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ABSTRACT
The problem of correctly predicting the structures of the orthogo�

nal factorsQ and R from the structure of a matrix A with full column
rank is considered in this paper� Recently Hare� Johnson� Olesky�
and van den Driessche have described a method to predict these
structures� and they have shown that corresponding to any speci�ed
nonzero element in the predicted structures of Q or R� there exists a
matrix with the given structure whose factor has a nonzero in that
position� In this paper this method is shown to satisfy a stronger
property� there exist matrices with the structure of A whose factors
have exactly the predicted structures� These results use matching
theory� the Dulmage�Mendelsohn decomposition of bipartite graphs�
and techniques from algebra� The proof technique shows that if
values are assigned randomly to the nonzeros in A� then with high
probability the elements predicted to be nonzero in the factors have
nonzero values� It is shown that this stronger requirement cannot be
satis�ed for orthogonal factorization with column pivoting� In addi�
tion� e�cient algorithms for computing the structures of the factors
are designed� and the relationship between the structure of Q and
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the Householder array is described�

�� INTRODUCTION

Given the structure of an m � n real or complex matrix A�
where m � n and A has full column rank� we consider the
problem of correctly predicting the structure of its orthogonal
factors Q and R� �Here Q is m � n and R is n � n� The
full rank assumption is necessary for the factors to be unique��
Algorithms for structure prediction give valuable insight into
the nature of sparse factorizations� and enable us to set up data
structures for the factors so that the numerical factorization
can be computed in time proportional to the number of �oating
point operations�
Coleman� Edenbrandt� and Gilbert �	
 proved that if A has a

combinatorial property called the strong Hall property �SHP��
then two algorithms called the George�Heath algorithm ���
 and
the Local Givens Rule correctly predict the structure ofR� More
recently Hare� Johnson� Olesky� and van den Driessche ��

 have
shown how the structures of Q and R may be predicted when A
does not have SHP� Let A denote the set of matrices with full
column rank whose structures are contained in that of A� i�e�
the set of full rank matrices B such that bij �� �� aij �� �� The
structures predicted by their method satisfy two requirements�
����� The predicted structures are large enough to contain the
structures of the factors of any matrix in A� and
����� Corresponding to any speci�ed nonzero element �i� j� in
the predicted structure of Q or R� there exists a matrix Aij � A
whose factor has a nonzero in that position�
A natural question that arises is if there exists a single ma�

trix A� � A whose factors have exactly the predicted structures�
This leads� instead of ����� to the requirement�
������ There exists a matrix A� � A whose factors Q� and R�

are simultaneously nonzero in every nonzero element in the pre�
dicted structures�
It is this stronger requirement that has been considered in

previous work on predicting the structure of R in the orthog�
onal factorization of strong Hall matrices �	
� Additionally� it
is known that the predicted structures in Cholesky factoriza�
tion ���
� unsymmetric Gaussian elimination of a matrix with
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nonzero diagonal ��	
� the solution of a linear system when the
coe�cient matrix has a nonzero diagonal ���
� and eigendecom�
positions of certain matrices ���
 satisfy ������� It is also known
that this requirement cannot be satis�ed for unsymmetric Gaus�
sian elimination when the matrix has zero elements on the di�
agonal ��
 and for Gaussian elimination with pivoting�
In this paper we prove that the structures predicted by the

methodology of Hare et al� satisfy the stronger requirement
������� We also show that this requirement cannot be satis�ed
for orthogonal factorization with column pivoting� In addition�
we describe e�cient algorithms for predicting the structure of
orthogonal factors�
To prove that the predicted data structures satisfy ������� we

will make use of the concepts of a Hall set and an auxiliary
graph introduced by these authors� and then employ match�
ing theory� the Dulmage�Mendelsohn decomposition of bipar�
tite graphs� and some results from algebra� Hall sets can be
computed e�ciently from the Dulmage�Mendelsohn decompo�
sition� and the e�cient structure prediction algorithms we de�
scribe later in this paper make use of this decomposition as well�
Hence the use of this decomposition in this context is quite nat�
ural� The techniques used by Hare et al� to characterize nonzero
elements in the structures cannot be extended to establish these
results since they may assign di�erent values to a particular el�
ement in A to show that two elements of Q are nonzero�
These results are of theoretical interest since they bring struc�

