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ABSTRACT

The problem of correctly predicting the structures of the orthogo-
nal factors ¢) and R from the structure of a matrix A with full column
rank is considered in this paper. Recently Hare, Johnson, Olesky,
and van den Driessche have described a method to predict these
structures, and they have shown that corresponding to any specified
nonzero element in the predicted structures of ¢) or R, there exists a
matrix with the given structure whose factor has a nonzero in that
position. In this paper this method is shown to satisfy a stronger
property: there exist matrices with the structure of A whose factors
have exactly the predicted structures. These results use matching
theory, the Dulmage-Mendelsohn decomposition of bipartite graphs,
and techniques from algebra. The proof technique shows that if
values are assigned randomly to the nonzeros in A, then with high
probability the elements predicted to be nonzero in the factors have
nonzero values. It is shown that this stronger requirement cannot be
satisfied for orthogonal factorization with column pivoting. In addi-
tion, efficient algorithms for computing the structures of the factors
are designed, and the relationship between the structure of ¢ and
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the Householder array is described.

1. INTRODUCTION

Given the structure of an m x n real or complex matrix A,
where m > n and A has full column rank, we consider the
problem of correctly predicting the structure of its orthogonal
factors ) and R. (Here @ is m x n and R is n x n. The
full rank assumption is necessary for the factors to be unique.)
Algorithms for structure prediction give valuable insight into
the nature of sparse factorizations, and enable us to set up data
structures for the factors so that the numerical factorization
can be computed in time proportional to the number of floating
point operations.

Coleman, Edenbrandt, and Gilbert [4] proved that if A has a
combinatorial property called the strong Hall property (SHP),
then two algorithms called the George-Heath algorithm [10] and
the Local Givens Rule correctly predict the structure of K. More
recently Hare, Johnson, Olesky, and van den Driessche [16] have
shown how the structures of () and R may be predicted when A
does not have SHP. Let A denote the set of matrices with full
column rank whose structures are contained in that of A, i.e,
the set of full rank matrices B such that b;; # 0 — a;; # 0. "The
structures predicted by their method satisfy two requirements:
(1.1) The predicted structures are large enough to contain the
structures of the factors of any matrix in A, and
(1.2) Corresponding to any specified nonzero element (7, j) in
the predicted structure of () or R, there exists a matrix A;; € A
whose factor has a nonzero in that position.

A natural question that arises is if there exists a single ma-
trix A" € A whose factors have exactly the predicted structures.
This leads, instead of (1.2) to the requirement:

(1.2)" There exists a matrix A’ € A whose factors @)’ and R’
are simultaneously nonzero in every nonzero element in the pre-
dicted structures.

It is this stronger requirement that has been considered in
previous work on predicting the structure of R in the orthog-
onal factorization of strong Hall matrices [4]. Additionally, 1t
is known that the predicted structures in Cholesky factoriza-
tion [23], unsymmetric Gaussian elimination of a matrix with



3

nonzero diagonal [24], the solution of a linear system when the
coefficient matrix has a nonzero diagonal [13], and eigendecom-
positions of certain matrices [13] satisfy (1.2)". It is also known
that this requirement cannot be satisfied for unsymmetric Gaus-
sian elimination when the matrix has zero elements on the di-
agonal [1] and for Gaussian elimination with pivoting.

In this paper we prove that the structures predicted by the
methodology of Hare et al. satisfy the stronger requirement
(1.2)". We also show that this requirement cannot be satisfied
for orthogonal factorization with column pivoting. In addition,
we describe efficient algorithms for predicting the structure of
orthogonal factors.

To prove that the predicted data structures satisfy (1.2)’, we
will make use of the concepts of a Hall set and an auxiliary
graph introduced by these authors, and then employ match-
ing theory, the Dulmage-Mendelsohn decomposition of bipar-
tite graphs, and some results from algebra. Hall sets can be
computed efficiently from the Dulmage-Mendelsohn decompo-
sition, and the efficient structure prediction algorithms we de-
scribe later in this paper make use of this decomposition as well.
Hence the use of this decomposition in this context is quite nat-
ural. The techniques used by Hare et al. to characterize nonzero
elements in the structures cannot be extended to establish these
results since they may assign different values to a particular el-
ement in A to show that two elements of () are nonzero.

These results are of theoretical interest since they bring struc-
ture prediction for orthogonal factorization on a par with known
results for structure prediction for other factorizations. In ad-
dition, they have practical implications as well. If a predicted
structure satisfied the requirement (1.2) but not (1.2)', then
after the numerical factorization is computed, it may be worth-
while to ‘compress’ the data structures by removing those ele-
ments which are actually zero while predicted to be nonzero to
reduce storage requirements and to avoid arithmetic on zero ele-
ments. (Such schemes have been considered in [5, 11, 12].) Our
proof technique shows that if numerical values are assigned ran-
domly to the nonzeros in A, then with high probability the pre-
dicted nonzero elements in the factors are actually nonzero. An
important conclusion we can draw is that when the numerical
values in A are reasonably random, the use of a post-processing
phase to remove zeros from the data structures for () and R will
not be worth the trouble.

