� � � � �K�g� SimG�Ki� � fkig� for i � � � � �� �� SepG�K�� �

SepG�K�� � S� � fs�� � � � � s�g� SepG�K�� � S� � fs�� s�g� and SepG�K�� � S� �
fs�� s�g�

	��� Vertex lengths and separators� In this subsection� we characterize vertices
with speci�ed values of the length parameter� ����� in terms of the separators in the

clique graph� This is one of the central results in this paper� We use S��S�� to denote
the set �S�  S��� � �S��  S���

Theorem ���� For a vertex v in a chordal graph G�
�� �G�v� �  if and only if v belongs to no separator of G� in this case v is

simplicial�
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�� �G�v� � � if and only if v belongs to some separator of G� and �K � KG�v��

every separator S� � S�K� that includes v contains every separator S�� � S�K�
that does not�

�� �G�v� � � if and only if there exist two incomparable separators S�� S�� � S�K�
in some clique K � KG�v� such that v � S��S���

Proof� Note that the conditions at the left�hand�side of the three items de�ne a
tri�partition of V � and likewise� the conditions at the right�hand�side of the three items
partition V � The �rst item is easily proved as follows� From Lemma ���� ��v� �  if
and only if v is a simplicial vertex� it is well�known that v is simplicial if and only if

it belongs to exactly one maximal clique ���� Then from Proposition ���� v does not
belong to any separator� Hence it su�ces to prove the third item�

We begin by proving that the right�hand�side implies the left�hand�side in the third

item� Suppose that there exists a clique K � KG�v� satisfying the given condition�
Without loss of generality let v belong to S�� and choose w � S��  S�� By Lemma ���
we can �nd a cliqueK � such that S� � K �K � separates vertices in KS� from vertices
in K �  S�� Similarly we can choose a clique K �� such that S�� � K �K �� is a separator

separating vertices in KS �� from K ��S��� By the maximality of these cliques� choose
k� � K �S� and k�� � K ��S��� In the path k�� v� w� k��� by the choice of the separators
S � and S��� no edge joins w and k� or v and k��� No edge joins k� and k�� since it would
create a chordless cycle of length four� Hence the path k�� v� w� k�� is chordless� and

��v� � ��
We prove the other direction of the third item by contraposition� Negating the

condition at the right�hand�side in the third item� either v belongs to no separator in any
clique in KG�v�� or v belongs to at least one separator and in every clique K � KG�v��

every separator that includes v contains every separator that does not� The former case
has already been considered in the �rst paragraph of the proof� Suppose now that for
every clique K � KG�v�� v � S�  S�� implies that S� � S�� for S�� S�� � S�K�� We will

prove that then ��v� � �� thus completing the proof of the theorem�
To obtain a contradiction� suppose ��v� � �� and hence that there exists a chordless

path u� v� w� x in G� Then u� v belong to some cliqueK �� v� w to another cliqueK� and
w� x to a third clique K ��� Further v belongs to every minimal u�w�separator� and w

to every minimal v� x�separator in G� Since every separator corresponds to an edge in
any clique tree T of G� by Lemma ��� we can choose the cliques K� K �� and a separator
S � such that S� � K � K �� v � S�� and S� separates u � K �  S� from w � K  S��
Similarly we choose a clique K �� and a separator S�� such that S�� � K �K ��� w � S���

and S�� separates v � K  S�� from x � K ��  S���
Together� v � S� and v � K S�� imply that v � S�S��� similarly w � K S� and

w � S�� imply that w � S��S �� But this is a contradiction since we have assumed that
v � S�  S�� implies S� � S��� Since the chordless path of length three containing v as

an interior vertex was chosen arbitrarily� this contradiction shows that ��v� � �� Since
v belongs to some separator� ��v� � �� �

In Figure ��� ��ki� � � for i � � � � �� �� since these vertices belong to none

of the separators� ��s�� � �� since in both K� and K�� the separator fs�� � � � � s�g
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contains the separators fs�� s�g and fs�� s�g that do not include s�� ��s�� � �� since s�
belongs to every separator in G� and hence it satis�es vacuously the second statement
in Theorem ��
� the other vertices have length greater than or equal to three �all of
them have length three��

We can now employ Theorem ��� to identify the neosimplicial vertices of G� i�e��

the set of vertices v with length two such that the vertices outmatching v have length
less than or equal to two� The set adj��s�� � fk�� k�g� since ��s�� � � and ��k�� �
��k�� � � s� is a neosimplicial vertex� On the other hand� adj��s�� includes s� and s��
vertices of length three� and hence s� is not a neosimplicial vertex�

An easy consequence of the above theorem is the following result�
Lemma ��	� If a nonsimplicial vertex v of a chordal graph G is neosimplicial� then

it belongs only to the leaf cliques of G�

Proof� We prove that if v belongs to a non�leaf clique K of G� then it is not
neosimplicial� Since v is not a simplicial vertex� by ���� it can belong to R only if
��v� � �� in this case we show that there exists w � adj�G�v� with ��w� � ��

The non�leaf cliqueK contains two maximal incomparable separators S�� S��� Choose

two vertices w � S�  S ��� and x � S��  S�� Applying Theorem ��
 to w and x� we �nd
that ��w�� ��x� � ��

By Theorem ��
� ��v� � � implies that every separator belonging to S�K� that
includes v contains every separator that does not� Thus a separator in S�K� that does

not include v is not a maximal separator in S�K�� Hence v belongs to S� and S��� but
by the choice of these vertices� w 
� S�� and x 
� S�� Because ��v� � �� by Lemma ��
the sets adj�G�v�� adj

�

G�v�� and adj�G�v� partition adjG�v�� and hence w� x � adj�G�v��
completing the proof� �

The results in this section imply that an algorithm for eliminating a maximum
cardinality T�set need consider only vertices in the leaf cliques�


� Critical separators� In this section we characterize neosimplicial vertices in
terms of the clique graph� More precisely� based on the separators in a leaf we partition
nonsimplicial vertices in the leaf into those vertices that are neosimplicial and those
that are not� Towards this end� we introduce the concept of a critical separator � and

partition the leaf cliques into groups called cohorts based on their critical separators�
Recall that a leaf cliqueK contains a unique maximal separator� say S�� that prop�

erly contains every other separator belonging to S�K�� We now order the separators of
a leaf clique K as shown�

S�K� � fS� � S� � � � � � S� � S���� S���� � � � � Smg�����

with the index � chosen as large as possible� �This notation means that S� � Sj for
every j such that � �  � j � m�� By the choice of �� for � �  � j � m� no separator

Sj contains every other separator in this set� Choose the largest index  � r � � such
that K�Si� � LG for i � � � � �� r � we de�ne Sr to be the critical separator C�K� of
the leaf clique K�

If � �  then r � � and the leaf separator S� vacuously satis�es the condition that
all lower numbered separators are contained in leaf cliques� Furthermore� if r � � � m�
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Sm also satis�es the de�nition of the critical separator� Thus a leaf clique always has a

critical separator� but this notion is unde�ned for a non�leaf clique�
The hypergraph representation of the maximal cliques of the chordal graph in