ture prediction for orthogonal factorization on a par with known
results for structure prediction for other factorizations� In ad�
dition� they have practical implications as well� If a predicted
structure satis�ed the requirement ����� but not ������� then
after the numerical factorization is computed� it may be worth�
while to �compress� the data structures by removing those ele�
ments which are actually zero while predicted to be nonzero to
reduce storage requirements and to avoid arithmetic on zero ele�
ments� �Such schemes have been considered in ��� ��� ��
�� Our
proof technique shows that if numerical values are assigned ran�
domly to the nonzeros in A� then with high probability the pre�
dicted nonzero elements in the factors are actually nonzero� An
important conclusion we can draw is that when the numerical
values in A are reasonably random� the use of a post�processing
phase to remove zeros from the data structures for Q and R will
not be worth the trouble�
The rest of this paper is organized as follows� In section �



	

we brie�y describe the Dulmage�Mendelsohn decomposition of
bipartite graphs� and discuss in more detail the work of Hare et
al� We characterize maximum Hall sets and the structure of al�
ternating paths in an auxiliary graph Bj in section �� We make
use of some algebraic results and the characterizations in the
previous section to show how the structures of the orthogonal
factors may be predicted in section 	� In section � we describe
e�cient algorithms to compute the structures� relate the struc�
ture of the Householder array to that of the orthogonal factor�
and provide an example to illustrate that the factors obtained
from orthogonal factorization with column pivoting cannot sat�
isfy the requirement ������� Section 
 discusses the signi�cance
of these results to computing sparse orthogonal factorization�

Notation� Throughout this paper� A will denote an m � n
matrix with full column rank� where m � n� We represent the
structure of A by means of the bipartite graph H � H�A� �
�R� C� E�� where R � fr�� � � � � rmg is the set of row vertices� C �
fc�� � � � � cng is the set of column vertices� and an edge �ri� cj� � E
if and only if aij �� �� For convenience� we will assume without
loss of generality that the rows are numbered such that A has
a nonzero diagonal� For R� � R and C� � C� the induced
subgraph H� � �R�� C�� E�� is the subgraph of H whose vertex
sets are R� and C�� and whose edge set E� � E contains those
edges of H with one endpoint in R� and the other in C�� We
shall often write it as the subgraph �R�� C��� The subgraph of
H induced by a column subset C� is the subgraph whose edge
set consists of all edges with one endpoint in C�� and whose row
set consists of all rows which are endpoints of such edges�

�� BACKGROUND

In this section we review the Dulmage�Mendelsohn decomposi�
tion and the work of Hare� Johnson� Olesky� and van den Driess�
che ��

�

���� The Dulmage	Mendelsohn decomposition
The block triangular form �btf� of A induced by the Dulmage�
Mendelsohn �D�M� decomposition of the bipartite graph H�A�
has been described by Dulmage� Johnson and Mendelsohn ��� ��
�� ��
� and by Brualdi ��� �
� Recent descriptions of this decom�
position in terms of bipartite matching theory may be found in
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���� ��
� with proofs included in ���
� Since this discussion of
the D�M decomposition will be brief� the reader unfamiliar with
this decomposition will �nd it helpful to consult ���
�
If the rows and columns of a matrix A with full column rank

are permuted appropriately� then the D�M decomposition leads
to the btf

A �
�
As X
� Av

�
�

whereAs is a square submatrix�Av is an overdeterminedmatrix�
and �X� denotes a possibly nonzero submatrix of apt dimensions�
�The submatrix As has a block upper triangular structure� and
Av is block diagonal�� The D�M decomposition is conveniently
described with respect to a maximum matching in the bipar�
tite graph H�A�� The terminology and results on matchings in
graphs used here may be found in Lov�asz and Plummer ���
�
A bipartite graph H�A� with a matching is shown in Fig� ����

where the matched edges f�ri� ci� � i � �� � � � � �g are drawn as
�horizontal� edges� A walk is a sequence of vertices v�� v�� � � ��
vn such that �vi� vi��� is an edge for i � �� � � �� n � �� Vertices
or edges may be repeated in a walk� An alternating walk in
the graph is a walk with alternate edges in M � An alternat	
ing tour is an alternating walk whose endpoints are the same�
An alternating path is an alternating walk with no repeated
vertices� Following Gilbert ��	
� depending on the direction in
which the matching edges are traversed� we distinguish between
two kinds of alternating paths� In an r�alternating path� the
matched edges are traversed from a column to a row� and in a
c�alternating path� they are traversed from a row to a column�
In Fig� ���� the path r�� c�� r�� c�� r� is an r�alternating path
from r� to r� �it is a c�alternating path from r� to r��� the path
r�� c�� r�� c� is c�alternating from r� to c��
Amaximum matching is a matching of maximum cardinality�

A matching is column	perfect if every column vertex is matched�
it is row	perfect if every row vertex is matched� A matching is
perfect if it is column�perfect and row�perfect� The matching in
Fig� ��� is a maximum matching since it is column�perfect�
The D�M decomposition is described with respect to a maxi�

mummatching in the graph H�A�� but since it is a canonical de�
composition of the matrix� any other maximummatching would
lead to the same column and row sets in the decomposition�
Let SR denote the rows and SC the columns of As� and V R

denote the rows and V C the columns of Av� We call the sub�
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Figure ���� A bipartite graph H� a maximummatching� and its
Dulmage�Mendelsohn decomposition�
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graph of H�A� induced by �SR�SC� the square subgraph Hs�
and that induced by �V R� V C�� the overdetermined subgraph
Hv� The set V R can be characterized as the set of rows reached
by r�alternating paths from unmatched rows� and V C is the set
of columns thus reached� Note that all unmatched rows are in�
cluded in V R since they can be reached by r�alternating paths of
length zero� and that all columns in V C are matched to rows in
V R� All remaining rows are perfectly matched to all remaining
columns� and we call these sets SR and SC� respectively�
The overdetermined subgraph Hv may have more than one

connected component� The overdetermined submatrix Hv has a
block diagonal structure� corresponding to the connected com�
ponents of Hv� We list the diagonal blocks of Av as V�� V�� � � ��
Vq� and denote the row set of Vi by Ui and its column set by Di�
In the bipartite graph H�A� shown in Fig� ���� the square

subgraph Hs has columns SC � fc
� c	� c�� c�� c�g and its row set
SR is the set of rows matched to these columns� The overde�
termined subgraph Hv has columns V C � fc�� c�g and rows
V R � fr�� r�� r�g� and has only one connected component�
The square subgraph Hs has a �ner decomposition which

leads to a block upper triangular form for the submatrix As�
De�ne two columns in SC to be related if there is an alternating
tour joining them� This is an equivalence relation� and let the
classes of this relation be the column sets C�� C�� � � �� Cp� Let
Ri denote the row set matched to Ci� It is possible to renumber
the sets fRig �and fCig� such that if i � j� then no edge joins a
vertex in Ri to a column in Cj� �This renumbering may not be
unique�� Henceforth we assume that these row sets and column
sets have been renumbered to satisfy this property� In Fig� ����
C� � fc
g� C� � fc	g� C� � fc�� c�g� and C� � fc�g�
Permuting the rows and columns in the above order leads to

the block upper triangular form of As� The diagonal blocks of
this form are square submatrices induced by the row set Ri and
the column set Ci� We number the block diagonal submatrices
T�� T�� � � �� Tp� and each submatrix Ti is irreducible�
A bipartite graph H�A� with m rows and n columns �m � n�

has the Hall property �HP� if every set of k columns �� � k � n�
is adjacent to at least k rows� It has the strong Hall property
�SHP� if every set of k columns �� � k � m� is adjacent to
at least k � � rows� Thus when m � n� every set of k � n
columns satis�es the adjacency requirement� and when m � n�
every set of k � n columns satis�es it� Notice the asymmetry
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in the de�nitions of HP and SHP for square bipartite graphs�
Philip Hall proved that the graph H�A� has a column�perfect

matching if and only if it has the HP� If the corresponding ma�
trix A has full column rank� then it has a square nonsingular
submatrix of order n� Hence there is at least one nonzero term
in the alternating sum expansion of the determinant of the sub�
matrix� from which we can conclude that A has a column�perfect
matching� and hence the HP�
Each connected component of the overdetermined subgraph