The rest of this paper is organized as follows. In section 2
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we briefly describe the Dulmage-Mendelsohn decomposition of
bipartite graphs, and discuss in more detail the work of Hare et
al. We characterize maximum Hall sets and the structure of al-
ternating paths in an auxiliary graph B; in section 3. We make
use of some algebraic results and the characterizations in the
previous section to show how the structures of the orthogonal
factors may be predicted in section 4. In section 5 we describe
efficient algorithms to compute the structures, relate the struc-
ture of the Householder array to that of the orthogonal factor,
and provide an example to illustrate that the factors obtained
from orthogonal factorization with column pivoting cannot sat-
isfy the requirement (1.2)'. Section 6 discusses the significance
of these results to computing sparse orthogonal factorization.
Notation. Throughout this paper, A will denote an m x n
matrix with full column rank, where m > n. We represent the
structure of A by means of the blpartlte graph H = H(A) =
gR C,&), where R = {r1,...,rn} is the set of row vertices, C =
c1, .. cn} is the set of column vertices, and an edge (r;, c]) €&
if and only if a;; # 0. For convenience, we will assume without
loss of generality that the rows are numbered such that A has
a nonzero diagonal. For Ry C R and (] C C, the induced
subgraph Hy = (Ry,Cy, Fy) is the subgraph of H whose vertex
sets are Ry and (4, and whose edge set Fy C & contains those
edges of H with one endpoint in Ry and the other in ;. We
shall often write it as the subgraph (Ry,Cy). The subgraph of
H induced by a column subset C'y is the subgraph whose edge
set consists of all edges with one endpoint in (;, and whose row
set consists of all rows which are endpoints of such edges.

2. BACKGROUND

In this section we review the Dulmage-Mendelsohn decomposi-
tion and the work of Hare, Johnson, Olesky, and van den Driess-

che [16].

2.1.  The Dulmage-Mendelsohn decomposition

The block triangular form (btf) of A induced by the Dulmage-
Mendelsohn (D-M) decomposition of the bipartite graph H(A)
has been described by Dulmage, Johnson and Mendelsohn [7, 8,
9, 17], and by Brualdi [2, 3]. Recent descriptions of this decom-
position in terms of bipartite matching theory may be found in
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[20, 22], with proofs included in [20]. Since this discussion of
the D-M decomposition will be brief, the reader unfamiliar with
this decomposition will find it helpful to consult [22].

If the rows and columns of a matrix A with full column rank
are permuted appropriately, then the D-M decomposition leads

to the btf
A, X
a=(5 A )

where A, is a square submatrix, A, is an overdetermined matrix,
and ‘X7 denotes a possibly nonzero submatrix of apt dimensions.
(The submatrix A, has a block upper triangular structure, and
A, is block diagonal.) The D-M decomposition is conveniently
described with respect to a maximum matching in the bipar-
tite graph H(A). The terminology and results on matchings in
graphs used here may be found in Lovéasz and Plummer [18].
A bipartite graph H(A) with a matching is shown in Fig. 2.1,

where the matched edges {(r;,¢;) : 7 = 1,...,7} are drawn as
‘horizontal” edges. A walk is a sequence of vertices vg, vy, ...,
v, such that (v;,v;41) is an edge for ¢ = 0, ..., n — 1. Vertices

or edges may be repeated in a walk. An alternating walk in
the graph is a walk with alternate edges in M. An alternat-
ing tour is an alternating walk whose endpoints are the same.
An alternating path is an alternating walk with no repeated
vertices. Following Gilbert [14], depending on the direction in
which the matching edges are traversed, we distinguish between
two kinds of alternating paths: In an r-alternating path, the
matched edges are traversed from a column to a row, and in a
c-alternating path, they are traversed from a row to a column.
In Fig. 2.1, the path rg, ¢z, 7, ¢1, 71 is an r-alternating path
from rg to rq (it is a c-alternating path from ry to rg); the path
r9, Ca, '3, C3 18 c-alternating from ry to cs.

A mazimum matching is a matching of maximum cardinality.
A matching is column-perfect it every column vertex is matched;
it is row-perfect if every row vertex is matched. A matching is
perfect if it is column-pertect and row-pertect. The matching in
Fig. 2.1 is a maximum matching since it is column-perfect.

The D-M decomposition is described with respect to a maxi-
mum matching in the graph H(A), but since it is a canonical de-
composition of the matrix, any other maximum matching would
lead to the same column and row sets in the decomposition.

Let SR denote the rows and SC' the columns of A,, and VR
denote the rows and VC the columns of A,. We call the sub-
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Figure 2.1: A bipartite graph H, a maximum matching, and its
Dulmage-Mendelsohn decomposition.
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graph of H(A) induced by (SR, SC) the square subgraph H,
and that induced by (VR,VC), the overdetermined subgraph
H,. The set V R can be characterized as the set of rows reached
by r-alternating paths from unmatched rows, and V' is the set
of columns thus reached. Note that all unmatched rows are in-
cluded in V' R since they can be reached by r-alternating paths of
length zero, and that all columns in V' are matched to rows in
V R. All remaining rows are perfectly matched to all remaining
columns, and we call these sets SR and SC|, respectively.

The overdetermined subgraph H, may have more than one
connected component. The overdetermined submatrix H, has a
block diagonal structure, corresponding to the connected com-
ponents of H,. We list the diagonal blocks of A, as Vi, V4, ...,
V,, and denote the row set of V; by U; and its column set by D;.

In the bipartite graph H(A) shown in Fig. 2.1, the square
subgraph H, has columns SC = {cg, ¢5, ¢2, ¢3, ¢4} and its row set
SR is the set of rows matched to these columns. The overde-
termined subgraph H, has columns VC = {¢1,¢7} and rows
VR = {ry,rs,rs}, and has only one connected component.

