The Complexity of Optimal Elimination Trees

Alex Pothen
CS-88-16 April 1988

Department of Computer Science
The Pennsylvania State University
University Park, PA 16802

The Complexity of
Optimal Elimination Trees

Alex Pothen?
Computer Science Department
The Pennsylvania State University
University Park, PA 16802

April 1988

Abstract

We prove that finding a shortest elimination tree of a graph is an
NP-complete problem. This justifies the Jess and Kees method for com-
puting a good parallel ordering in sparse Cholesky factorization, which
first computes a chordal filled graph (with small fill), and then finds
a shortest elimination tree of the chordal graph. Finding the longest
elimination tree with bounded fill is also NP-complete.

1Research supported by NSF grant CCR-8701723, NSF Equipment grant CCR-8705110,
and by Oak Ridge National Laboratory and The University of Tennessee, Knoxville, during
their Numerical Linear Algebra Year.

1 Introduction

In surveying the role played by the elimination tree in sparse matrix factor-
ization, Liu [8] writes:

Another important research direction is the characterization of
the best elimination tree for a given computational environment,
be it on a parallel architecture, a vector machine, or a virtual
memory system. Current recommendations on desirable struc-
tures are mostly based on intuition and experience. A vigorous
approach to provide theoretical justification seems to be an 1nter-
estlng and important area.

We examine the problem of computing a good elimination tree in the
context of a medium grained parallel algorithm. In the elimination tree model
of sparse Cholesky factorization, a shortest elimination tree is appropriate
in a parallel environment, since the height of the tree is a measure of the
inherently sequential part of the computation.

Jess and Kees [4] suggested that a good parallel ordering be computed in
two steps. Initially an ordering that reduces the fill is computed; the resulting
filled graph is a chordal graph. In the second step, a perfect elimination
re-ordering that preserves the graph but reduces the height of the tree is
computed. Liu [6] showed that the Jess and Kees method computes a shortest
elimination tree of the chordal graph over all perfect elimination orders of the
graph.

We show that the problem of computing a shortest elimination tree of a
general graph is NP-complete. The problem of computing a longest elimi-
nation tree with bounded fill is also NP-complete. The latter problem is of
interest when the factorization is computed out of core.

There are two possible approaches to coping with the intractability of the
shortest tree problem: One is to adopt the two step Jess and Kees method,
and compute the shortest tree of the chordal filled graph over all of its perfect
elimination orders. Thus we provide a justification for the Jess and Kees
approach. Liu and Mirzaian [7] and this author [9] have designed O(n + ¢)
time algorithms to implement the Jess and Kees method.

The second approach is to compute a vertex ordering of the general graph
that tries to reduce fill and the elimination tree height simultaneously. The
results in this paper suggest that this method will have to settle for an ap-
proximation to the shortest tree of the general graph. More work is needed
to determine if this approach can be implemented efficiently, and if so, how
the heights of the computed trees compare with those in the first approach.

1

The rest of this paper is organized as follows. In the next section we
review background material concerning the elimination graph model, chain
graphs, chordal graphs, and elimination trees. Section 3 contains a proof that
the shortest elimination tree problem is NP-complete. In the last Section, we
show that the longest elimination tree problem is also NP- -complete, if the fill
is bounded. Without a bound on the fill, this problem is trivial.

2 Background

The elimination graph model. The computation of the Cholesky factors
of a sparse positive definite matrix A can be modeled on its adjacency graph
G(A). We assume the reader is familiar with this elimination graph model; a
good description may be found in Chapter 5 of George and Liu [2]. Br1eﬂy,
each column in A corresponds to a vertex in G(A4), and each nonzero a;; to an
edge between vertices 7 and j. By convention, the loop (,1) corresponding
to a;; i1s omitted from the set of edges. The computation of a column of
the Cholesky factor L corresponds to the elimination of a vertex—marking
it as deleted, and adding the edges necessary to make all of its unmarked
neighbors a clique. The added edges are called fill edges. The order in which
the vertices are eliminated defines an elimination order, which is a mapping

:V = {1,2,...,n}, where |V| = n. An ehmlnatlon order on the graph
corresponds to a symmetric permutation of the rows and columns of A.