Figure �� is particularly helpful in visualizing the following results� Since the separators
in K� can be ordered as

S� � fs�� � � � � s�g � S� � fs�� s�g� S� � fs�� s�g�

S� is its critical separator� Similarly� S� is the critical separator of K�� S� is the critical
separator of K�� and S� is the critical separator of K��

The importance of critical separators is that they aid in distinguishing between
neosimplicial vertices� the nonsimplicial vertices that belong to R� and those that do

not� Let a subcritical separator of K denote any separator properly contained in the
critical separator C�K� � Sr� i�e�� a separator Sj� where r �  � j � m� Further let a
supercritical separator of K denote the critical separator of K or a separator of K that
properly contains the critical separator�

The next theorem characterizes neosimplicial vertices� and is another central result
in this paper�

Theorem ���� A nonsimplicial vertex v of the graph G is neosimplicial if and
only if �i�� KG�v� � LG� and �ii�� �K � KG�v�� v belongs only to the supercritical

separators of K�
Proof� First we prove that the left�hand�side implies the right�hand�side by con�

traposition� If v belongs to a non�leaf� then it cannot be neosimplicial by Lemma ��	�

Hence assume that v belongs only to leaf cliques of G� We proceed to show that if v
belongs to a subcritical separator S in a leaf clique K� then it cannot be neosimplicial�
The existence of a subcritical separator implies either that the critical separator C�K�
is contained in a non�leaf clique� or that C�K� properly contains two incomparable

separators S� S� that are maximal among the subcritical separators in K� The former
case contradicts our assumption that v does not belong to a non�leaf clique�

Hence consider the latter case� Since v is neosimplicial� by ���� we can assume
that ��v� � �� Now if v � S  S�� then by Theorem ��
� ��v� � �� hence we must

have v � S � S�� Choose vertices s � S  S�� s� � S�  S� Applying Theorem ��
 to
s and s�� we �nd that ��s�� ��s�� � �� Since ��v� � �� we have by Lemma �� that
adj��v�� adj��v�� and adj��v� partition adj�v�� Now v � S � S� and s � S  S� imply
that s � adj��v�� Similarly s� � adj��v�� It follows that v 
� R by Theorem ����

To prove the other direction� choose a clique K � KG�v� � LG� Order the separa�
tors in S�K� as in ����� and let Sr � C�K� denote the critical separator of K� Then
v � S�� � � �� Sq where q � r� since v does not belong to a subcritical separator� The or�

dering of the separators in ���� ensures that there do not exist incomparable separators
S �� S�� � S�K� such that v � S��S��� Since this is true for every clique K � KG�v�� by
Theorem ��
 it follows that ��v� � �� Furthermore� since v is nonsimplicial� ��v� � ��

If u � adj��v�� then KG�u� � KG�v� by Lemma ��� and thus u � S�� � � �� Sp where

p � q� Repeating the argument given for v in the previous paragraph for the vertex u�
we obtain ��u� � �� By Theorem ��� it follows that v is neosimplicial� �
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Thus in the example� s� is neosimplicial since it does not belong to the subcritical

separators S� and S� in the cliques K� and K�� while s� is not neosimplicial� since it
does�

Let C � fC�� � � � � Cpg denote the set of critical separators of a chordal graph G�
The leaf cliques LG can be partitioned into p cohorts such that L�C� includes all the

leaves whose critical separator is C� We say that a separator S �a vertex v� belongs to
a cohort L�C� if S �the vertex v� is contained in some clique in the cohort�

In our example� L�S�� � fK��K�g� L�S�� � fK�g� and L�S�� � fK�g�
Lemma ���� Let L�C�� and L�C�� be two distinct cohorts corresponding to critical

separators C� and C�� respectively� such that C� 
� C�� If S is a supercritical separator
contained in some clique in L�C��� then S cannot be a supercritical separator of any
clique in L�C���

Proof� First we show that C� cannot belong to any clique in L�C��� Assume� to
obtain a contradiction� that K � L�C�� contains C�� Then since C� is the critical
separator of K� either C� is a supercritical separator in K� in which case C��C�� or C�

is a subcritical separator in K� and we would have C� � C�� By assumption the latter

relationship cannot be true� If C� � C�� then we claim that C� and not C�� would be
the critical separator of K�

Since C� � C�� every K � � L�C�� contains C� as a subcritical separator� Now
C� is the critical separator of K � either because there is a non�leaf clique containing

C�� or because there exist two or more maximal separators contained in C� that are
incomparable� However� then since C� belongs to K� the same situation would apply
to K� and C� would be the critical separator of K�

Now suppose K � � L�C�� contains a supercritical separator S �C�� If S were also

contained in a clique K � L�C��� then K and K � would have C� in common� which we
have just proved cannot happen� This completes the proof� �

Lemma ���� A neosimplicial vertex v belongs to a subset of the cliques in exactly

one cohort�
Proof� Suppose the cliques containing the vertex v� KG�v�� belong to q � � distinct

cohorts L�C��� � � �� L�Cq�� Choose any clique tree T of G� and let Tv denote the subtree
induced by the cliques in KG�v�� where v is a neosimplicial vertex� The edges of this

tree correspond to minimal vertex separators in G� Since Tv is a tree whose vertices are
cliques belonging to q di�erent cohorts� there must be an edge in Tv joining a clique
in some cohort to a clique in some other cohort� But two cliques in distinct cohorts
cannot have a separator that is supercritical in both of them by the previous lemma�

and hence any tree edge joining a clique K in one cohort to a clique K � in a second
cohort must correspond to a subcritical separator in one of them� Then v belongs to
this subcritical separator� and by Theorem �� cannot be neosimplicial� �

The example in Figure �� again provides an illustration� The neosimplicial vertex

s� belongs only to L�S��� while s� belongs to three cohorts L�Si� for i � � � and ��
and hence is not neosimplicial�

�� A leaf elimination scheme� The following three sections constitute the sec�
ond part of the paper where we develop a persistent leaf elimination scheme that removes
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a subset of the maximumcardinality T�set R from the graph G� To aid in understanding�

we begin in this section with a description of the simple clique elimination framework
used for this purpose� and then re�ne it in the next section�

P �leaves� LG�

H � G�
while P �leaves 
� 	 do

Choose a clique K � P �leaves�

Choose a clique P such that P �K � SepH�K��
H � H n SimH�K��
P �leaves� P �leaves fKg�
if P 
� LH then P �leaves� P �leaves fPg�

end while

Fig� ���� A leaf elimination scheme�

This elimination scheme is shown in Figure 
�� It considers only the leaf cliques
of G as candidates for deletion� and eliminates the simplicial vertices from each leaf
clique chosen for removal� The rest of this section considers how various sets of cliques�
separators� and vertices change when a leaf clique is eliminated�

Let K�� � � �� Kp be the set of leaves eliminated by this scheme� listed in the order
of elimination� Let G � H�� and for j � � � � �� p� let Hj be the reduced graph obtained
by eliminating the simplicial vertices in the leaf Kj from the graph Hj��� We denote
the �nal reduced graph Hp � G�� In the results that follow� we let H denote a graph

Hj and H� denote Hj��� the next reduced graph in the sequence�
Results similar to the next two lemmas may be found in Blair and Peyton �
�

�Section ���� Lemma �� and Section 
�� Lemma ��� and hence we omit their proofs�

The �rst result shows how the multiset of separators and the set of cliques change
after elimination of any clique�

Lemma ���� Let K � KH be any maximal clique in a chordal graph H� and let
H� � H n SimH�K� be the reduced graph obtained by the elimination of simplicial

vertices in K� Then
�� MH� � MH  fSg� and KH� � KH  fKg� where S � K  SimH�K�� if

and only if K � LH � in this case� S � SepH�K�� the leaf separator of K�
�� MH� � MH � and KH� � KH  fKg � fK�g� where K� � K  SimH�K��

if and only if K 
� LH � �

The next result characterizes changes in the set of simplicial vertices and the set of
separators in a clique when a leaf clique is eliminated�

Lemma ���� Let S be the leaf separator of a leaf clique K in a chordal graph H�

and let P be a clique with S � SH�P �� Let H� � H n SimH�K� be the reduced graph
obtained by eliminating the simplicial vertices in K from H�

�� If jKH�S�j � �� then �K � � KH� � we have SimH��K �� � SimH�K ��� Further�

if S is a maximal separator in MH� then �K � � KH�� we have SH��K �� �

��



SH�K ���

�� If jKH�S�j � �� then
�a� �K � � KH�  fPg� we have SH��K �� � SH�K ��� and SimH��K �� �

SimH�K ��� and
�b� SH��P � � SH�P �  S� SimH��P � � SimH�P � � �S� where �S is the

subset of vertices in S that belong only to K and P � �

As cliques are deleted in the elimination scheme� a non�leaf cliqueK � may become a
leaf clique in the reduced graph� Such cliques do not contain any neosimplicial vertices
by Lemma ��	� and we will show later that the simplicial vertices in these cliques need

not be eliminated at the current step to solve Problem � The next result describes
when a leaf clique in the current graph can become a non�leaf in the reduced graph�

Lemma ���� Let S � SepH�K� be the leaf separator of a leaf clique K in a chordal

graph H� and let P be another leaf clique of H such that S � SH�P �� Then P is a non	
leaf clique in the reduced graph H� � H nSimH�K� if and only if �i� KH�S� � fK�Pg�
�ii� S is the critical separator of P � and �iii� P contains subcritical separators�

Proof� When SimH�K� is eliminated K is deleted as a maximal clique� and since

KH�S� � fK�Pg� S ceases to be a separator in the reduced graph H�� Since S is
the critical separator of P in the graph H� and P contains subcritical separators� P
has more than one maximal separator in the reduced graph H�� Hence it is a non�leaf
clique of H��

Conversely� since P is a leaf in H but not in H�� the unique maximal separator of
P in H ceases to be a separator when K is deleted from H� By Lemma 
�� S is the
only separator removed fromMH when K is deleted� and it follows that S � SepH�P ��
We also have P � SimH�P �� SepH�P � by the remarks following Proposition ���� Now

we claim that S cannot belong to any clique other than K and P � For� if it did belong
to some other clique K � in the graph H� then we have P � K � � S� and S � P �K �

would continue to be the unique maximal separator of P in the reduced graph H��

This implies that P is a leaf of H�� contrary to supposition� Thus KH�S� � fK�Pg�
If we order the separators in SH�P � as in ����� then we must have S� � S and � � �
since P has more than one maximal separator in the reduced graph H�� It follows that
S is the critical separator of P in H� and that P contains subcritical separators� �

The clique elimination scheme described in Figure 
� considers cliques from the set
LG one by one� When a leaf clique Kj is eliminated� and S � SepHj��

�Kj� ceases to be
a separator in the reduced graph Hj� three phenomena may occur� First� nonsimplicial
vertices in a clique P that contains S may become newly simplicial� as described in the

second part of Lemma 
��� Second� if S happens to be one of exactly two incomparable
maximal separators contained in a non�leaf clique P � then P now has a unique maximal
separator and hence becomes a leaf in the reduced graph� Note that our elimination
scheme does not include such a new leaf clique P in P �leaves� and hence P will not

be a candidate for elimination� Third� if S is also the critical separator of a leaf clique
P and the other conditions in Lemma 
�� are satis�ed� then P becomes a non�leaf in
the reduced graph� In this case� P is removed from the set P �leaves and will not be

considered for elimination�
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We use the example in Figure �� to illustrate some of these phenomena� If

Sim�K�� � fk�g is eliminated from G� then K� is no longer a maximal clique� and
gets deleted from G� Now in the clique K� the vertex s� becomes simplicial� further S�
ceases to be a separator and K� becomes a non�leaf in the reduced graph since it con�
tains two maximal incomparable separators S� and S�� If we eliminate Sim�K�� � fk�g
from this reduced graph� then one of these separators� S�� ceases to be a separator� s�
becomes a simplicial vertex in K�� and K� becomes a leaf of the succeeding reduced
graph�

Each eliminated clique Kj belongs to LG and continues to be a leaf of the succes�

sive reduced graphs H�� � � �� Hj�� until it is eliminated� Hence we call these cliques
persistent leaf cliques and the elimination scheme that we have described is a persistent
leaf elimination scheme� A clique P � LG that becomes a non�leaf when some clique

Kj is eliminated from a reduced graph Hj�� will be called a transilient leaf � �We pre�
fer transilient � denoting a sudden change in state� to transient � which means passing
quickly into and out of existence� In this situation� a leaf changes state to a non�leaf
clique� but continues to exist as a clique in the reduced graph�� The partition of the

leaf cliques in LG into persistent and transilient leaves is not unique� but depends on
the order in which leaves are chosen for elimination�

�� A re�ned persistent leaf elimination scheme� We now incorporate two

re�nements into the persistent leaf elimination scheme of the previous section�
Re�nement �
Eliminate the persistent leaves in non	increasing order of leaf separator sizes in the

current graph H�
We organize the cliques in LG into lists such that all leaves with the same leaf separator
size are included in a list� if a leaf should become a transilient leaf during the scheme�
then it is removed from this list� also� if the size of the leaf separator changes during

the scheme� then the leaf is deleted from the list it belongs to� and then reinserted into
the correct list�
Re�nement ��
Order the simplicial vertices in each maximal clique in queue order �

Thus if a vertex v becomes simplicial before another vertex w in a clique K� then v

is eliminated before w when the clique K is chosen for elimination� This ordering of
simplicial vertices is maintained for leaf as well as non�leaf cliques in G�

This scheme is shown in Figure 	�� We will prove in the next section that this

scheme computes a T�set of the graph G� and that these vertices are ordered in a
TEO� In this section we characterize the set of persistent leaves and the set of vertices
eliminated by the scheme�

Consider the persistent leaf scheme applied to the chordal graph G in Figure ���
The scheme would �rst eliminate K� or K� since these leaves have the maximum leaf
separator size� If it eliminates K�� then K� becomes a non�leaf in the reduced graph
and is removed from the set P �leaves� Then the scheme would eliminate the persistent

leaves K� and K�� in any order� since both have the same leaf separator size� Suppose
that K� is eliminated before K�� Then the vertices are eliminated in the order k�� k��
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finitializationsg
P �leaves� LG�
for K � P �leaves do Elim�K�� SimG�K�� end for

H � G� �R� 	�
feliminate simplicial and neosimplicial vertices from persistent leaves
by non�increasing leaf separator sizeg
while P �leaves 
� 	 do

Select K � P �leaves with maximum jSepH�K�j for elimination�
�R � �R � Elim�K��
Choose P � KH for which P �K � SepH�K��
H� � H n Elim�K� �in queue order��
P �leaves� P �leaves fKg�
if P � P �leaves then

Append to Elim�P � the vertices in SimH��P � SimH�P ��
if P 
� LH� then

fP is a transilient leafg
P �leaves� P �leaves fPg�

end if

end if

H � H��
end while

Fig� ���� A scheme for eliminating the persistent leaf cliques of G� We show later that the vertices

eliminated form a T�set �R of G and are ordered in a TEO of G� �R��

k�� and the simplicial vertices in K� are ordered as either Elim�K�� � fk�� s�� s�� s�� s�g
or Elim�K�� � fk�� s�� s�� s�� s�g�

We will �nd it useful to employ the concept of critical separators introduced earlier�
Recall that C�K� denotes the critical separator of a leaf clique K in the chordal graph

G� and C � fC�� � � � � Cpg denotes the set of critical separators in G� The cliques in
LG are partitioned into p cohorts such that all leaves with critical separator Ci form a
cohort L�Ci��

Lemma 	��� If C contains only one critical separator� then the persistent	leaf elim	

ination scheme eliminates all cliques in L�C� � LG� Otherwise� this scheme eliminates
all but one clique from every cohort such that L�C� � KG�C�� and all cliques from
every cohort such that L�C� � KG�C��

Proof� From Lemma 
��� a clique P � LG becomes a non�leaf when a leaf K is

eliminated from a reduced graph H only if �i� KH�C� � fK�Pg� �ii� C is the critical
separator of P � and �iii� P contains subcritical separators� It follows that K and P are
the only two uneliminated leaves in the cohort L�C��

If C contains only one critical separator C� then all leaves contain the separator C�

We consider two cases� depending on whether G contains a non�leaf clique or not�
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If G has a non�leaf clique� then we claim that every non�leaf clique of G contains

C as well� For� consider a clique tree T of G� Then each non�leaf clique lies on a
path between some pair of leaves K and K � of T � The leaves have the separator C in
common� hence from the clique intersection property� every clique on the path from K

to K �� and in particular the non�leaf clique being considered� contains C as well� This

proves the claim� When the penultimate leaf containing C is eliminated� the remaining
leaf and the non�leaf clique�s� contain C� and condition �i� in Lemma 
�� is violated�
Hence the remaining leaf persists as a leaf in the reduced graph� and is eliminated by
the scheme�

Now consider the case when all the cliques of G are leaves� Then since all leaves
contain C� K � K � � C for any pair of cliques K and K �� By the characterization of
separators in Proposition ���� since the vertices in any separator form the intersection

of a pair of cliques� there are no subcritical separators in any leaf� Then condition �iii�
in Lemma 
�� cannot be satis�ed� and none of the leaves can become non�leaves in any
of the successive reduced graphs� This completes the proof of the �rst statement�

If C � fC�� � � � � Cpg contains more than one separator� renumber the separators

such that if Ci�Cj then i � j� for every distinct pair  � i� j � p� We prove the second
statement by induction on k� the index of the critical separator� Consider the base case
k � �

We consider �rst the subcase when L�C�� � KG�C��� and hence no non�leaf clique

of G contains C�� Now it is easily veri�ed that the clique intersection graph of the con�
nected chordal graph G is connected� Since C contains more than one critical separator�
there is a clique K � outside L�C�� that is adjacent to some clique K in the cohort such
that �K�K �� is an edge in some clique tree of G� Then by Proposition ���� S � K �K �

is a separator contained in K and K �� Now if S � C� then K � contains C�� and this
contradicts the condition that L�C�� � KG�C��� thus S � C�� It follows that S is a
subcritical separator in every clique in L�C���

From the de�nition� C� could be the critical separator of a clique K in L�C��
because of three possibilities� either a non�leaf clique contains C�� or C� is properly
contained in all other separators inK� or no separator properly contained in C� contains
all other separators contained in C�� We have ruled out the �rst two possibilities in the

previous paragraph� and hence in the graph G every clique in L�C�� contains subcritical
separators�

Now any leaf belonging to L�C�� is either eliminated or becomes a transilient leaf
when it is considered for elimination by the persistent leaf elimination scheme� By

conditions �i� and �ii� in Lemma 
��� a leaf in L�C�� can become a transilient leaf only
when the critical separator C� ceases to be a separator in the reduced graph� Thus all
except the last leaf P to be considered for elimination in L�C�� must be eliminated
by the scheme� When K� the penultimate clique containing C�� is eliminated by the

scheme� since L�C�� � KG�C��� conditions �i� and �ii� in Lemma 
�� are satis�ed� We
now show that condition �iii� is also satis�ed� and hence that P becomes a transilient
leaf� In the graph G the clique P contains subcritical separators from the argument in

the preceding paragraph� By Lemma 
� the only way a separator can disappear during

�



the elimination process is when it is the leaf separator of a leaf� Since the persistent

leaf elimination scheme eliminates the leaves in non�increasing order of leaf separator
sizes� any leaves whose leaf separators are properly contained in C� are not eliminated
until all cliques in L�C�� have been processed� Hence P continues to contain subcritical
separators in the reduced graph obtained when K is eliminated� Thus we conclude that

P � the sole remaining clique in the cohort L�C��� becomes a transilient leaf�
If L�C�� � KG�C��� then by the renumbering of the critical separators there does

not exist a leaf clique containing C� outside L�C�� by Lemma ���� Hence there is a
non�leaf clique containing C�� Thus when the penultimate leaf in L�C�� is eliminated�

condition �i� in Lemma 
�� is not satis�ed� We conclude that the last clique in L�C��
persists as a leaf in the reduced graph� Hence all cliques in L�C�� are eliminated by
the persistent leaf elimination scheme�

Now we consider the inductive step for L�Ck��
If L�Ck� � KG�Ck�� then no other clique outside this cohort contains Ck� Now� an

argument similar to the corresponding situation in the base case proves the result� It
remains to consider the situation when L�Ck� � KG�Ck�� If KG�Ck� includes a non�leaf

clique of G� the result follows from a similar argument as in the base case� If it does
not� but includes a cohort L�Cj� such that Cj� Ck �then j � k by the ordering of the
critical separators�� consider the least index j satisfying the containment relation� We
must have L�Cj� � KG�Cj�� else there would exist a non�leaf clique containing Ck�

By the order in which the leaves are considered for elimination� cliques in L�Cj� have
been processed by the elimination scheme� By the inductive hypothesis� the last clique
considered for elimination in L�Cj� has become a transilient leaf when Cj ceased to be
a separator� Since this clique contains Ck� all of the cliques in L�Ck� are eliminated by

the persistent leaf elimination scheme� �

The example graph G has three critical separators� L�S�� � KG�S�� � fK��K�g�
L�S�� � fK�g� L�S�� � fK�g� and the latter two cohorts are properly contained in the

set of cliques containing their critical separators� Hence we conclude from the lemma
that a persistent leaf set could be either fK��K��K�g or fK��K��K�g�

It is instructive to compare the set of persistent leaves with the largest set of leaves
eliminated by a shortest clique tree algorithm designed by Blair and Peyton �
�� They

organize the leaves into cohorts such that all leaves with the same leaf separator belong
to one cohort� They showed that their algorithm chooses all but one of the leaves from a
cohort where L�S� � KG�S�� and all the leaves from a cohort satisfying L�S� � KG�S��

We now characterize the vertices eliminated by the persistent leaf elimination

scheme� We consider three subsets of the maximum cardinality T�set R� RN � the
subset of R belonging to some non�leaf clique of G� RT � the subset belonging to the
transilient leaves of G� and RP � the subset eliminated from the persistent leaves of G�
We will show that these subsets partition R�

By Lemma ��	 the subset RN consists of simplicial vertices of G belonging to the
non�leaf cliques� The other two subsets could include simplicial as well as neosimplicial
vertices of G� The next result states that all vertices of R that belong only to persistent

leaf cliques are eliminated by the persistent leaf elimination scheme�

��



Lemma 	��� The three subsets RN � RT � and RP partition the maximum cardinality

T	set R� Furthermore� RN �RT is a set of simplicial vertices in the graph G� � GnRP �
Proof� If v is a simplicial vertex belonging to a persistent leaf clique of G� then

it belongs to no other clique� and hence is eliminated by the elimination scheme� It is
also clear that simplicial vertices belonging to non�leaves and transilient leaves are not

eliminated by the scheme� Hence consider what happens to a neosimplicial vertex v�
By the characterization in Theorem ��� KG�v� � LG� and in every clique K �

KG�v�� v belongs only to the supercritical separators of K� By Lemma ���� v belongs
to a subset of the cliques in some unique cohort L�Cj��

If all cliques of G belong to the cohort L�Cj�� then by Lemma 	� all cliques are
eliminated by the persistent leaf elimination scheme� and v � RP � If the cliques of G
belong to more than one cohort� then again by Lemma 	�� either all cliques in L�Cj�

are eliminated� or all but one are eliminated� Since v belongs only to supercritical
separators in the cliques in L�Cj�� when the penultimate clique containing the last
supercritical separator that includes v is eliminated� v becomes simplicial in the only
uneliminated clique that contains it� This last clique could be either a persistent leaf or

a transilient leaf� but not a non�leaf of G� since KG�v� � LG� If it is the former� then
v � RP � and if it is the latter� then v � RT � �

In the example� if we assume that the cliques K�� K�� and K� are eliminated� then
R � fk�� � � � � k�� s�g� RP � fk�� k�� k�g� RT � fk�� s�g� and RN � 	�

� T�sets� In this section we prove that the vertices eliminated by the persistent
leaf elimination scheme form a T�set �R of the graph G� and that the vertices are

eliminated in a TEO of G� �R�� �These concepts are de�ned in Section ���
Theorem 
��� The set of vertices RP eliminated by the persistent leaf elimination

scheme is a T	set of G� furthermore� the scheme eliminates these vertices in a TEO of
G�RP ��

Before we can prove this theorem we need two auxiliary results� We omit the proof
of the following lemma since it is similar to the proof of Theorem ��� in ����

Lemma 
��� Let �R be a T	set of G� An ordering � of G� �R� is a TEO of G� �R� if
and only if for every u� v � �R such that u � adj��v�� ��u� � ��v�� �

Lemma 
��� A vertex set �R � R is a T	set of G if and only if adj��v� � �R for
every vertex v � �R�

Proof� We �rst prove the �only if� part by contraposition� Assume that there exists
a vertex v � �R such that u 
� �R for some vertex u � adj��v�� We need to prove

that there exists no TEO of G� �R�� It su�ces to show that any PEO of G� �R� cannot
be a TEO of G� �R�� Let � be a PEO of G� �R�� Since v � �R� but u 
� �R� we have
��v� � ��u� � n � � By Lemma ��� there exists a vertex w � adj��v� that is not

adjacent to u� For � to be a PEO of G� �R�� we must have ��w� � ��v� � ��u� � n��
Now �w� v�� �v� u� � E and �w� u� 
� E� and thus it follows that � is not a TEO of G� �R��

To prove the �if� part� choose a vertex set �R � R such that adj��v� � �R for every
vertex v � �R� We observe that because every set adj��v� �v � �R� is contained in �R�

there exists an ordering � of G� �R� satisfying the following property� for every u� v � �R
such that u � adj��v�� we have ��u� � ��v�� If � is any such ordering of G� �R�� then
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by Lemma ���� � is a TEO of G� �R�� Consequently �R is a T�set of G� �

Proof of Theorem ��


We make use of the characterization of a T�set in Lemma ���� showing that if v � RP

then for every u � adj�G�v�� u � RP � If v � RP is simplicial in G� then adj��v� is the
empty set� and there is nothing to prove� Hence consider a neosimplicial vertex v � RP �
We have �G�v� � �� and for all u � adj�G�v�� �G�u� � ��

Let fK�� � � � �Kpg be the set of persistent leaves eliminated by the scheme� listed
in the order in which they are eliminated� Denote G � H�� and for j � � � � �� p� let
Hj � Hj�� n SimHj��

�Kj� be the reduced graph obtained from Hj�� by eliminating
current simplicial vertices in the clique Kj� We denote G� � Hp� the �nal reduced

graph when all the persistent leaf cliques in G have been eliminated� Recall that the
simplicial vertices in each cliqueK are maintained in a queue Elim�K� to which vertices
are added in the order in which they become simplicial�

Since v is a neosimplicial vertex that belongs to RP � v is a simplicial vertex in

some reduced graph Hj� At this juncture in the elimination process all but one of the
cliques in KG�v� have been eliminated� Now by Lemma �� u � adj�G�v� implies that
KG�u� � KG�v�� Hence when v becomes simplicial in Hj � either all the cliques inKG�u�

have been eliminated� or u and v belong to the sole remaining clique from KG�v�� In
the former case� u has been eliminated when v becomes simplicial� and hence is ordered
before v� We now consider the latter case�

In this situation� the vertices u and v are both simplicial vertices belonging to

the same clique K in Hj � Hence we need to show that u appears before v in the queue
Elim�K�� If �G�u� � � then u is simplicial� and since v is not simplicial in G� the result
holds� Now consider �G�u� � �� Let S��S� � � ��Sr � C�K� denote the supercritical
separators in K� Since KG�u� � KG�v�� the vertex u belongs to the separators S��

� � �� Si� and v to S�� � � �� Sj� where i � j � r� The consequence of eliminating cliques
in nondecreasing order of leaf separator sizes is that Sj ceases to be a separator in a
reduced graph before Si does� Hence u becomes simplicial in the clique K before v

does� This completes the proof� �

�� A greedy leaf elimination scheme and its optimality� The following two
sections constitute the third part of the paper� where we develop a greedy leaf clique

elimination scheme based on the results in the previous two parts� prove that it solves
Problem � and then describe an e�cient implementation�

Let Gi�� denote the reduced graph obtained from a chordal graph Gi by using the
scheme in Fig� 	� to eliminate a set of persistent leaf cliques� Let G � G�� � � �� Gt�

Gt�� � 	 be the sequence of chordal graphs obtained by repeatedly applying this scheme
to the original chordal graph G� We call this a greedy leaf clique elimination scheme
since it eliminates a largest set of cliques it can delete from the graph at each step� In
this section we prove that this scheme solves Problem  by comparing it with the greedy

vertex elimination scheme described in ���� At each step both schemes are shown to
identify the same set of newly simplicial and neosimplicial vertices since the lengths of
relevant vertices are the same in the reduced graphs obtained in the two schemes�

Lemma ���� Let K be a non	leaf clique in a chordal graph G� and let G� � GnRP

	




denote the reduced graph obtained by the elimination of a set of persistent leaf cliques

of G� If v is a vertex of the graph G� � G� n SimG�K�� then �G��v� � �G��v��
Proof� We make use of the following observations about chordless paths in the

proof of this lemma and the next one� A chordless path cannot have more than two
vertices from a clique� since a third vertex creates a chord� Further� there is a clique

which contains any two consecutive vertices on the path� A simplicial vertex must be
an endpoint of a chordless path� Finally� a longest chordless path cannot increase in
length as simplicial vertices are eliminated�

The clique K could be a non�leaf or a leaf clique of G�� There are two cases to

consider�
Case �� K is a non�leaf of G��
The elimination of SimG�K� does not change the separators or the set of maximal

cliques in G�� by Lemma 
�� Hence a simplicial vertex in G� is also a simplicial vertex
in G�� and consequently the lemma holds for all vertices with length one� We now
consider vertices with length greater than one�

A chordless path in G� which includes none of the vertices in SimG�K� continues

to be a chordless path in G�� A vertex in SimG�K� is a simplicial vertex in G�� and
hence is an endpoint of every chordless path to which it belongs to in G�� If both
end�points of a chordless path in G� belong to SimG�K�� then the path cannot include
any other vertices� since the only vertices adjacent to simplicial vertices in K belong

to K� Hence consider a chordless path �u� v� w� � � �� in G� with u � SimG�K�� Then v

belongs to some separator S� in K� and w to some clique K � such that K �K � � S��
Since the path is chordless� indeed w � K �  S�� The clique K is a non�leaf in G�� and
thus K contains another separator S�� such that S�� S� is not empty� We replace u on

the path by a vertex t 
� v belonging to S��S�� No edge joins t to a vertex on this path
other than v since the separator S� separates vertices in K S� from K �S�� Thus we
have replaced a chordless path in G� containing a vertex from SimG�K� by a chordless

path in G� without changing its length�
Case �� K is a leaf of G��
The facts that K is a non�leaf in G and a leaf in G� imply that K becomes a leaf
when some persistent leaf Kj is eliminated from a reduced graph Hj�� resulting in

another reduced graph Hj � Since K is a non�leaf in Hj��� K contains two incomparable
maximal separators S� S� in this graph� When Kj is eliminated� one of these separators�
say S�� ceases to be a separator in Hj� and S remains as the leaf separator of K in Hj�
Now there exists a vertex s� � S �  S since the two separators are incomparable� This

vertex s� cannot belong to any other clique in the reduced graph Hj because vertices
in a leaf clique are partitioned into the subset of simplicial vertices� which belong to no
separator� and the subset of vertices belonging to the leaf separator� It follows that s�

belongs only to K in Hj � and is simplicial in this graph� Further� s� continues to be

simplicial in G� since vertices of K are not eliminated by the persistent leaf elimination
scheme� K being a non�leaf clique of G� Note also that s� is a nonsimplicial vertex of
G� and hence does not belong to SimG�K��

The consequence of this latter observation is that K continues to be a maximal
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clique in the graph G� when vertices in SimG�K� are eliminated from G�� Thus a

simplicial vertex of G� is also simplicial in G�� and the lemma holds for all vertices
with ���� � � Hence we consider vertices with ���� 	 �

As in the previous subcase� if both end�points of a chordless path in G� belong to
SimG�K�� then this path contains no other vertices� Hence consider the case when only

one endpoint belongs to SimG�K�� Let u � SimG�K�� and let v 
� SimG�K� � fs�g
be a vertex belonging to K with ��v� 	 � Then any chordless path �u� v� � � � � � in the
graph G� cannot include the simplicial vertex s�� Furthermore� we can replace u by s�

in the above path without changing its length in the graph G�� The latter is a path in

the reduced graph G�� and the result follows� �

Lemma ���� Let G� � G n RP denote the reduced graph obtained when a set of
persistent leaf cliques are eliminated from G� and let K be a transilient leaf� Further�

let G� � G� n Elim�K�� where Elim�K� contains the set of simplicial vertices in K

when it becomes a non	leaf� If v is a vertex in G�� then �G��v� � �G��v��
Proof� The case whenK is a non�leaf in G� can be treated exactly as in the previous

lemma� Hence assume that K is a leaf in G�� In our notation� the persistent leaves

eliminated �in order� from G are K�� � � �� Kp� and Hj is the reduced graph obtained
when simplicial vertices in Kj are eliminated from a graph Hj��� where H� � G� and
Hp � G��

The clique K is a leaf in the initial graph H�� becomes a non�leaf in some reduced

graph Hi� and is again a leaf in the �nal reduced graph Hp� �It is possible that K cycles
between being a non�leaf and a leaf a few times�� Denote by Hj the highest�numbered
reduced graph in which K became a non�leaf when a persistent leaf Kj was eliminated
from the reduced graph Hj��� It later became a leaf again when some other persistent

leafK� �where j � � � p� was eliminated from a reduced graph H���� ThusK contained
two or more maximal incomparable separators in Hj and in every successive reduced
graph until H�� Again� as in Lemma ��� K contains a vertex s�� which belonged to one

of the maximal separators of K in Hj but which does not belong to the leaf separator
of K in H�� This vertex is simplicial in H�� but was a nonsimplicial vertex in Hj� and
hence it does not belong to Elim�K�� Now we can repeat the rest of the argument in
the previous lemma for the case when K is a leaf to show that the length of a vertex v

belonging to G� is the same in the graphs G� and G�� �

Theorem ���� Let R � RP �RN �RT be a partition of the maximum cardinality
T	set of the graph G� If G� � G nRP � G� � G nR� and v is a vertex belonging to G��
then �G� �v� � �G��v��

Proof� We can conclude from the previous two lemmas that the elimination of
RT � RN does not create any new simplicial vertices in G�� Hence the theorem is true
for all vertices with length one� and we proceed to consider vertices of length greater
than or equal to two�

By Lemma 	��� RN �RT is a set of simplicial vertices in G�� Hence any chordless
path in G� containing these vertices must include them as end�points of the path�
If an endpoint of a chordless path in G� belongs to RN � RT � then from the proofs

of Lemmas �� and ���� we can replace it by a vertex from the same clique but not

		



belonging to RN � RT � without changing its length in the graph G�� We can do this

independently for each of the two end�points� �For� if both end�points belong to the
same clique� then the path must have length one� Then both vertices belong to RN�RT �
and do not belong to G��� The resulting path belongs to G�� and thus the result follows�
�

Theorem ���� The greedy leaf clique elimination scheme obtains a minimum
cardinality T	partition of the chordal graph G�

Proof� We will prove that the greedy leaf elimination scheme obtains a T�partition
of G with the same number of T�sets in it as the greedy vertex elimination scheme in

��� that is known to be optimal� As above� let G� �G�� denote the reduced graph
obtained from G by eliminating the vertices in RP �R�� From the characterization of R
in terms of lengths in Theorem ���� and from Theorem ���� we have

RG� � RG� �RN � RT �

Thus the T�set of G� identi�ed by the greedy leaf elimination scheme includes the
maximum cardinality T�set of the reduced graph G�� and a few additional simplicial

vertices that do not belong to G�� Furthermore� the above observation can be made
inductively with respect to each successive nonempty graph G�� � � �� Gt in the sequence
of chordal graphs generated by the greedy vertex elimination scheme�

In the greedy vertex elimination scheme Gt�� is the empty graph� We need to

show that the greedy leaf elimination scheme eliminates all the vertices in the reduced
graph G� it considers at the t�th step� �From the preceding two paragraphs� this is Gt

augmented by some simplicial vertices�� Since Gt�� is the empty graph� all vertices in
G� are simplicial or neosimplicial� Hence by Lemma ��	� all cliques of G� are leaves�

and by Theorem ��� there are no subcritical separators in any of the leaves� Then by
Lemma 
��� the greedy leaf elimination scheme eliminates all the cliques of G�� This
completes the proof� �

The greedy vertex elimination scheme applied to the graph in Figure �� yieldsR� �

fk�� k�� s�� k�� k�g� R� � fs�� s�� s�g� Assuming that K�� K�� and K� are eliminated� the
greedy leaf elimination scheme results in �R� � fk�� k�� k�g� �R� � fk�� s�� s�� s�� s�g� In
both cases� the vertices are listed in a compound TEO of G�

�� An implementation of the persistent leaf elimination scheme� We de�
scribe brie�y an implementation of the persistent leaf elimination scheme� We discuss
the clique tree data structure and a simple test used to identify leaf cliques in the

reduced graphs before describing the algorithm�
The only representation of the chordal graph G needed is a rooted clique tree of G�

de�ned in ���� and computed from a PEO of G� The rooted clique tree T from ���
has the following important property� If C is a child of a clique K in the clique tree T �

then there exists a vertex v � K �C such that v 
� A� where A is any clique that is not
a descendant of K in T �

In this section we will need to distinguish between a leaf of the clique tree T and

a leaf of the chordal graph G� Recall that the leaves of T form a subset of the leaves
of G� A clique that is not a leaf of T will be called an interior clique� whereas we have
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already denoted a clique that is not a leaf of G by a non�leaf clique� In the rooted clique

tree T � the children C of each interior clique K are initially sorted by nondecreasing
order of the intersection jK � Cj�

When a leaf clique K of G is eliminated� the rooted clique tree T is updated as
described in ��� to represent the resulting reduced graph� If K is also a leaf of T � then

the only update necessary is to delete K from T � If K is an interior clique of T � then
the update is more involved� The �rst child C� of K is �promoted� to the place of K�
and C� becomes the parent of the other children of K� The latter cliques are listed in
their current order after the existing children of C��

���� Identifying a leaf clique� Let 
�K� � jSimH�K�j be the number of sim�
plicial vertices in a clique K� and let ��K� be the size of a largest separator contained

in K� The following result �Blair and Peyton �
�� is immediate from Proposition ����
Proposition ���� A clique K is a leaf of a chordal graph H if and only if 
�K��

��K� � jKj� it is a non	leaf if and only if 
�K� � ��K� � jKj�
Updating the number of simplicial vertices in a clique during elimination is an easy

matter� Updating the size of a largest separator during elimination is more involved�
However� we claim that it su�ces to maintain and update the size of any maximal
separator in a clique K instead of ��K� to identify it as leaf or a non�leaf in a reduced
graph� If K is a non�leaf� since the size of any maximal separator is no greater than

��K�� when the former size is used instead of the latter� the test in Proposition �� will
identify it as a non�leaf� If K is a leaf� then it has a unique maximal separator� and
hence� again� the test su�ces�

We choose the size of a particular maximal separator with respect to the rooted
clique tree� Let

��K� �

�
jK � C�j� if K is an interior clique of T �
jK � P j� if K is a leaf of T �

where C� is the �rst child of an interior clique K� and P is the parent of a leaf K�
The quantity ��K� is easily updated when a leaf or an interior clique of T is eliminated
during the algorithm�

We need to prove that ��K� is the size of a maximal separator of K in each reduced

graph� This is trivial if K is a leaf of the clique tree T � and hence we establish it when
K is an interior clique� The separator K �C� is a maximal separator of K in the initial
clique tree because �i� for every child C� the intersection K � C contains a vertex that
does not belong to K �P � and �ii� by the initial ordering of the children of K� jK �C�j
is at least as large as any other separator size jK � Cj� If K acquires a new child D

after an interior clique elimination� and C is a child of K before the update� then K �C
contains a vertex that does not belong to K � D ����� proof of Theorem ��� Hence
K �C� continues to be a maximal separator of K in the reduced graph� We have thus

proved the following result�
Proposition ���� Let H denote a chordal graph at any stage in the persistent

leaf elimination algorithm� and let ��K� be de�ned as described above with respect to a
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rooted clique tree T of H� Then 
�K�� ��K� � jKj if and only if K is a leaf of H� and


�K� � ��K� � jKj if and only if K is a non	leaf of H� �

Input� A clique tree T representing a chordal graph G� the simplicial vertices of each