The square subgraph H has a finer decomposition which
leads to a block upper triangular form for the submatrix A,.
Define two columns in SC to be related if there is an alternating
tour joining them. This is an equivalence relation, and let the
classes of this relation be the column sets Cy, Cy, ..., C,. Let
R; denote the row set matched to C;. It is possible to renumber
the sets {R;} (and {C;}) such that if ¢ > j, then no edge joins a
vertex in R; to a column in C;. (This renumbering may not be
unique.) Henceforth we assume that these row sets and column
sets have been renumbered to satisfy this property. In Fig. 2.1,
Cl = {06} CQ = {05} 03 = {02703} and 04 {04}

Permuting the rows and columns in the above order leads to
the block upper triangular form of A,. The diagonal blocks of
this form are square submatrices induced by the row set R; and
the column set C;. We number the block diagonal submatrices
Ty, T, ..., T,, and each submatrix 7; is irreducible.

A bipartite graph H(A) with m rows and n columns (m > n
has the Hall property (HP) if every set of k columns (1 < k <n
is adjacent to at least k rows. It has the strong Hall property
(SHP) if every set of k columns (1 < k < m) is adjacent to
at least k£ 4+ 1 rows. Thus when m > n, every set of £ < n
columns satisfies the adjacency requirement, and when m = n,
every set of k < n columns satisfies it. Notice the asymmetry
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in the definitions of HP and SHP for square bipartite graphs.

Philip Hall proved that the graph H(A) has a column-perfect
matching if and only if it has the HP. If the corresponding ma-
trix A has full column rank, then it has a square nonsingular
submatrix of order n. Hence there is at least one nonzero term
in the alternating sum expansion of the determinant of the sub-
matrix, from which we can conclude that A has a column-perfect
matching, and hence the HP.

Each connected component of the overdetermined subgraph
(the subgraph induced by each U; and D;) has SHP. Also, the
square subgraph corresponding to each diagonal block T; in H;
has SHP. Henceforth we call the diagonal blocks the strong Hall
components of the respective subgraphs.

An easy consequence of the existence of an M-alternating
tour joining any two vertices in a strong Hall component of a
square subgraph T is that there is a c-alternating path from
any vertex v to any other vertex w with respect to any perfect
matching M in T'. The next result, due to Gilbert, characterizes
a strong Hall component of the overdetermined subgraph.

LEMMA 2.1 ([14]) Let V be a strong Hall component of the
overdetermined subgraph in the D-M decomposition of a bipartite
graph H, and let a vertex v and a column ¢ belonging to V' be
specified. Then there exists a column-perfect matching M (which
depends on v and ¢) in 'V such that there is a c-alternating path
fromvtoc. m

2.2, Previous work

For 1 < j < n, let a; denote the j-th column of A. We will
find it necessary in this paper to consider A;, the submatrix
of A consisting of the first j columns. We let J = {¢1,...,¢;}
be the set of the first j column vertices of H, and represent
the structure of A; by the bipartite subgraph H; = H(A;), the
subgraph of H(A) induced by .J.

Hare et al. [16] introduced the following two concepts. The
first of these is the Hall set, a set of column vertices which is
adjacent in H to exactly as many rows. A mazimum Hall set S;
is a Hall set of largest cardinality in J. (The set Sy is defined to
be the empty set.) Let s; denote the set of rows adjacent to S;;
then from the definition of a Hall set, these two sets are equal in
size. The second concept is that of an auxiliary bipartite graph

B; = (R',C', '), the subgraph of H; from which the column
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set S;_1 and the row set s;_; have been excluded. (This is the
subgraph of H; induced by the columns in J \ S;_1.) Define
p; (P;) to be the the set of row (column) vertices of B; that
belong to the same connected component as ¢;; let u; (U;) be
the remaining row (column) vertices of B;; and let ¢; denote the
set of row vertices of H that are not adjacent to any column
in J. Then after appropriate row and column permutations, A;
has the structure

Si.y U, P
7 0 0 0
_ Sj—1 AS ASU ASP
A= u]] 0 Av 0 (2.1)
bj 0 0 Ap

Here the submatrices are zero in the first row since rows in ¢;
are not adjacent to any column in J. The zero submatrices in
the first column follow from the definition of a Hall set. Finally,
since the vertex sets p; U P; and u; U U; belong to different
connected components of B;, the other zero submatrices in the
third and fourth rows follow.

Hare et al. predict the structure of 45 the j-th column of (),

by means of the auxiliary graph B;.

THEOREM 2.2 ([16]) Let the bipartite graph H(A) represent
the structure of an m xn matriz A with full column rank, where

m > n. Let () denote the m X n orthogonal factor of a matrix
Ay e A Forl1 <j<nandl <i:<m,

1. if r; € R\ pj, then ¢;; = 0.
2. 4f r; € pj, then there exist values for the nonzeros in Ay
such that ¢;; #0. =

The authors also proved that values can be assigned to a ma-
trix Ay € A such that any nonzero element rg; in the structural
product QT A = R is nonzero. To prove the second part of the
above theorem, the authors construct a matrix A;; with values
{£1, €} (here € is a small positive value) for the nonzeros in A,
and show by a direct computation that ¢;; # 0. They did not
address the question if there was a single assignment of values to
the nonzeros in A that simultaneously makes every such element
of () and R nonzero. Furthermore, since they assign specific nu-
merical values from the set {+1,¢}, a common nonzero might
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be given different values in two different submatrices, and thus
this technique cannot be extended to prove such a result.

