
A Microeconomic Scheduler

for Parallel Computers

Ion Stoica� Hussein Abdel�Wahab� Alex Pothen �

Department of Computer Science�
Old Dominion University� Norfolk VA �������	
�� USA

e�mail� fstoica� wahab� potheng�cs�odu�edu

Abstract� We describe a scheduler based on the microeconomic paradigm
for scheduling on�line a set of parallel jobs in a multiprocessor system�
In addition to increasing the system throughput and reducing the re�
sponse time� we consider fairness in allocating system resources among
the users� and provide the user with control over the relative perfor�
mances of his jobs� Every user has a savings account in which he receives
money at a constant rate� To run a job� the user creates an expense ac�

count for that job to which he transfers money from his savings account�
The job uses the funds in its expense account to obtain the system re�
sources it needs� The share of the system resources allocated to the user
is directly related to the rate at which the user receives money
 the rate
at which the user transfers money into a job expense account controls
the job�s performance�
We prove that starvation is not possible in our model� Simulation results
show that our scheduler improves both system and user performances
in comparison with two di�erent variable partitioning policies� It is also
e�ective in guaranteeing fairness and providing control over the perfor�
mance of jobs�

� Introduction

We describe a microeconomic approach for scheduling on�line a set of jobs in a
parallel system with identical processors� This approach exploits the following
similarity between the scheduling and the resource allocation problems in a com�
puter system� and in a real economic system� Each system involves independent
agents that compete for common resources in pursuing their goals� We adopt
an open�market strategy which has proved to be successful in dealing with the
enormous complexity of real economical environments�
The microeconomic approach has several advantages over other algorithms

that have been developed for this scheduling problem ���� The usual formulations
of this problem seek to maximize the system throughput and minimize the user
response time� but� in practice there are additional requirements that schedules

� Also a�liated with ICASE� MS 	��C� NASA Langley Research Center� Hampton
VA ��
�	����	� USA� This author was supported by NSF grant CCR��������� by
U� S� DOE grant DE�FG�����ER���	
� and by NASA Contract NAS	�	�����

must satisfy� The 	rst of these is to ensure fairness in resource allocation among
the users� A second requirement is to give the user
exibility in controlling the
relative share of resources allocated among his jobs� We show that both these
features can be incorporated into the microeconomic approach in a very natural
way� while this is not true of many of the earlier scheduling algorithms�

Scheduling problems are usually formulated as optimization problems of min�
imizing the maximum completion time or the maximum lateness ��� ��
� ����
Since even simpli	ed formulations of scheduling problems are NP�hard in gen�
eral ��� �� ���� many sub�optimal algorithms have been proposed ���
�� The more
complex scheduling problem considered here is also NP�hard� and the microe�
conomic approach leads to a heuristic algorithm for the problem� We show by
simulation that this algorithm improves both system and user performances rel�
ative to two di�erent variable partitioning policies ����

The microeconomic paradigm has been applied to the resource allocation
problem by Miller and Malone from MIT� Drexler and Huberman from Xerox�
and others ��� ��� ��� at the end of the eighties� In the last few years� several
schedulers based on this paradigm have been proposed ��� �
�� These schedulers
use the auction mechanism to allocate resources among competing users� At
the beginning of every time�slice� the resource initiates an auction in which
the interested users participate by bidding monetary funds that increase over
time� The client that o�ers the highest bid acquires the resource for the next
time�slice� The price per time�slice is directly related to the level of competition
for that resource� if the competition increases� the price also increases� In this
way� as in real economic environments� the users are encouraged to maximize
their pro	t� i�e�� to devote their funds to resources that are more important for
them� These schedulers were intended more for distributed systems in which
resources are allocated in an un�correlated manner� Therefore� these systems
were suited more for coarse grained asynchronous parallel applications� such
as Monte�Carlo simulations ��
�� In contrast� the majority of parallel scienti	c
applications are highly synchronous� in that an application requires a speci	ed
number of processors to be available during the same interval of time� Another
problem with these schedulers is that holding an auction at the beginning of
every time�slice incurs a high overhead�

A microeconomic algorithm for balancing the load in distributed systems
was suggested by Ferguson et al� ���� Jobs are assumed to arrive independently
at every processor in the system� Upon arrival� each job evaluates the cost to run
locally or to migrate and execute on another processor� If a job migrates� it has
to pay for the communication bandwidth required� Their experiments show that
the algorithm is e�ective in allocating processors and communication resources�

A market�based approach was proposed by Cheriton and Harty ��� for system
memory allocation� In their system� the memory manager deposits money in a
process account� proportional to the share of the resources that process has
to receive� Unlike a real market� the resource prices are assumed to be 	xed�
When it has enough money in its account� the process �leases� the required
amount of memory for a bounded interval of time� At the application level� this

approach proved to be e�ective in controlling the amount and the interval of
time for which the memory is allocated� on uniprocessor and shared�memory
multiprocessor systems�

The remainder of the paper is organized as follows� In the next section we
present the model in detail� In Section �� we prove that the starvation is not pos�
sible in our model� Section � describes the simulation results� Finally� in Section
� we summarize our results and indicate some future directions for extending
our work�

� The Model

We consider a parallel computer consisting of N identical processors intercon�
nected by a general communication network� We assume that the communication
parameters for any pair of processors do not depend on their relative position� �

and therefore the system may be arbitrarily partitioned� Every job speci	es�
upon its arrival� the number of processors p it needs� and the estimated compu�
tation time� Once processors are allocated� they are guaranteed to be exclusively
used by the job for the entire duration of its execution� Also� the job is assumed
to acquire or release all p processors at the same time�

The computation system is modeled as a microeconomic environment in
which di�erent users compete for obtaining system resources in order to run
their jobs� To get the requested resources the user has to pay the price asked by
the system� As in real life� the buyers �users� and the sellers �system� have antag�
onistic goals� the users wish to run their jobs as fast as possible with minimum
expenses� while the system wants to maximize its income�

The
ow of currency in the system is depicted in Figure �� Every user has a
savings account in which he receives money at a constant rate� as long as he has
less than a speci	ed amount of funds� Whenever a user decides to run a job� he
creates an expense account for that job to which money from his savings account
is transferred� The job uses this account to buy the resources it needs� Once the
job is scheduled for execution� all of its money �and depending on the strategy�
possibly all the money it receives until it terminates� is transferred to the system
account� In order to maximize the system income� the scheduler applies a simple
strategy� it allocates available resources to the job that o�ers the best price� In
a loaded system� it is possible that not all p processors that were requested by a
job become available at the same time� In this case� when the job is scheduled it
is asked to pay for the wasted resources also� In this way resource fragmentation
is discouraged�

For convenience� throughout this paper we refer to the monetary�unit as a
dollar and to the time�unit as a minute� The notations used in this paper are
summarized in Table ��

� This is a reasonable assumption for many modern multiprocessor architectures �e�g��
IBM SP�	��� Intel Paragon��

System account

transfer
(variable rate)

payments

income
(constant rate)

Job ‘expense’
account

User ‘savings’
account

Fig� �� The currency �ow�

��� The User Savings Account

Every user has a savings account in which he accumulates funds for buying
resources required by his jobs� The maximum amount of money the user i can
deposit in his savings account is bounded by Mi� While the user has less than
Mi dollars� he receives money at a constant rate Ri� Intuitively� this can be
visualized as a system in which every user has a tank with capacity Mi where
he saves his earnings for future consumption� While the tank is not full� the
inlet�valve is open and the tank is 	lled at a constant rate Ri� once the tank is
full� the inlet�valve is closed�

Limiting the maximum funds in a user�s savings account is necessary to avoid
disruption in system utilization� Suppose a user does not use the computer for
a long period of time �e�g�� during his holiday�� Without this limitation it is
possible for the user to acquire enough money to monopolize the system for an
appreciable interval of time �e�g�� several hours� when he returns� which will
preclude other users from running their jobs�

During a time interval �t� user i receives at most Ri�t dollars and spends
at most Mi � Ri�t dollars �provided he has Mi dollars at the beginning of the
time interval� and spends all his savings and earnings during the interval �t��
Notice that for a su�ciently large interval of time ��t��� the amount Ri�t
is the dominant term in the money spent by user i� Thus� over large intervals
of time� Ri dictates how much money the user i can spend on the average for

Mi The maximum amount of funds user i can have in his savings account�

Ri The rate at which user i receives income� when he has less than
Mi dollars in his savings account�

mi�t� The amount of money user i has in his savings account at time t�
R The income rate over all users in the system
 R �

Pm

i��
Ri�

Jik The kth job started by user i�

rik�t� The rate at which user i transfers money into job Jik�s
expense account at time t�

mik�t� The amount of money job Jik has in its expense account at time t�
Nik The number of processors requested by Jik�
Tik The estimated service time required by job Jik when Nik

processors are used�
Eik The estimated cumulative computation time for Jik� i�e�� Eik � NikTik�

Table �� The notations used in this paper�

acquiring system resources�
Next� notice that Ri is directly related to the share of the system resources

that user i receives� the higher Ri is� the more resources the user can buy�
Moreover� if two users compete for resources at the same time� they will get a
share that is roughly proportional to their expenditures �since the resource prices
will be the same�� If both users spend at the same rate as they receive money�
then the ratio of their share of the resources would be roughly proportional to
their income rates� This discussion of �fairness� assumes that users compete at
the same time� Otherwise� it is possible for a user with less money to buy more
resources than another user with more money� Consider the user who runs his
jobs at night� when the system is lightly loaded and resource prices are low�
rather than during the day when the system is heavily loaded�
Although the income rate Ri determines the maximum spending rate over

large intervals of time� a user with a lower income rate should be able to execute
urgent tasks when needed� This is possible in our model since for short intervals of
time a user can spend much more than his income� Speci	cally� let mi �mi �Mi�
be the amount of funds user i has in his savings account at the beginning of the
time interval dt� Then� the user can spend mi �Ridt dollars during the interval
dt� and therefore the average spending rate �mi�dt� �Ri could be much higher
than Ri�

��� The Job Expense Account

When a user wants to run a job he has to specify its estimated running time and
the number of processors needed� At the same time� for every job he wishes to
run� the user creates an expense account to which he begins to transfer funds from
his savings account� In contrast with the user�s income rate which is constant� the
rate at which money is transferred into the savings account of a job is variable�

and is speci	ed by the user� These funds are used to buy the resources required by
the job� In this way� the user has the
exibility to adjust his expenses according
to the number and relative importance of his jobs� This is similar to the real�life
situation in which people receive a 	xed salary per month but have the freedom
to spend their money according to their needs�
When a user submits a job to be executed� an expense account is created

for it� and the job is inserted into a list called the ready�list� Whenever a set of
processors becomes idle� the scheduler scans the ready�list and selects the job
that o�ers the best price �see the next section for details�� If there are enough
idle processors available� then the selected job could be executed immediately�
Two approaches are possible for the manner in which the scheduler computes
the funds that a job could a�ord to spend for acquiring the resources at a time
t �denoted by m�ik�t��� In one� it considers only the current funds in the expense
account of the job� in the other� it considers the future earnings of the job also�
More speci	cally� let Jik be a job in the ready�list� belonging to the user i� that
at time t has mik�t� dollars in its expense account and receives money at a rate
rik�t�� Then� in the 	rst approach� the scheduler evaluates Jik to have mik�t�
dollars� In the second approach� the scheduler 	nds that the job can spend

m�ik�t� � mik�t� �

Z tf

t

rik�t
��dt�� ���

where tf is Jik�s estimated 	nishing time �tf is the current time t plus the
estimated waiting time plus the estimated running time�� Equation ��� has only
a theoretical importance� since in practice it is hard to estimate how rik will
vary in the future� This depends both on the user�s strategy and the current set
of jobs he has to run� A guaranteed lower bound r�ik on the rate at which Jik will
receive money in its expense account could be used to obtain a simple estimate
of the future income� Then� at time t� the scheduler can assume that Jik can
spend at least m�ik�t� � mik�t� � r�ik�tf � t� dollars� Notice that if r�ik � � �user
i does not guarantee any future money transfer for the job�� then this reduces
to the 	rst approach since m�ik�t� � mik�t��
For simplicity� the transfer of money between a user�s savings account and

the job expense account is unidirectional in that money cannot be transferred
back into the savings account� For example� if a job buys some resources for
a certain interval of time but 	nishes earlier than predicted� then the balance
cannot be returned back to the user� On the other hand� if a job fails to 	nish at
the predicted time� then it will be allowed to continue for some time while being
charged for the additional time� as long as the user can a�ord to pay� otherwise
it will be terminated� This simple solution motivates the user to provide accurate
estimates for the job service time�

��� The Price of Computation

We have considered two strategies for establishing the price of computation�
The 	rst approach is similar to the one used in other microeconomic sys�

tems ��� �
�� In this approach� time is assumed to be divided into intervals called

1

time

pr
oc

es
so

rs

2

0 4 8

1

time

pr
oc

es
so

rs
2

0 4 8

1

time

pr
oc

es
so

rs

2

0 4 8 12

b) c)a)

A A

B B

Fig� �� The execution time diagram for two processors� The shaded area next to a
processor indicates that the processor is free while the white area indicates that it is
busy� At time � �Figure �a� processor 	 is free while processor � is busy for � minutes�
Also� at time � there are two jobs A and B in the ready�list
 A needs one processor
for � minutes� while B requires two processors for � minutes� Figures �b� and �c� show
two possible schedules�

time�slices� At the beginning of every time�slice the scheduler computes the prices
o�ered by all the jobs in the ready�list� If the job that uses the resource has not
	nished yet� then it is allowed to execute for the current time�slice if it can con�
tinue to pay at the current price� otherwise the job that has o�ered the highest
price is scheduled to run for the current time�slice� Since the price is evaluated
at every time�slice� this scheme accurately re
ects the market trends in prices
�e�g�� when competition increases� the price also tends to increase�� Unfortu�
nately� this approach has several drawbacks� First� evaluating the highest o�er
at every time�slice incurs a high overhead� Second� a job would not know at the
beginning how much it has to pay to complete execution� and could run out of
money before termination due to unexpected price changes�

The second strategy is to negotiate a price that is constant for the entire
period of the computation� The main disadvantage of this strategy is that for
large intervals of time the price may no longer re
ect the level of competition
for the resources� For example� if a user starts several jobs early in the morning
before other users submit their jobs� he can get all the resources at zero cost
since there is no competition� But� if his jobs take several hours to complete�
then no other user can run jobs during this time� This would compromise our
objective to ensure fairness� A common solution to this problem is to gather
statistics and predict the price per minute for future process utilization� Since
the prediction is more accurate over large intervals of time� we use a weighted
function in order to establish the price for the next �t minutes at time t� More
precisely� p�t�� the price at time t� is

p�t� � pe�t��t� � �pa�t�� pe�t��t��e
���t� ���

where pa�t� represents the current highest o�er at time t� pe�t��t� is the esti�
mated price for the next �t minutes and � is a positive constant� When �t� �
the price p�t� goes to pa�t�� while for large values of �t ��t � �� the price
p�t� tends to the estimated value pe�t��t�� Thus� every job that is scheduled to

start at time t and run for the next �t minutes is asked to pay at least p�t�
dollars�minute�

We chose the second approach for two reasons� 	rst� the completion time for
computation bounded jobs can be predicted with good accuracy� and second�
the algorithm is simpler and more e�cient to implement�

When the scheduler scans the ready�list� it computes the price per minute
o�ered by every job Jik as a function f of� the predicted service time Tik� the
number of requested processors Nik� and the estimated expenses m

�

ik�t�� We
describe the details in the next two paragraphs�

First� consider a job Jik that needs only one processor �Nik � ��� In this case�

the price o�ered by Jik is computed as f��� Tik�m�ik�t�� �
m�

ik�t�
Tik
� Next� consider a

job Jik that requires Nik processors� where � � Nik � n� If at leastNik processors
become free at the same time then the price o�ered by Jik is computed as

f�Nik � Tik�m
�

ik�t�� �
m�

ik�t�
NikTik

�
m�

ik�t�
Eik
� When the 	rst Nik processors to become

free 	nish at di�erent times �as is more probable�� deciding what job to run
next in order to maximize the system income is di�cult� To see why� consider
the example shown in Figure ��a�� The system consists of two processors such
that when the 	rst processor becomes free� the second one requires � minutes
to process its current task� Now� assume that there are two jobs� A requires
one processor for � minutes and o�ers � dollars�minute and B requires two
processors for a total of � minutes �� minutes on each processor� and o�ers to
pay � dollars�minute� What job must be scheduled 	rst in order to maximize
the system income � The second job o�ers a higher price per minute but cannot
start as long as the second processor is busy� while although the 	rst job o�ers
a lower price� it can start immediately� The following examples show that there
is no unique answer� If the next job to be executed requests two processors�
then clearly� scheduling A 	rst �Figure ��b�� is better since both processors
are free after
 minutes� On the other hand� if the next job to be executed
arrives at t � �� requires exactly � minutes� and pays � dollars�minute� then it
can be immediately scheduled on processor �� and therefore scheduling B 	rst
maximizes the system income �Figure ��c���

Our solution to this problem is the following� In computing the price for a job�
the scheduler takes into account not only the e�ective cumulative computation
time �Eik�� but also the computation time that is wasted while waiting for other
processors �requested by the job� to be available� In the example� when B is
scheduled it wastes four minutes of processor � unless there is another job in the
ready�list that can 	t in the space� Consequently� the scheduler asks the job to
pay also for the potentially wasted four minutes and B is estimated to require
�� minutes � � � minutes � � processors � � wasted minutes�� Hence� the real
price per minute o�ered by B is scaled proportionally� i�e�� � � �

�� � ������� � With
this modi	cation� the scheduling algorithm will continue to select the job that
o�ers the highest real price per minute �in this example� A�� Thus� in this case
we compute the price o�ered by Jik as being

f�Nik� Tik�m
�

ik�t�� �
m�ik�t�

Wik �NikTik
�

m�ik�t�

Wik � Eik

� ���

where Wik is the wasted computation time in scheduling Jik to run on the 	rst
Nik processors that become available� Notice that asking parallel jobs to pay for
potentially wasted resources discourages fragmentation in processor allocation�

��� The User Strategy

Generally� the user can implement any mechanism for allocating funds to his
jobs in our model� Unfortunately� this freedom makes it very hard to analyze
and even simulate such a model� Hence we propose a simple strategy that we
consider to be
exible enough for practical use� As in other scheduling policies�
the idea is to group jobs into di�erent classes� But� while in other policies this
classi	cation is done at the central level from the system point of view �e�g��
based on the resource requirements�� in our case the classi	cation is done at the
user level� For example� the user can classify his jobs based on their urgency�
their resource requirements� etc�

Let Ci�� Ci�� � � �Cis be s classes to which the jobs of user i may belong� We
associate a coe�cient �il with each job class Cil� chosen such that

Ps

l�� �il � ��
Recall that Eik is the cumulative computation time requested by a job Jik and
let Ei be weighted sum over all the estimated cumulative computation times of
all jobs of user i that are in the ready�list� Hence we have

Ei �
sX
l��

�il�
X

Jik�Cil

Eik�� ���

Then the transfer rate to the expense account of Jik is given by the following
formula�

rik � �ilRi

Eik

Ei

� ���

Notice that if user i has at least one job� then the sum of the transfer rates into
the expense accounts of his jobs is equal to his income rate Ri�

In this strategy the classi	cation re
ects the importance of the jobs� the
higher the coe�cient �il� the higher the price increase a job belonging to the
class Cil can a�ord to pay�
This strategy can be further re	ned by allowing the coe�cients to be dynam�

ically changed in order to achieve certain objective functions �see Section � for
details��

��� Implementation Issues

The overhead introduced by the scheduler is as important as the scheduler perfor�
mance itself� Therefore� in this section we brie
y describe some implementation
issues�

The information in the ready�list is modi	ed in one of the following cases� a
new job arrives in the list� a job terminates and its processors become available�
and the rate rik �at which a job receives money from its user� changes� Since the
	rst case is trivial �the job is appended to the ready�list�� we discuss only the
other two�

When a subset of processors becomes free and there is no other job that
is scheduled to be executed� the job in the ready�list that o�ers the highest
price is scheduled� If there are enough available processors� the job is executed
immediately� otherwise it has to wait until enough processors become free� If a
job is already scheduled for execution� then the scheduler checks whether there
are enough free processors for that job� If so� the job is loaded� and the scheduler
scans the ready�list to schedule a new job� The complexity of 	nding the next
job to schedule is linear in the number of jobs in the ready�list� since the list is
scanned only once to schedule a job�

When rik�t�� the rate at which user i transfers money into Jik�s expense
account� changes� the amount of money in the account� mik�t�� is updated� For
simplicity of exposition� assume that rik�t� is constant between two subsequent
changes �the case when rik�t� is an arbitrary function can be treated similarly��
Suppose that at t � t�� the rate rik�t� was changed and the expense account
was updated accordingly� Then� when rik�t� is changed again at t � t�� we have
mik�t�� � mik�t�� � rik�t���t� � t��� Thus the scheduler can compute mik�t� at
any future time t � t� before the rate changes again� Recall from the previous
section that in our scheme the rate rik�t� is changed only when a new job arrives
in the ready�list� or a job 	nishes execution� Then the rates are changed for all
jobs belonging to user i� In the worst case all the jobs in the ready�list belong
to user i� and hence the complexity of the updates caused by a change in these
transfer rates is linear in the number of jobs in the list�

If the ready�list is too large for an algorithm that is linear in the number of
jobs to be satisfactory� then a variant of the algorithm in which only the 	rst n
jobs from the list are considered for scheduling can be implemented� where n is
a parameter that can be speci	ed�

� Non�Starvation

Every scheduling algorithm has to address the fundamental problem of starva�
tion� the situation where a job waits inde	nitely to acquire the resources it needs
to run� In this section we prove that starvation is not possible in our model� We
make two assumptions� 	rst� the running time of every job is bounded above by
Tmax� and second� there exists a lower bound rmin on the transfer rate from the

user savings account to every job�s expense account� Also� we assume that the
number of users m is bounded� �

Let us consider a job J that requires p processors for an estimated service
time T on a parallel computer with N identical processors� For convenience
denote the time at which J enters the ready�list by t � �� After �t minutes�
J has in its expense account at least rmin�t dollars� In order to be scheduled�
a job has to o�er the highest price per minute during the sum of the required
computation time pT and the time the job spends in waiting for p processors
to become free� The largest amount of money that job J has to pay is when
there are p � � free processors and the remaining N � p � � processors 	nish
after exactly Tmax minutes� Therefore� to be scheduled the job J has to pay for
at most pT � �p � ��Tmax minutes� Let �t� be the time interval at which the
following equality is true�

rmin�t�
pT � �p� ��Tmax

�
R

N � p� �
� 	� ���

where R represents the sum over all the income rates received by all users and
	 is an arbitrary positive constant� In words� Equation ��� says that after �t�
minutes the job J can pay at least R

N�p�� �	 dollars�minute� Next� let t� be the

time at which Equation ��� becomes true� Clearly� at some time between t � t�
and t � t� � Tmax all the jobs that were running at t� will 	nish and therefore
other jobs will be scheduled to run� If J is not scheduled in this interval then
there are at least N � p � � processors that receive more dollars�minute than
what J could o�er�
Let M �

Pm

i��Mi denote the total funds that all users have in their savings
accounts at time t�� Then between t� and some future time t� all the other jobs�
excepting J � can spend at mostM ��R� rmin��t�� t�� dollars for acquiring the
resources� As observed before� if J is not scheduled by t��Tmax� then there are
other jobs that have paid a higher price for at least N � p � � processors� Let
�t� be the time interval such that

M � �R� rmin��t�
�N � p� ���t�

�
M

�N � p� ���t�
�

R� rmin

N � p� �
� ���

�
R

N � p� �
� 	�

Since the 	rst term on the left�hand side monotonically decreases with the in�
terval �t�� this interval represents the maximum interval of time for which the
�N�p��� processors can be paid at a rate greater than R

N�p���	 dollars�minute�
Hence the job J will be scheduled by t � �t� � Tmax � �t�� since then it can
pay more than R

N�p�� � 	 dollars�minute �from Equation �����

� This is a realistic assumption since the total number of active users is bounded by
the total number of users who have accounts on that computer�

� Experimental Results

We have implemented a simple simulator in which we consider a parallel com�
puter with N � ��� identical processors and �� independent users� to validate
our model� We assume that jobs of any user belong to only one of three classes
�see Table ��� The jobs are assumed to come from a single Poisson source with
mean arrival rate
 �measured in jobs�minute�� By the decomposition property
of a single Poisson process into m output streams ������ Sec� ����� we can divide
the initial job stream into ten independent streams� and therefore every user i
can be modeled as an independent Poisson source from which jobs arrive with a
mean rate pi
 �where pi is the probability that a job comes from user i�� Further�
we denote by qi�� qi� and qi� the probability that a job that comes from user
i belongs to class �� � and �� respectively� Thus� the mean arrival rate of a job
from user i belonging to class j is qijpi
�
The job service time is assumed to have a biphase hyperexponential distri�

bution ����� The relative values for the average service time and coe�cient of
variation for each class �see Table �� are derived from the observed workload
on an Intel iPSC���� hypercube at NASA Ames� reported by Feitelson and
Nitzberg ���� 	