The filled graph G is the graph obtained by adding the fill edges generated
by an elimination order to the adjacency graph of A. It is well known that G
is a chordal graph—i.e., every cycle of length greater than 3 has a chord, an
edge joining two non-consecutive vertices on the cycle. A perfect elimination
order is an elimination order that incurs no fill. A graph can have a perfect
elimination order iff it is chordal. If the vertices of a, graph G(A) are ordered - -
by an elimination order a, and G is the filled graph corresponding to «, then
a is a perfect elimination order on G. Chapter 4 of Golumbic [3] contains a
detailed study of chordal graphs.

A simplicial vertez in a chordal graph is a vertex whose neighbors form a
clique. Thus a simplicial vertex can be eliminated without incurring fill. A
chordal graph is either a clique, or it has at least two non-adjacent simplicial
vertices. Further, if G is chordal and v is a simplicial vertex, the induced
subgraph G — v is chordal.

In sequential computation, an elimination order that reduces the fill edges
added is desirable, since storage and factorization time are proportional to
the number of nonzeros in L. Yannakakis [11] showed that minimizing fill

2

is NP-complete. (Garey and Johnson [1] contains a good exposition of the
theory of NP-completeness.) Since we use some techniques from this proof
in the sequel, it is appropriate to review them here.

Let I'(v) denote the adjacency set of v. A bipartite graph B = (P,Q, E)
has the vertex set P U Q and each edge in E has one endpoint in P and the
otherin Q. A bipartite graph is a chain graph if the adjacency sets of vertices
in P form a chain; i.e., vertices in P can be ordered such that

I'(v1) D F(pg) oo 2 Tvy).

Yannakakis [12], (pp. 318) proves that then vertices in @ also form a chain,
and hence the definition is unambiguous.

Given a bipartite graph B = (P, Q, E), we can construct a biclique C =
(P,Q,E U F), where F contains all the edges necessary to make each of P
and @ cliques. Yannakakis [11] proved

Lemma 1 A4 bipartite graph B is a chain graph iff the biclique C is chordal.

The Lemma shows that if the addition of a set of edges to B makes it a
chain graph B, adding the same set of edges to C makes it a chordal graph
C. We will call C a chordal completion of the biclique C. :

We can find two simplicial vertices of C from an ordering of the vertices
of a chain graph B. Let the P-vertices of B be ordered as above, and let
['(v) refer to the neighbors of v in the chain graph. Then v, is simplicial in
C, since PUT (vp) is a clique in C. For, all other P-vertices are adjacent to
['(vp) by the ordering, and each of the sets P, I'(vp), is a clique. Similarly, if
the Q-vertices in B are ordered as :

DP(u1) € T(uz)... € D(u,),
then w; is simplicial in C.

The elimination tree. Assume that the vertices of a chordal graph
are renumbered (from 1 to n) according to a perfect elimination order. Let
hadj(v) be the set of vertices adjacent to v that are numbered higher than v.

For each vertex v, define parent(v) to be the lowest numbered vertex in
hadj(v). If G is connected, and we define Er = {(v, parent(v)) : v € V},
then the subgraph T = (V, E7) is a rooted tree called the elimination tree.
The root is the vertex numbered n in the elimination order. The height of
a vertex v in the tree is the length of a longest path from a leaf to v. The
height of the tree is the height of the root.

(%3 U1 3 (%1 Uy 2

%'
[[J

(%) U9 . 1 (2] U9 4

U3 Uz 5 .

5 (w
4 (»
3 (v)
1 (wy (u) 2

Figure 1: A chain graph, its biclique, and an elimination tree.

Liu [8] surveys the role that the elimination tree plays in sparse factor-
izations; Zmijewski and Gilbert [13] provide an especially lucid exposition of
several properties of the elimination tree.

Schreiber [10] proved the following

Lemma 2 Let (v,w) be an edge in a chordal graph G whose vertices are
numbered in a perfect elimination order. If v < w, there exists a monotone
path from v to w in the elimination tree, and for all vertices x on this path,
(z,w) s an edge in the graph.

This lemma has an important consequence: Let T[z] and T[y] be two
subtrees of the elimination tree rooted at vertices z and y respectively. If
T|[z] and T[y] are vertex disjoint, then these sets are mutually independent
in the chordal graph G. In particular, all the leaves of the elimination tree
are pairwise independent.

Let C be a biclique with vertex sets P and Q. Then since the set P is a
clique in C, it remains a clique in a chordal completion C. The result above
then implies that the elimination tree contains a monotone path from the
lowest numbered vertex in P to the highest numbered vertex in P. Thus all
vertices in P belong to a path from a leaf to the root in the tree. (Such a
path may include some vertices from @ as well.) A similar result holds for
vertices in Q. Thus an elimination tree of C can have at most two leaves, one
belonging to P, and the other to Q. Figure 1 shows a chain graph, a biclique
obtained from it (which is chordal); a perfect elimination order of the chordal
graph, and the corresponding elimination tree.