3. A CLOSER LOOK AT THE AUXILIARY GRAPH

In this section, we characterize Hall sets, maximum Hall sets,
the auxiliary graph B;, and the subsets p; and P; by means of
the D-M decomposition.

3.1. Hall sets

In characterizing Hall sets by means of the D-M decomposition,
we will find the concept of a predecessor of a column set C
useful. We assume that the column sets of the square subgraph
H, have been renumbered as described in section 2. A column
set C; precedes a set Cy (¢ < k) if and only if there is an r-
alternating path from some column ¢ € C; to some column
d € C in Hs. (Henceforth we will say that there is an r-
alternating path from C; to C).) The set of predecessors of Cj
includes all the column sets which precede C (this set does
not include Cy itself). The least predecessor of Cy is its lowest-
numbered predecessor.

A Hall set is simple if it not the union of two or more Hall
sets. We now characterize the simple Hall sets of H(A) by means
of its D-M decomposition.

LEMMA 3.1. Let C; be the column set of a square strong Hall
component T; in the D-M decomposition of a bipartite graph H.
The columns in C; and its set of predecessors together form a
simple Hall set.

Proof. First, we consider the case when C; has no predeces-
sor. From the renumbering of these sets in the D-M decomposi-
tion, no edge can join a column in C; to a row in some Ry, where
k > 1. Since C; has no predecessor, there is no edge from a col-
umn in C; to a row in some Rj, where A < 7. Thus the columns
in C; are adjacent only to the rows in R;, and since these two
sets are perfectly matched, they constitute a Hall set. Further,
since the induced subgraph (R;, C;) has SHP, any proper subset
S of columns in C; is adjacent to more than |.S| rows. Hence no
proper subset of columns in C; is a Hall set, and it follows that
these columns form a simple Hall set.
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Now we consider the case when C; has one or more pre-
decessors. By the definition of a predecessor, there exists an
r-alternating path from some row set R, to C;, with ¢ < .
Choose a predecessor ('}, matched to the row set Ry, such that
some row r € Ry is adjacent to a column in ;. The columns
in C; are adjacent to more than |C;| rows. Since the induced
subgraph (R;, C;) has SHP, the induced subgraph (R, U{r},C})
has SHP. (Note that the former is a square subgraph, and that
the latter 1s an overdetermined subgraph, and hence our defini-
tions of SHP in the two cases differ slightly.) Thus C; by itself
cannot be a simple Hall set.

However, the columns in C; and its set of predecessors are
adjacent only to the row sets perfectly matched to them, and
thus form a Hall set. As in the first case, a proper subset of
columns in C; cannot be a Hall set. If S is a set including all
columns in C; together with some proper subset of the columns
in its predecessors, then since each predecessor is a strong Hall
component of the square subgraph Hg, S is adjacent to more
than |S| rows. Thus S cannot form a Hall set. Hence columns
in C; and its predecessors together constitute a simple Hall set.

|

The sets {¢s}, {¢5, 6}, {c2, 3}, and {eq, ¢a, 3} are the simple
Hall sets in Fig. 2.1. We proceed to characterize a maximum
Hall set S; by means of the D-M decomposition.

LEMMA 3.2. 5; consists of all column sets C; such that C;
and its predecessors have all their columns numbered less than
or equal to c;.

Proof.  Since the subgraph induced by a column set (', and
the row set Rj has SHP, a nonempty proper subset of '} cannot
be a Hall set. Thus if C} has one or more columns greater than
¢;, its remaining columns cannot be in 5;.

It the column set C; has predecessors, from Lemma 3.1, the
columns in C; and its set of predecessors together form a Hall
set. If all these columns are numbered less than or equal to ¢;,
then this Hall set belongs to 5.

By the characterization of simple Hall sets in Lemma 3.1, two
incomparable simple Hall sets cannot have any column vertices
in common. (It is possible for a simple Hall set to be contained
in another, as the example in Fig. 2.1 shows.) Also, the union
of vertex-disjoint simple Hall sets is a Hall set. Thus .S, is ob-
tained by the union of all column sets (; such that C; and its
predecessors have all columns less than or equal to ¢;. =
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In Flg 21, 52 = Sl = SO = @, 53 = {02703}; 54 = {02703704};

Ss = S4; Se = {ca,¢3,¢4,¢5,¢6}; and S7 = Sg.

3.2. Paths in the auxiliary graph B;

Let s; denote the set of rows adjacent in H(A) to columns in
S;. For j =1, ..., n, recall that the bipartite graph B; is
the subgraph of H(A;) obtained by excluding the columns in
S;—1 and the rows in s;_y. There is a pretty characterization
of the structure of B; in terms of its D-M decomposition. We
use unprimed entities to refer to the graph H(A) and primed
entities to refer to B;.

THEOREM 3.3. The D-M decomposition of the graph B; has
one of the following mutually exclusive structures:

1. ¢; belongs to the overdetermined subgraph H); the square
subgraph H,' is empty.

2. ¢; belongs to the square subgraph H'; then c; € Cy', where
Cy' is the least predecessor of all other square strong Hall
components. N

The proof of this theorem is by a lengthy case analysis which
obtains the D-M decomposition of B; in terms of that of H(A),
and makes use of Lemmas 3.1 and 3.2. The proof is omitted
here but may be found in [21].