K � KG organized in a queue Elim�K��
Output� Upon termination� �R�� �R�� � � � � �Rt is a minimum�cardinality T�partition� where

each partition member �Ri is the T�set RP belonging only to a set of persistent leaves

in the reduced graph Gi � G n f �R� � � � � � �Ri��g�

G� � G� H � G� �R� � 	� i� � P �leaves� LG�

while Gi 
� 	 do
while P �leaves 
� 	 do

Let K be a clique with the largest leaf separator size in P �leaves�
Delete K from P �leaves�
�Ri � �Ri � Elim�K� �in queue order�� H� � H n Elim�K��
Choose P � KH such that P �K � SepH�K��

Insert newly simplicial vertices in SepH�K� into the tail of Elim�P ��
Update the clique tree to re�ect the elimination of K�
if P � P �leaves then

if P is a non�leaf in H� then

delete P from P �leaves�
else fP is a leaf in H�g

update the leaf separator size of P �

end if

end if

H � H��
end while

Gi�� � Gi n �Ri� �Ri�� � 	� P �leaves� LGi��
� i� i� �

end while

Fig� ���� Algorithm to compute a minimum cardinality T�partition�

���� Algorithm� A clique tree algorithm for computing a minimum cardinality
T�partition is shown in Figure ��� The algorithm eliminates a set of persistent leaf
cliques of the chordal graph Gi �maintained in the set P �leaves� during the ith iteration
�major step� of the outermost while loop�

To facilitate processing the leaf cliques by non�increasing order of separator sizes�
the leaf cliques in P �leaves can be organized into lists such that list��� includes all
leaves K with ��K� � �� Similarly� new leaves eligible for consideration at the next

major step are included in lists newlist���� A leaf is deleted from its list if it becomes
a non�leaf� or if its leaf separator size changes� In the latter case� it is inserted into the
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correct list� To maintain e�cient insertion and deletion during the algorithm� each list

is doubly linked� This enables us to �nd a persistent leaf with the largest leaf separator
size e�ciently�

We proceed to analyze the complexity of the algorithm� Recall that jV j � n� m is
the number of maximal cliques of G� and q �

P
K�KG

jKj is the size of the clique tree

It is shown in ��� that the elimination of a clique K and the update of the clique
tree can be performed in jElim�K�j � jSepH�K�j � jKj time� We consider the work
done in maintaining and examining list and newlist separately� All other work within
the second while loop in Figure �� requires O�jKj� time� and hence over the course

of the algorithm is bounded by O�m� q��
Now we consider the work necessary to manipulate list� We observe that a leaf

clique whose leaf separator size is maximum is eliminated from the reduced graph Gi

by the algorithm� since the �rst leaf processed for elimination cannot become a non�leaf�
For convenience denote this leaf by Ki� The work done to process the leaves of Gi in
P �leaves is O�pi � �max�� where pi � jP �leavesj� and �max � jSepGi

�Ki�j� The second
part of this cost� summed over the algorithm� is

Pt
i�� jSepGi

�Ki�j� which is clearly

bounded by O�q��
To establish a bound on the �rst part of the above cost� we need to bound the

number of times a leaf clique P in P �leaves becomes a non�leaf or changes its leaf
separator size� The key observation is that any of these phenomena occurs when a leaf

clique K from P �leaves is eliminated� causing the leaf separator in P to cease being
a separator in the reduced graph� Thus the total number of such transitions over the
entire algorithm is bounded by m� Hence the �rst part of the cost� summed over the
algorithm� is bounded by the number of cliques eliminated�m� and the total number of

transitions considered above� m � Thus this cost is also O�m��
It only remains to consider the cost of creating and updating newlist when persis�

tent leaves in Gi are being eliminated� If we charge the cost of identifying P as a leaf in

Gi�� and inserting into the correct newlist��� to the persistent leaf K being eliminated�
this cost is O�m� over the algorithm�

We conclude that the time complexity of the algorithm is O�n� q�� The space
complexity is easily seen to satisfy the same bound as well�

��� Concluding remarks� We now discuss the class of chordal graphs that have
transitive perfect elimination orderings� i�e�� graphs for which Problem  has the solution
R� � V � From ���� such graphs have ��v� � � for all v � V � Hence this is the class

of �P��free� chordal graphs� i�e�� chordal graphs that do not contain an induced P�
�the path on four vertices�� A P��free graph can be characterized in terms of its clique
intersection graph� All of its separators can be linearly ordered with respect to the set

containment relation� Then all of its cliques are leaves� and the smallest separator is the
only critical separator in the graph� This class has been studied in earlier work by Wolk
�arborescence comparability graphs ����� and Golumbic �trivially perfect graphs �����

The class of P��free chordal graphs is related to other interesting subclasses of

chordal graphs�
An s	trampoline Ts is graph on �s vertices X � Y such that X � fx�� � � � � xsg is

	�



a clique� Y � fy�� � � � � ysg is an independent set� and x�� y�� x�� y�� � � �� xs� ys� x� is a

Hamiltonian cycle� A graph G is strongly chordal if it is chordal and� for any s � ��
does not contain an s�trampoline as an induced subgraph ���� P��free chordal graphs
form a proper subset of strongly chordal graphs� This can be seen from the fact that
when s � �� every Ts contains an induced P��

A threshold graph is a chordal graph that does not contain an induced P� or �K�

�a pair of independent edges� ��� It follows that the class of P��free chordal graphs
properly contains threshold graphs�

P��free chordal graphs are interesting from the perspective of sparse matrix com�

putations as well� An important issue here is the relation between �ll and parallelism
in Cholesky factorization� The height of the elimination tree can be used as a simple
measure of the number of steps needed to factor the matrix in parallel� It is well�known

that for the path on n vertices� if no �ll is permitted� the shortest elimination tree
has height dn�e� while there exists an elimination tree of height log� n if O�n� �ll is
permitted� Hence the question� For what classes of graphs does increasing �ll not lead
to increased parallelism in sparse Cholesky factorization 

The problem of computing a vertex ordering that leads to a shortest elimination
tree is NP�complete for an arbitrary graph ���� If G is chordal� then Liu �
� has shown
that a scheme due to Jess and Kees that recursively eliminates a maximum independent
subset of the simplicial vertices computes a shortest elimination tree of G over all PEOs

of G� If G is a P��free chordal graph� then it has the property that in every induced
subgraph of G� the size of a maximum independent set of vertices �MIS� is equal to
the number of maximal cliques in the subgraph� Further� every clique in the induced
subgraph is a leaf� and hence contains a simplicial vertex� thus a maximum independent

set consisting of simplicial vertices is also a MIS in every induced subgraph of G� Hence
it turns out that for a P��free chordal graph G� the Jess and Kees scheme computes a
shortest elimination tree over all vertex orderings of G� Thus permitting additional �ll

cannot lead to increased parallelism for these graphs� One expects a similar result to
hold for most �real�life� problems as well� though the proof of such a result would be
hard to obtain�
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