For ease of notation, if G = (V, E) is a graph, and R is a subset of its
vertices, then G'\ R is the induced subgraph on the vertices V\ R. If R = {v},
then we write the subgraph as G — v. In a bipartite graph G = (P, Q, E), if
a vertex v € P, we call it a P-vertex, and similarly for Q. We denote by n
the number of vertices in a graph G.

3 The shortest tree problem

In this section we prove that computing a shortest elimination tree of a graph
is NP-complete. We will need some preliminary results.

The Mutual Independent Set problem is the following: Given a bipartite
graph G = (P,Q, E), are there sets V; C P, V3 C Q, with [Vi| = |V = &,
such that V; and V, are mutually independent? That is, no edge joins a
vertex in V; to a vertex in V57

Lemma 3 The Mutual Independent Set problem for bipartite graphs is NP-
complete.

Proof: The reduction is from the Balanced complete bipartite subgraph
problem, (Garey and Johnson [1], pp.196, [GT24]). In a bipartite graph
G = (P,Q, E), this is the problem of finding disjoint sets V; C P and V, C Q,
with |Vi| = |Va] = k, such that the subgraph induced by V; and V; is a
complete bipartite graph. »

Given an instance of the Balanced complete bipartite subgraph problem,
construct the bipartite complement B = (P,Q,E) with e = (3,7) € E iff
t € P, j €@, and (1,7) ¢ E. Then B has a complete bipartite subgraph
induced by the sets V; and V; iff these sets are mutually independent in B.
Since the former problem is NP-complete, the result follows. m

Let B = (P,Q, E) be a bipartite graph with corresponding biclique C.
Let B be a chain graph that can be obtained from B by the addition of
edges, and let C be the chordal graph that is obtained by adding the same
edges to C.

Lemma 4 B has mutually independent sets of size k iff there exists a chordal
completion C with an elimination tree of height n — k — 1.

Proof: If B has mutual independent sets of size k, let these sets be P C P,
and Q C Q. Construct a chain graph B by ordering the P-vertices such that
vertices in P are ordered last:

I(v) 2 T(vg)... 2 T(vp—i) 2 T(vp—iy1) - -. 2 T'(vy),

where the last k vertices belong to P. Since vertices in P are ordered last, and
this set is independent of Q, it is only necessary to add edges that join P\ P
to @, and P to @ \ Q. Thus P and Q continue to be mutually independent
in the chain graph. Since B is a chain graph, vertices in Q can be ordered
such that

D(ur) CT(ug)... CT(uk) € T(ugsr) .- € I(yy),

with the first k vertices belonging to Q.

In the chordal graph C, vertices v, and u; are simplicial and independent,
and can be eliminated together. Next, vertices v,—; and u; can be eliminated,
and so on, till v,_41 and uy are eliminated together. The resulting elimina-
tion tree has two leaves, v, and u,. Further, the subtrees rooted at v,_x4+1 and
uy, are vertex disjoint. Hence a longest path from a leaf to a root excludes at
least k vertices, and the height of the tree is at most (n — k) — 1.

6

Conversely, suppose a chordal completion C of the biclique C has an
elimination tree with height at most n — k — 1. Since the height of the tree
is less than n — 1, the tree has two leaves, and one leaf belongs to P, the
other to Q. Since P is a clique, all P-vertices are contained in a path from
the P-leaf to the root. At least k @Q-vertices do not lie on this path, since its
length is at most » — k. Similarly, at least & P-vertices do not lie on the path
from the Q-leaf to the root. Thus these two paths can have at most n — 2k
vertices in common. :

Thus the first k vertices on the path from the P-leaf to the root (counting
from the leaf) belong to P. Call this set P. Similarly the first k vertices
on the path from the Q-leaf to the root belong to @, and we call this set
Q. Since P and Q are vertex disjoint, by Lemma 2, these sets are mutually
independent. m

Theorem 1 The shortest elimination tree problem for a general graph is
NP-complete. ‘

Proof: Follows immediately from Lemma 3 and Lemma 4. m

4 Other measures of optimality

Elimination trees optimal with respect to other measures are appropriate in
computing environments different from a parallel architecture. We consider
the problem of computing a long elimination tree, which is appropriate when
the factorization is computed out of core [8].