An example of the structure of B; when the square subgraph
is present may be seen from Fig. 2.1. In the Figure, when j = 6,
since S5 = {¢z, €3, ¢4}, the D-M decomposition of the graph B
is O] = {cs}, Oy ={cs}, VC' ={e1}, and VR = {ry,r7}.

We now make use of the structural characterization of B; in
Theorem 3.3 to prove the main result of this section.

THEOREM 3.4. Given a vertex v € p; U P;, there exists a
column-perfect matching M (which may depend on v) in the
avxiliary graph B; such that there is a c-alternating path from
v to c;.

Proof. Since v € p; U P;, there is a path in B; from v to

What the Theorem asserts is that we can choose the path
to be c-alternating from v to ¢;, relative to some column-perfect
matching that depends on v.

From Theorem 3.3, the graph B; has two possible structures.
If ¢; belongs to the overdetermined subgraph, then the square
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subgraph is empty, and B; has the SHP. Hence by Lemma 2.1,
it is possible to construct a column-perfect matching M in B;
such that there is a c-alternating path from v to ¢;.

If ¢; belongs to the square subgraph, then it belongs to C7].
There are now two cases to consider.

The first case is when v belongs to the square subgraph of ;.
If the vertex v is a row, let R} denote the row set it belongs to,
and let C} be the column set matched in any perfect matching of
the square subgraph of B; to R). If v is a column vertex, let C},
be the column set that it belongs to. Then from Theorem 3.3,
C1 is a predecessor of C].

Let M be any column perfect matching of B;. Let r; € R}
be the row matched to ¢;. If v is a row, let ¢ € C}, be the column
matched to v, and otherwise, let ¢ denote the column v. By the
definition of a predecessor, there is an r-alternating path from
¢; to v in B;. By traversing this path in the reverse direction,
we find the desired c-alternating path from v to ¢;.

Finally, consider the case when the vertex v belongs to the
overdetermined subgraph of B;. If v is a column, let D} denote
the column set of a connected overdetermined strong Hall com-
ponent that it belongs to. If v is a row, let U] denote the row
set of a connected overdetermined strong Hall component that
it belongs to, and let D! be the column set of this component.
Since v € p; U P;, there 1s a path (not necessarily c-alternating)
from v to ¢; in B;. Hence there exists a column ¢; € D} which
is adjacent to some row r; € R, such that the edge (¢, %) lies
on the above path from v to ¢;. From Lemma 2.1, there is
a column-perfect matching N; of the overdetermined subgraph
such that there is a c-alternating path from v to ¢;. The last
edge of this path is a matched edge. From the column ¢;, we
take the edge (¢, 1) as an unmatched edge, and then continue
as in the preceding paragraph to find a c-alternating path (with
respect to any perfect matching N, of the square subgraph) from
ri to ¢;. We let M = Ny U N;, and obtain a c-alternating path
from v to ¢; by concatenating the path from v to ¢, the edge
(¢c1, k), and the path from ry to ¢;. ®

By definition, every vertex on a c-alternating path from r to
¢; 1s matched to another vertex on the path. Since the path is
defined with respect to a column-perfect matching M, a column
of B; not on the path continues to be matched in M to a row
of B;. Further, since the column set S;_; is perfectly matched
to the row set s;_q, and both these sets are outside B;, M can
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be extended to a column perfect matching of H(A;). This fact
will enable us in the next section to construct a matrix of full
column rank such that the j-th column of its orthogonal factor
has nonzero elements in the row set p;.

4. STRUCTURE PREDICTION

In this section, we use the c-alternating path characterization
of the set p; U P; and some algebraic techniques to characterize
the structures of the orthogonal factors. In addition to the bi-
partite graph of a matrix, we will work with two other classes
of graphs: the adjacency graph of a symmetric matrix, and a
product bipartite graph computed from two bipartite graphs.
Let A be a symmetric matrix of order & with a nonzero di-
agonal. We will find it useful to consider the adjacency graph
G'= G(A) = (V, F) of A in predicting the structure of the fac-
tor (). The vector structure of a k-vector b is structure(b) =
{7 : b; # 0}. We interpret this set as a subset of vertices in

the adjacency graph (. For ease of notation, we will say that a
vertex v is in b to indicate that it belongs to structure(b). The

closure of b with respect to G, closure(b), is the set of vertices
of G which are reachable by undirected paths from vertices in

b

" We will make use of the following result due to Gilbert in
characterizing the nonzero structure of ().

THEOREM 4.1 ([13]) Consider the symmetric system Az =

b, where the nonzeros in A and b are specified, and A has a
nonzero diagonal. Then there exist symmetric values for the

nonzeros in A such that structure(z) = closure(b). ®

We need to clarify what we mean by the phrase ‘there exist
values ...” in the statement of the Theorem. To do so, we require
some algebra. A finite set &y, ..., #; of complex numbers is
algebraically independent over the rational field Q if #1,..., 7, is
not a root of any nonzero polynomial with integer coefficients in
the t variables x4, ..., x;. If we assign algebraically independent

values to the nonzeros of A, then the result of the Theorem
holds.

We now show that it is possible to assign values to the nonze-
ros in the overdetermined matrix A to make the element ¢;; # 0
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for every r; € p;. Since the j-th column of () depends only on
the first j columns of A, we indicate only how nonzeros in the
submatrix A; should be assigned values. In the proof, we make
use of the fact that each distinct perfect matching of a square
matrix contributes a term to the determinant. Thus if a matrix
has a unique perfect matching, then any assignment of nonzero
values to the elements corresponding to the edges in the perfect
matching will make the matrix nonsingular.