In the following discussion� for ease of notation� we number all the jobs in
the system during the simulation from J� to Jn� Let Ti represent the execution
time of Ji� using the number of processors requested by the job� Let si represent
the system response time for job Ji� the di�erence between the time when the
job completes execution and the time when the job is submitted by the user�
Thus si � Ti � wi� where wi is the time the job Ji waits before it is executed�
Denote the ratio between the system response time and the service time for job
Ji by ui � si�Ti� Observe that ui is greater than or equal to one�
Following Naik� Setia and Squillante ����� we use two performance metrics in

analyzing the model� the mean system response time S� and the mean ratio of a
job�s system response time to its service time U �we call this mean user response

for short��

S � lim
n��

�

n

nX
i��

si� U � lim
n��

�

n

nX
i��

ui� ���

Note that S measures the performance from the system�s point of view� while U
measures the performance from the user�s point of view �����

� Since we consider a more general architecture than an iPSC��
� hypercube� we
assume that the number of processors that a job requests is uniformly distributed�
For example� a job that takes
� processors on a hypercube is assumed to request
any number of processors between �� and
�� with equal probability� Also� we have
omitted the very large jobs that request all 	�� processors in Feitelson and Nitzberg�s
data� since these jobs are run at night� when the load is light� Finally� we have not
used the absolute values for service�times as given in �
�
 instead we have chosen
values that approximate the ratios between the service�times of di�erent classes�

Let E be the mean of the cumulative computation time over all jobs submit�
ted to the system� Then� we de	ne the system load � as the fraction between
the total demand received by the system in one time unit �
E�� and the avail�
able computation time per time unit �N � since there are N processors�� i�e��
� �
E�N �

Class Number of Service Coe�cient of qij

type processors time variation

	 	�	
 �� � ���

� 	
��� 	�� ��� ���
� ���
� ��� 	�� ��	

Table �� The workload characteristics�

In the 	rst experiment we compare the microeconomic scheduling policy
�ECON � with two di�erent variable�partitioning �VP� policies ����� Sec� �������
A VP policy allocates to each job the exact number of processors it requests�
the processors are not partitioned into predetermined subsets� The two policies
we consider are the following�

� FCFS This is the simplest policy� The jobs are placed in a 	rst�come 	rst�
served �FCFS� queue� if there are enough free processors then the 	rst job
from the queue is scheduled for execution� If not� the job waits till the re�
quested number of processors becomes free�

� RES In this case� if a su�cient number of processors are not available to
run the next job from the queue� the scheduler reserves processors for this
job for the earliest time in the future when the required number of processors
are available� Further� to make use of the idle processors until that time� the
scheduler searches the queue and schedules the earliest jobs whose requests
can be satis	ed before these processors need to be dedicated to the job with
the reservation�

The FCFS policy is expected to perform the worst among these policies� since it
tends to heavily penalize small jobs when the system load is high� For� suppose
the 	rst job in the queue asks for a large number of processors and its request
cannot be satis	ed� Then� subsequent jobs have to wait� even if there are enough
free processors in the system to satisfy their needs� The RES policy eliminates
this problem� if a large job cannot run immediately� the scheduler searches for
subsequent jobs whose requests can be satis	ed� Notice that the RES policy is
a special case of the ECON policy in which the income rate of every user is zero
�if we assume that the scheduler selects the job that arrives 	rst among jobs
that o�er the same price��
In the ECON policy we assume that that every user has the same income rate

equal to ��� dollars�minute� We also assume that a user distributes his income

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

ECON −−o−−

RES − .−+−. −

FCFS − −x− −

�a�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

FCFS − −x− −

RES − .−+−. −

ECON −−o−−

�c�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

RES − .−+−. −

FCFS − −x− −

ECON −−o−−

�b�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

FCFS − −x− −

ECON −−o−−

RES − .−+−. −

�d�

Fig� �� The mean system response time S for� �a� all jobs� �b� jobs in class 	� �c� jobs
in class �� and �d� jobs in class ��

equally between jobs from di�erent classes� and thus the coe�cient associated
with each class is equal to ���� In each of the following experiments� we generate
a system load � between ��� and ��
� by suitably varying
� To attain steady
state we run each experiment �for every value of �� for ������� time�units�

Figure ��a� shows the mean system response time� S� for all three policies
for values of � between ��� and ��
� When � � ���� all the policies o�er almost
the same performance� In this regime� there are few jobs in the system and there
are enough processors to satisfy all the incoming requests� Next� for � � ���
the mean response time for the FCFS policy begins to increase sharply� This
is because the large jobs monopolize the resources at the expense of small jobs�
Finally� when � exceeds ���� the ECON begins to outperform the RES policy�

� In the current implementation we have not changed the price of computation over
time as described in Equation ���
 since we consider only constant workloads �� is
�xed�� we assume that the price is also constant in the steady state�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e
ECON −−o−−

RES − .−+−. −

FCFS − −x− −

�a�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e

FCFS − −x− −

ECON −−o−−

RES − .−+−. −

�c�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e

ECON −−o−−

RES − .−+−. −

FCFS − −x− −

�b�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e
RES − .−+−. −

ECON −−o−−

FCFS − −x− −

�d�

Fig� �� The mean user response U for� �a� all jobs� �b� jobs in class 	� �c� jobs in class
�� and �d� jobs in class ��

The improvement in S obtained with ECON over RES is signi	cant� When
� � ��
� S decreases by more than ��!� Figures ��b�� ��c� and ��d� compare
the system response times for each class of jobs� As expected� the biggest gain is
for small and medium jobs �classes � and ��� This is because the ECON policy
asks a job to pay not only for the computation time it needs� but also for the
wasted time� This favors smaller jobs� since we expect that the larger the number
of processors a job requests� the greater is the wasted time for which the job has
to pay� Next� Figures ��a�� ��b�� ��c� and ��d� show the mean user response
�U � for the three policies� 	rst� for all jobs combined� and next� for each class of
jobs� The behavior of the mean user response as a function of the arrival rate�
and as a function of the job class� is quite similar to the behavior of the system
response time� the advantage of the ECON policy relative to the other policies
is even greater�
In the next experiment we study how the user income rate in
uences the

user performances� For this experiment we consider three di�erent income rates
for the 	rst user� ��� ��� and ��� dollars�minute� while the income rates for
all other users remain unchanged at ��� dollars�minute� Let W �Ri� denote the
mean user waiting time for user i when his income rate is Ri� Figure � shows
that the waiting time for the 	rst user is inversely proportional to his income
rate� when the mean job arrival rate is su�ciently large� For instance� when
� � ��
 and R� � �� dollars�minute� the mean user waiting time is ���! of the
value when R� � ��� dollars�minute� while for R� � ��� dollars�minute it is
��! of this value� To see why this happens� consider the case when R� � ���
dollars�minute� Since the 	rst user receives twice as much income as the others�
he can transfer money to his jobs roughly twice as fast� Therefore the price per
minute o�ered by his jobs increases proportionally faster� and consequently the
mean waiting time of these jobs reduces by approximately a half�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

System Load

M
ea

n
W

ai
tin

g
T

im
e

income rate 200 − −x− −

income rate 100 −−o−−

income rate 50 −.−+−.−

Fig� �� The mean waiting time for user 	 for three income rates ��� 	�� and ���
dollars�minute� All other users have an income rate of 	�� dollars�minute�

In the last experiment we evaluate an adaptive strategy that controls the
relative user response for each class� More speci	cally� let U�� U�� U� be the
mean user responses for jobs in class �� class � and class �� respectively� Our
goal is to enforce certain ratios between the mean user responses for each class
of jobs� i�e� U� � U� � U� � a� � a� � a�� where a�� a� and a� are prede	ned
constants� In other words� we would like each class to satisfy

U i

U� � U� � U�

�
ai

a� � a� � a�
� for � � i � ��

To achieve this objective� the user periodically adjusts the coe�cients associated
with every class �see Section ���� according to the following equations�

�ki � �k��i

U
k��
i

U
k��
� � U

k��
� � U

k��
�

�
a� � a� � a�

ai
�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

System Load

M
ea

n
U

se
r

R
es

po
ns

e
class 2 −.−+−.−

class 3 − −x− −

class 1 −−o−−

�a�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

System Load

M
ea

n
U

se
r

R
es

po
ns

e

class 3 − −x− −

class 1 −−o−−

class 2 −.−+−.−

�b�

Fig� �� The measured mean user responses for each class� U �� U�� U �� The desired ratios
are� �a� U� � U� � U� � 	 � � � �� and �b� U� � U� � U � � 	 � 	 � ��

where U
k

i represents the mean user response for jobs belonging to class i at the

kth iteration� Obviously� we have U i � limk�� U
k

i � Notice that whenever U
k

i

is larger than expected� i�e�� U
k

i ��U
k

� � U
k

� � U
k

� � � ai��a� � a� � a��� then �ki
increases and therefore the jobs in class i will receive a larger share of the user

income� Conversely� if U
k

i is smaller than expected� then the user decreases the
share of the income allocated to jobs in class i� We update the coe�cients every
�� ��� time�units in our experiment�

Figure ��a� shows the mean user response for each class of jobs when a� � �
and a� � a� � �� Again� when the system load is low there is not much the
algorithm can do� since there are few jobs in the system and the resources are
plentiful� On the other hand� adaptive control becomes increasingly e�cient
when the system load increases� For example� when � � ��
� the measured mean
user response ratios are U� � U� � U� � � � ��
� � ����� which is close to the
prescribed ratios � � � � �� Finally� Figure ��b� show the mean user responses for
a di�erent set of ratios� a� � a� � � and a� � �� In this case� when � � ��
� the
measured ratios U� � U� � U� � � � ���� � ���� are again close to the prescribed
ratios�

� Conclusions and Future Work

We have applied the microeconomic paradigm to schedule computation�bounded
jobs on parallel systems� Our simulation results show that the microeconomic
scheduler compares favorably with other variable partitioning policies both in
terms of system and user performances� Additionally� the scheduler guarantees
an adequate level of fairness in allocating resources among the users� Finally�
by using a simple adaptive mechanism that adjusts the rate at which money is

transferred from the user savings account to a job expense account� the scheduler
controls the relative job performances�
Many open problems remain�

We are currently extending the model to schedule jobs that specify a mini�
mum and a maximumnumber of processors� and which can be allocated a num�
ber of processors within this interval at load�time� �We intend also to consider
jobs that can dynamically change the number of processors during execution��
The idea is to study the trade�o� between the number of processors a job re�
quests and the price it has to pay� Notice that if a job Jik reduces the number
of processors it requests� then the price it pays decreases for two reasons� First�
the wasted time a job pays for decreases with fewer processors� Second� the cu�
mulative computation time �Eik� decreases if the job�s speedup is sub�linear�
Moreover� when requesting fewer processors� the waiting time is also likely to
decrease� Therefore it would be possible for a job to obtain a better response
time using fewer processors and paying less �if the decrease in the waiting time
o�sets the increase in the service time Tik�"
A second area for future work is to extend the model to other system re�

sources such as memory and I�O bandwidth� One di�culty here is correlating
the allocation of the various resources� For example� when a job buys computa�
tion time it has also to buy enough memory� otherwise instead of computing� it
has to wait for the memory pages to be swapped in and out�
Third� it will be interesting to explore other policies for transferring funds

from a user�s savings account to a job expense account� It might be worth con�
sidering variable user income rates� The idea would be to allocate a share of
the system resources to every user and then to dynamically adjust the income
rate in order to ensure that every user receives his share� Here� the trade�o� is
between increasing algorithm overhead and increasing accuracy of control�

We believe that the microeconomic paradigm may serve as a unifying theme
for multiprocessor scheduling� We have seen that the variable partitioning scheme
with job reservations is a special case of the microeconomic scheduler �when the
income rates are zero�� We hope to show in future work that other schedul�
ing policies might also be obtained by suitably choosing the parameters in the
microeconomic paradigm�

References

	� J� Blazewicz� M� Dror and J� Weglarz� �Mathematical Programming Formulations
for Machine Scheduling� A Survey�� European Journal of Operational Research�
No� �	� 	��	� pp� ��������

�� D� R� Cheriton and K� Harty� �A Market Approach to Operating System Memory
Allocation�� URL page� http���www�dsg�stanford�edu�Publications�html� Stanford
University�

�� E� G� Co�man� M� R� Garey� D� S� Johnson� R� E� Tarjan� �Performance Bounds
for Level�Oriented Two�Dimensional Packing Algorithms�� SIAM Journal of Com�

puting� Vol� �� No� �� November 	���� pp� ������
�

�� K� E� Drexler and M� S� Miller� �Incentive Engineering for Computational Resource
Management�� in �		�� pp� ��	��

�

�� D� G� Feitelson� �A Survey of Scheduling in Multiprogrammed Parallel Systems��
Research Report RC ������ IBM T�J� Watson Research Center� 	����

� D� G� Feitelson and B� Nitzberg� �Job Characteristics of a Production Parallel
Scienti�c Workload on the NASA Ames iPSC��
��� D� G� Feitelson and L� Rudolph
�eds��� Lecture Notes in Computer Science� Vol� ���� Springer�Verlag� 	����

�� D� Ferguson� Y� Yemini and C� Nikolau� �Microeconomic Algorithms for Load
Balancing in Distributed Systems�� Proc� of the 	th International Conference on

Distributed Computer Systems� IEEE� 	���� pp� ��	�����
�� M� R� Garey and D� S� Johnson� Computers and Intractability
 A Guide to the

Theory of NP�Completeness� Freeman� San�Francisco� 	����
�� R� L� Graham� �Bounds on Multiprocessing Timing Anomalies�� SIAM Journal of

Applied Mathematics� Vol� 	�� No� �� March 	�
�� pp� �	
�����
	�� J� L� Hellerstein� �Achieving Service Rate Objectives with Decay Usage Schedul�

ing�� IEEE Transactions on Software Engineering� Vol� 	�� No� �� August 	����
pp� �	������

		� B� Huberman �ed��� The Ecology of Computation� North�Holland� 	����
	�� J� Kay and P� Lauder� �A Fair Share Scheduler�� Communication of the ACM� Vol�

�	� No� 	� January 	���� pp� ������
	�� S� Majumdar� D� L� Eager� and R� B� Bunt� �Scheduling in Multiprogrammed Par�

allel Systems�� Proceedings of the ��		 ACM SIGMETRICS Conference on the

Measurement and Modeling of Computer Systems� pp� 	���		��
	�� T� W� Malone� R� E� Fikes� K� R� Grant and M� T� Howard� �Enterprise� A Market�

Like Task Scheduler for Distributed Computing Environments�� in �		�� pp� 	���
����

	�� M� S� Miller and K� E� Drexler� �Markets and Computation� Agoric Open Systems��
in �		�� pp� 	���	�
�

	
� V� K� Naik� S� K� Setia and M� S� Squillante� �Performance Analysis of Job Schedul�
ing in Parallel Supercomputing Environments�� Research Report RC ����	� IBM
T�J� Watson Research Center� 	����

	�� M� G� Norman and P� Thanisch� �Models of Machines and Computation for Map�
ping in Multicomputers�� ACM Computing Surveys� Vol� ��� No� �� September
	���� pp� �
������

	�� K� S� Trivedi� Probability and Statistics with Reliability� Queuing and Computer

Science Applications� Prentice�Hall� 	����
	�� C� A� Waldspurger� T� Hogg� B� A� Huberman� J� O� Kephart and W� S� Stornetta�

�Spawn� A Distributed Computational Economy�� IEEE Transactions on Software

Engineering� Vol� 	�� No� �� February 	���� pp� 	���		��

This article was processed using the LaTEX macro package with LLNCS style