We study the problem of computing a longest elimination tree when the
size of the fill edges is bounded. Such a bound is necessary, for otherwise a tree
of height n — 1 could be computed for any connected graph, by the following
strategy. We choose the first vertex in an elimination order arbitrarily, and
then at each step, choose a vertex which is adjacent in the filled graph to the
last eliminated vertex.

We show that the problem of computing a longest elimination tree by
adding at most k edges to a graph is NP-complete. We require the following
lemma.

Lemma 5 Let B = (P,Q,E) be a chain graph with corresponding biclique
C. Then C has an elimination tree of height n — 1.

Proof: Let the P-vertices in B be ordered as follows:
F(’Ul) :_) F('Uz) e 2 F('Up).

7

Then v, is simplicial in C, and can be eliminated first in a perfect elimination
order. In the graph C — v,, v,—1 is simplicial, and can be eliminated next,
and continuing this way we can choose v, ..., v; to be the first p vertices in
a perfect elimination order of C.

Since @ is a clique in C, we can- eliminate the vertices in @ in any order
to complete this perfect elimination order. Further, since B is connected,
I'(v1) = Q. Since each of P, @ is a clique in C, the elimination tree is a path
of P-vertices followed by a path of Q-vertices, and has height n — 1. m

Theorem 2 It is NP-complete to find a chordal graph with a longest elimi-
nation tree by adding at most k edges to a graph G.

Proof: We restrict G to be a biclique. Every chordal completion of G has
an elimination tree of height n — 1, by Lemma 5. It is NP-complete to find
if we can obtain a chordal graph by adding at most k& edges to a biclique
(Yannakakis [11]). m

In contrast to this result, the complexity of finding a longest elimination
tree of a chordal graph over all perfect elimination orders, is unknown. Also of
interest in sparse Cholesky factorization is the computation of an elimination
tree that leads to the largest average supernode size. Such trees are of interest
when the factorization is computed on a vector machine. (For a definition
of a supernode, see [9].) The complexity of this problem is also unknown.
Johnson’s column [5] tabulates the known (and unknown) complexity results
for ten famous graph problems when restricted to several classes of graphs,
including chordal graphs.

Acknowledgements. A part of this work was done while the author
was visiting Oak Ridge National Laboratory and the University of Tennessee,
during their Special Year in Numerical linear algebra. I thank my colleagues
at both institutions for their hospitality and encouragement. I also thank my
colleague Georg Schnitger for several helpful conversations.

References

[1] Michael R. Garey and David S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W. H. Freeman and

Company, 1979.

[2] Alan George and J. W. H. Liu, Computer Solution of Large Sparse Pos-
itive Definste Systems, Prentice Hall, Englewood Cliffs, N.J., 1981.

8

[38] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-
demic Press, 1980.

[4] J. A. G. Jess and H. G. M. Kees, A data structure for parallel LU
decomposition, IEEE Trans. Comput., C-31: 231-239 (1982).

[5] David S. Johnson, The NP-Completeness column: an ongoing guide, J.
Algorithms, 6: 434-451 (1985).

[6] Joseph W. H. Liu, Reordering sparse matrices for parallel elimination,
Tech. Report CS-87-01, Computer Science, York University, 1987.

[7] Joseph W. H. Liu and Andranik Mirzaian, A linear reordering algorithm
for parallel pivoting of chordal graphs, Tech. Report CS-87-02, Computer
Science, York University, 1987..

[8] Joseph W. H. Liu, The role of elimination trees in sparse factorization,
Tech. Report CS-87-12, York University, 1987.

[9] Alex Pothen, Simplicial cliques, shortest elimination trees, and supern-
odes in sparse Cholesky factorization, Tech. Report CS-88-13, Computer
Science, Penn State, April 1988.

[10] Robert Schreiber, A new implementation of sparse Gaussian elimination,
ACM Trans. Math. Software, 8: 266-283 (1982).

[11] Mihalis Yannakakis, Computing the minimum fill-in is NP-complete,
SIAM J. Alg. Disc. Meth., 2: 77-79 (1981).

[12] Mihalis Yannakakis, Node-deletion problems on bipartite graphs, SIAM
J. Comput., 10: 310-327 (1981).

[13] Earl Zmijewski and John R. Gilbert, A parallel algorithm for sparse sym-
bolic Cholesky factorization on a multiprocessor, to appear in Parallel
Computing, (1987).