THEOREM 4.2. There exists a single assignment of values to
the nonzeros in A; to make q;; # 0 for every r; € p;.

Proof. Consider the structure of A; shown in (2.1), and re-
call that H(A;) represents the structure of a matrix with full
column rank. Hence the subgraph of H(A;) induced by the
columns in S;_; U U; has the Hall property. Thus we can find a
column-perfect matching in this induced subgraph, and assign
algebraically independent values to the nonzeros corresponding
to the matched edges and the value zero to the unmatched edges.
With this assignment of values, the submatrix of A; induced by
S;-1UU; has full column rank. By Theorem 2.2, ¢;; = 0 for every
row r; € R\ pj. Since the nonzero values in q; are determined

only by the columns in P; and rows in p;, we need consider only
how the submatrix Ap induced by the sets (p;, P;) should be
assigned values.

Let ¢ (a) denote the restriction of 4 (a;) to the rows in p;,

and let |P;| = K. We order the columns in Ap in their natural
ordering, and thus a is the last column in Ap. The bipartite
graph H(Ap) corresponding to Ap is a subgraph of B; induced
by the connected component whose row set is p; and column set

is P;.
Since the vector ¢ belongs to the linear space spanned by the

columns of P;, there exists a K-vector y such that

Apy =q. (4.1)

Further, the vector ¢ is orthogonal to all the columns of F;
except a. Thus
Ag 4= €EK- (4.2)

Combining these two equations, we obtain the symmetric sys-
tem

AL Apy = ek. (4.3)
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Our strategy will be to first predict the structure of y from (4.3),
and then to obtain the structure of ¢ from (4.1).

Replace each nonzero in Ap by a variable z;. We will show
how to assign values to the variables in z to make ¢;; # 0 for
every r; € p;.

Let ¢ be any column in P;. By Theorem 3.4, there is a
c-alternating path from ¢ to ¢; with respect to some column-

perfect matching M in the bipartite graph H(Ap). Let r € p;
be the row matched in M to ¢. Choose a subgraph B of H(Ap)
to consist of the edges on the c-alternating path from r to ¢;,
and the other matched edges in H(Ap). Since columns on the
c-alternating path are matched to rows on the path, B has a
unique perfect matching. Let A be the submatrix of Ap with
nonzeros corresponding to edges in B. The submatrix ATA
has an unique nonzero diagonal because of the unique column-
perfect matching in B. The adJacency graph G(ATA) is the
column-intersection graph of A, i.e., its vertices are the columns
of 121, and it has an edge (ck,cl) if the columns ¢; and ¢ have

nonzeros in a common row of A. Thus the c-alternating path
from ¢ to ¢; in B; induces an undirected path between ¢ and ¢;

in G(ATA). Hence the set closure(ey ) with respect to G(AT A)
contains all column vertices on the path from ¢ to ¢;.

Because of the nonzero diagonal in the matrix AT A, we can
assign values to z to make det(AT A) nonzero. Then by Theo-
rem 4.1, structure(y) = closure(ey ) includes the column ¢. We
can repeat this argument for each column ¢ € P;, to show that
the component of y corresponding to column ¢ is nonzero. Cor-
responding to each column ¢, we have identified a submatrix
AT A with a nonzero determinant. Each determinant det(A” A)
is a polynomial with integer coefficients in x, and hence its roots
lie in a set of measure zero. Since each determinant vanishes on
a set of measure zero, the union of these K sets has measure
zero. Thus we can assign values to x such that none of the
determinants vanish, and then structure(y) = P;.

We now relate the structure of q; to that of y by means of

the transformation Apy = ¢. By Cramer’s rule, each element y;
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is the ratio of two determinants,
1 = det(ALAp[)/ det(ATAp),

where the matrix in the numerator is obtained by replacing col-
umn [ of ALAp by the right-hand-side vector ejx. Since each
determinant is a polynomial with integer coefficients in z, the
component y; is a rational function in z.

Since there is a path from r; € p; to ¢; in the auxiliary graph
B;, a;T, the row of Ap corresponding to the i-th row of A, has
at least one nonzero. Now ¢; = a7 y implies that ¢;; has at
least one nonzero term since y is full. Furthermore, each ¢;; is
a rational function of z. Since a rational function vanishes on a
set of measure zero, we can choose values for  such that ¢;; # 0
simultaneously for every r; € p;. =

By the above Theorem, the adjacency list of a column vertex
¢; in the graph Hg is the row set p;. We can represent by
a bipartite graph Hg = (R,C, Eg), the structure obtained by
repeatedly applying Theorem 4.2 for every column j =1, ..., n.
Clearly, by construction, the structure of the orthogonal factor
of a matrix in A is then contained in Hy,.

We can predict the structure of the triangular factor R by
forming the structural product Q7 A. To represent the structure
of R by means of a bipartite graph Hp, we describe the concept
of a product bipartite graph. Let H; = (R,C, FE;) and Hy =
(R,C, E3) be two bipartite graphs with common row and column
sets. We number R = {ry,...,r,} and C = {ey,...,¢,}. The

upper triangular) product bipartite graph ® = ®(Hq, Hy) =
C,C, Eg) has its row and column vertices both numbered from

1 to n, and for ¢ < j, has an edge (¢, j) joining vertices 7 and j if
and only if (rg,¢;) is an edge in Hy and (rg, ¢;) is an edge in Ho,
for some 1 < k < m. The bipartite graph Hgp = ®(Hg, H(A))
then represents the predicted structure of R.

We are now in a position to prove the major result in this

paper.

THEOREM 4.3. Let A be an m X n matriz with full column
rank, where m > n, and let Hg and Hp denote the structures
of the orthogonal factors predicted, as described above, from the
bipartite graph H(A). There exists a matriz A" € A with factors
Q" and R such that H(Q)') = Hg, and H(R') = Hp.
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Proof. Let each nonzero in A be assigned a variable z;. We
will first prove that the diagonal elements and zero elements of
R are predicted correctly in Hp, and then prove that Hgy and
Hp, are simultaneously tight for some matrix A" € A.

The j-th column of (), q; belongs to the linear space spanned

by columns in P;, and is orthogonal to all these columns except

a;. Hence r;; = q],T a; is nonzero from the assumption of full

column rank in A. We need to show that there is an edge (j,7)
in Hp corresponding to this diagonal element. In the bipartite
graph Hg, the column vertex ¢; is adjacent to all rows in p;,
by Theorem 4.2. In the bipartite graph H(A), ¢; is adjacent to
some row in p;, since by definition of the row set p;, there is a
path in B; from every row in p; to ¢; with intermediate vertices
belonging only to p; and P;. Now by its definition, the product
bipartite graph Hp contains the edge (j, 7).

Now consider a fixed element r;;, where 1 < < n —1, and

> 1.

! If the columns g, and a; do not have a nonzero element in a
common row, then these two columns are structurally orthogo-
nal, and ri; = ¢, a is zero. By Theorem 4.2, p; is the the set of
row vertices that ¢; 1s adjacent to in Hy, and by assumptlon in
H(A) the vertex ¢; is not adjacent to any vertex in p,. By the
definition of Hp, then it does not contain the edge (¢,7), and
thus the zero elements in Hi are predicted correctly.

Now consider the situation when ¢, and a; have a nonzero
element in a common row. In this case, the edge (¢,7) is present
in Hp, and we need to show that values can be assigned to A to
make the element r;; nonzero. We proved in Theorem 4.2 that
the element ¢;; has the form ;7 y, where ;7 is the row of Ap
which corresponds to the i-th row of A, and y is a vector whose

components are rational functions in z. Thus r;; = qZ.ng is also
a rational function in z, and the set

has measure zero. Thus it is possible to choose values for x such
that r;; is nonzero.

We now show that it is possible to assign values to z to
make the structures of the factors () and R exactly equal to
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the predicted structures Hg and Hp. Associate with each edge
(ri,¢j) of Hg the sets

X ={z: det(AT A) =0}, and Y =A{xz: QZ'TQ = 0},

where the index £ ranges over every ¢; € P;. For reasons given
before, each set Xz, ;;, and Z;; (from the precedmg paragraph)
has measure zero. The union of all these sets corresponding to
every edge in in Hg and Hp, being a finite union, also has
measure zero. It is thus possible to assign a set of values 2’
outside these sets to obtain a matrix A" € A whose factors

satisfy H(Q') = Hg and H(R') = Hp. =

5. ALGORITHMS AND PIVOTING

In this section we describe efficient algorithms for predicting
the structures of the factors () and R, discuss the structure
of the Householder array, and consider structure prediction for
orthogonal factorization with pivoting.

5.1.  Algorithms for structure prediction

We assume that the D-M decomposition of H(A) has been com-
puted by means of a maximum matching. This step requires
O(n'/?7(A)) time and O(7(A)) space, where 7(A) is the num-
ber of edges in H(A) ([6]).

The bipartite graph Hg can be computed by identifying the
adjacency lists of the column vertices ¢;, in order from j = 1,

, n. The adjacency list of ¢; in Hg is p;, the set of rows
which belong to the same connected component of B; as ¢;.
The set p; can be computed by an appropriate search of the
graph H(A), without forming B; as follows. We search the
adjacency lists of vertices in H(A), starting from the vertex
¢;, and continuing the search from each as yet unvisited row
and column vertex reached. We can exclude rows belonging
to s;_1 from the search, since such rows do not belong to Bj;
similarly, we exclude columns numbered greater than c¢;, since
such columns also do not belong to B;. By the definition of a
Hall set, columns in 5;_; are adjacent only to rows in s;_q, and
thus these columns will not be reached by the search since rows
in s;_1 are excluded.
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The search from ¢; can be implemented in O(7(A)) time and
space. Thus the structure of Hgy can be computed in O(n7(A))
time using space O(max{7(A),7(Q)}), where 7(Q) is the num-
ber of edges in Hg. This algorithm is an improvement on an
O(mn*(h + 1))-time algorithm described by Hare et al. [16],

where h is the number of distinct, nonempty maximum Hall

sets S;. Note that h = O(n).
Now we turn to the computation of Hg. Since r;7 = qZ.TA,

the structure of the ¢-th row of R can be predicted from the
structures of A and the ¢-th column of (). This is an important
advantage when only the structure of R is required, since then
Hg need not be stored.

Recall that for 7 < j, there is an edge (¢,5) in Hr when
(rg,c;) is an edge in Hg and (rg,¢;) is an edge in H(A), for
some 1 < k < m. The adjacency list of ¢; in H is given by the
set p;. We can thus compute the structure of the ¢-th row of R
by forming the union

(Upep, adj(r)) N{eciy ... cnte

This set can also be computed in O(7(A)) time, and thus Hg
can be computed in O(n7(A)) time.

Since the time complexity of our structure prediction algo-
rithms is the same as the complexity of symbolic factorization
in sparse Cholesky factorization, these algorithms can be used
practically for setting up data structures for orthogonal factors.

5.2.  The Householder array

The following remarks concern a data structure that has been
considered by George, Liu, and Ng [11]. When the orthogo-
nalization is computed by means of Householder transforma-
tions, the orthogonal factor is not explicitly computed, but is
implicitly stored in terms of the Householder vectors. Define an
m X n Householder array H whose columns are the Householder
vectors; this is a lower trapezoidal matrix. After these results
were mentioned without proofs in [21], Ng and Peyton [19] have
shown that when either A is a strong Hall matrix with a nonzero
diagonal, or A is a Hall matrix with columns and rows num-
bered consistent with its D-M decomposition (i.e., columns in
the square subgraph numbered before columns in the overdeter-
mined subgraph; within the square subgraph, columns in prede-
cessors numbered before columns in a strong Hall component;
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rows numbered such that r; is the row matched to column ¢;
for ¢ =1, ..., n), then the structure of the j-th column of H is
obtained from the adjacency set of ¢; in the bipartite graph Hg
by omitting the superdiagonal rows, i.e., p; N {r;, rjt1, ..., Tm}.
Hence in these cases, the lower trapezoidal structure of ) and
the Householder array are identical. It can also be seen from
examples that when A is a Hall matrix with columns in some
arbitrary ordering, then the structure of the j-th column of the
Householder array may not be contained in the structure of the
j-th column of Q).

The undirected adjacency graph of the triangular factor R
of a strong Hall matrix A is a chordal graph with the column
ordering of A corresponding to a perfect elimination ordering,
since it has the same structure as the transposed Cholesky factor
of ATA. Then George, Liu, and Ng show that the row structure
of H can be obtained in terms of an appropriately defined path
in the elimination tree of R. Unfortunately, when A is a Hall
matrix and not strong Hall, then the adjacency graph of R is
no longer a chordal graph with vertices in a perfect elimination
ordering. Thus there is no elimination tree corresponding to R.

Now consider the directed graph D(R) with vertices num-
bered from 1 to n, and for ¢ < j, an edge (¢,7) if ri; # 0.
We could form the transitive reduction of D(R) and then ask
if a similar path characterization may be obtained for the row
structure of H. The answer turns out to be no again.

5.3. Orthogonal factorization with pivoting

We show by means of an example that when column pivoting is
incorporated into sparse orthogonal factorization, there cannot
exist structures Hg or Hp which satisfy the requirements (1.1)
and (1.2)". Let

Depending on the numerical values of the nonzero elements,
when A is factored using column pivoting, three among the pos-
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sible structures for ) are

X X X X X
X X X X X
X ’ X X X ’
X X X
and

X X
X X X
X X X

X

Since the structure of the first column of () is the structure
of the column of A which is chosen to be factored first, it cannot
be full. However, the smallest structure that contains the three
possible structures shown above for () is a full matrix. Similarly,
it can be shown that the smallest structure that contains all
possible structures of R is a full upper triangular matrix. But
since the first column of () contains at most two nonzeros in
consecutive rows of A, in the structural product Q7 A = R, the
first row of R cannot be full.

Hence for orthogonal factorization with column pivoting, we
will have to be satisfied with the weaker requirements (1.1) and

(1.2).

6. CONCLUSIONS

The results in this paper have important implications for com-
puting the orthogonal factorization of sparse matrices.

For well-conditioned matrices, these results stress the impor-
tance of first computing the block triangular form of the given
matrix, and then factoring its strong Hall components rather
than the given matrix. Important advantages then accrue from
the perspective of designing data structures to represent the
structures of the factor matrices. The adjacency graph of the
triangular factor of a strong Hall component is a chordal graph
with vertices ordered in a perfect elimination ordering, and thus
elimination trees and clique trees may be used to represent its
structure. The structure of the Householder array (which im-
plicitly represents the orthogonal matrix) can then be compactly
represented in terms of paths in the elimination tree. On the
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other hand, if the matrix A is not strong Hall, then the adja-
cency graph of its triangular factor is not a chordal graph with
vertices in a perfect elimination ordering. Hence there is no elim-
ination tree or clique tree representation, and no corresponding
compact representation for its Householder array.

For rank-deficient and ill-conditioned matrices, it no longer
suffices to factor only the strong Hall components. The tech-
niques described here are potentially useful in predicting the
structures of the factors within the context of orthogonal fac-
torization with column pivoting and rank-revealing orthogonal
factorization. The Dulmage-Mendelsohn decomposition can be
used to guide the selection of the pivot column. Such an al-
gorithm for orthogonal factorization with pivoting would be
similar in spirit to algorithms for sparse unsymmetric Gaus-
sian elimination with pivoting in which combinatorial structure
prediction and numerical computations are interleaved.

The above discussion points out the importance of the block
triangular form of a sparse matrix in computing its orthogonal
factorization. An algorithm for computing this form via the
Dulmage-Mendelsohn decomposition has been implemented in
[22]. The block triangular form has also been employed in sparse
Matlab [15] to solve unsymmetric systems of linear equations.
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