�the subgraph induced by each Ui and Di� has SHP� Also� the
square subgraph corresponding to each diagonal block Ti in Hs

has SHP� Henceforth we call the diagonal blocks the strong Hall
components of the respective subgraphs�
An easy consequence of the existence of an M �alternating

tour joining any two vertices in a strong Hall component of a
square subgraph T is that there is a c�alternating path from
any vertex v to any other vertex w with respect to any perfect
matchingM in T � The next result� due to Gilbert� characterizes
a strong Hall component of the overdetermined subgraph�

Lemma ��� �����	 Let V be a strong Hall component of the
overdetermined subgraph in the D	M decomposition of a bipartite
graph H� and let a vertex v and a column c belonging to V be
speci
ed� Then there exists a column	perfect matching M �which
depends on v and c� in V such that there is a c	alternating path
from v to c�

���� Previous work

For � � j � n� let aj denote the j�th column of A� We will
�nd it necessary in this paper to consider Aj� the submatrix
of A consisting of the �rst j columns� We let J � fc�� � � � � cjg
be the set of the �rst j column vertices of H� and represent
the structure of Aj by the bipartite subgraph Hj � H�Aj�� the
subgraph of H�A� induced by J �
Hare et al� ��

 introduced the following two concepts� The

�rst of these is the Hall set � a set of column vertices which is
adjacent in H to exactly as many rows� A maximum Hall set Sj
is a Hall set of largest cardinality in J � �The set S� is de�ned to
be the empty set�� Let sj denote the set of rows adjacent to Sj�
then from the de�nition of a Hall set� these two sets are equal in
size� The second concept is that of an auxiliary bipartite graph
Bj � �R�� C �� E��� the subgraph of Hj from which the column
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set Sj�� and the row set sj�� have been excluded� �This is the
subgraph of Hj induced by the columns in J n Sj���� De�ne
pj �Pj� to be the the set of row �column� vertices of Bj that
belong to the same connected component as cj� let uj �Uj� be
the remaining row �column� vertices of Bj � and let tj denote the
set of row vertices of H that are not adjacent to any column
in J � Then after appropriate row and column permutations� Aj

has the structure

Aj �

�
BB�

Sj�� Uj Pj
tj � � �
sj�� AS ASU ASP

uj � AU �
pj � � AP

�
CCA� �����

Here the submatrices are zero in the �rst row since rows in tj
are not adjacent to any column in J � The zero submatrices in
the �rst column follow from the de�nition of a Hall set� Finally�
since the vertex sets pj 	 Pj and uj 	 Uj belong to di�erent
connected components of Bj � the other zero submatrices in the
third and fourth rows follow�
Hare et al� predict the structure of q

j
� the j�th column of Q�

by means of the auxiliary graph Bj�

Theorem ��� ���
�	 Let the bipartite graph H�A� represent
the structure of an m�n matrix A with full column rank� where
m � n� Let Q denote the m � n orthogonal factor of a matrix
Aij � A� For � � j � n and � � i � m�

�� if ri � R n pj � then qij � ��
�� if ri � pj � then there exist values for the nonzeros in Aij

such that qij �� ��

The authors also proved that values can be assigned to a ma�
trix Akl � A such that any nonzero element rkl in the structural
product QTA � R is nonzero� To prove the second part of the
above theorem� the authors construct a matrix Aij with values
f
�� �g �here � is a small positive value� for the nonzeros in Aij�
and show by a direct computation that qij �� �� They did not
address the question if there was a single assignment of values to
the nonzeros inA that simultaneously makes every such element
of Q and R nonzero� Furthermore� since they assign speci�c nu�
merical values from the set f
�� �g� a common nonzero might
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be given di�erent values in two di�erent submatrices� and thus
this technique cannot be extended to prove such a result�

�� A CLOSER LOOK AT THE AUXILIARY GRAPH

In this section� we characterize Hall sets� maximum Hall sets�
the auxiliary graph Bj � and the subsets pj and Pj by means of
the D�M decomposition�

���� Hall sets

In characterizing Hall sets by means of the D�M decomposition�
we will �nd the concept of a predecessor of a column set Ci

useful� We assume that the column sets of the square subgraph
Hs have been renumbered as described in section �� A column
set Ci precedes a set Ck �i � k� if and only if there is an r�
alternating path from some column c � Ci to some column
d � Ck in Hs� �Henceforth we will say that there is an r�
alternating path from Ci to Ck�� The set of predecessors of Ck

includes all the column sets which precede Ck �this set does
not include Ck itself�� The least predecessor of Ck is its lowest�
numbered predecessor�
A Hall set is simple if it not the union of two or more Hall

sets� We now characterize the simple Hall sets ofH�A� by means
of its D�M decomposition�

Lemma ���� Let Ci be the column set of a square strong Hall
component Ti in the D	M decomposition of a bipartite graph H�
The columns in Ci and its set of predecessors together form a
simple Hall set�

Proof� First� we consider the case when Ci has no predeces�
sor� From the renumbering of these sets in the D�M decomposi�
tion� no edge can join a column in Ci to a row in someRk� where
k � i� Since Ci has no predecessor� there is no edge from a col�
umn in Ci to a row in some Rh� where h � i� Thus the columns
in Ci are adjacent only to the rows in Ri� and since these two
sets are perfectly matched� they constitute a Hall set� Further�
since the induced subgraph �Ri� Ci� has SHP� any proper subset
S of columns in Ci is adjacent to more than jSj rows� Hence no
proper subset of columns in Ci is a Hall set� and it follows that
these columns form a simple Hall set�
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Now we consider the case when Ci has one or more pre�
decessors� By the de�nition of a predecessor� there exists an
r�alternating path from some row set Rg to Ci� with g � i�
Choose a predecessor Ch� matched to the row set Rh� such that
some row r � Rh is adjacent to a column in Ci� The columns
in Ci are adjacent to more than jCij rows� Since the induced
subgraph �Ri� Ci� has SHP� the induced subgraph �Ri 	frg� Ci�
has SHP� �Note that the former is a square subgraph� and that
the latter is an overdetermined subgraph� and hence our de�ni�
tions of SHP in the two cases di�er slightly�� Thus Ci by itself
cannot be a simple Hall set�
However� the columns in Ci and its set of predecessors are

adjacent only to the row sets perfectly matched to them� and
thus form a Hall set� As in the �rst case� a proper subset of
columns in Ci cannot be a Hall set� If S is a set including all
columns in Ci together with some proper subset of the columns
in its predecessors� then since each predecessor is a strong Hall
component of the square subgraph Hs� S is adjacent to more
than jSj rows� Thus S cannot form a Hall set� Hence columns
in Ci and its predecessors together constitute a simple Hall set�

The sets fc
g� fc	� c
g� fc�� c�g� and fc�� c�� c�g are the simple
Hall sets in Fig� ���� We proceed to characterize a maximum
Hall set Sj by means of the D�M decomposition�

Lemma ���� Sj consists of all column sets Ci such that Ci

and its predecessors have all their columns numbered less than
or equal to cj �

Proof� Since the subgraph induced by a column set Ch and
the row set Rh has SHP� a nonempty proper subset of Ch cannot
be a Hall set� Thus if Ch has one or more columns greater than
cj� its remaining columns cannot be in Sj �
If the column set Ci has predecessors� from Lemma ���� the

columns in Ci and its set of predecessors together form a Hall
set� If all these columns are numbered less than or equal to cj�
then this Hall set belongs to Sj�
By the characterization of simple Hall sets in Lemma ���� two

incomparable simple Hall sets cannot have any column vertices
in common� �It is possible for a simple Hall set to be contained
in another� as the example in Fig� ��� shows�� Also� the union
of vertex�disjoint simple Hall sets is a Hall set� Thus Sj is ob�
tained by the union of all column sets Ci such that Ci and its
predecessors have all columns less than or equal to cj�
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In Fig� ���� S� � S� � S� � �� S� � fc�� c�g�S� � fc�� c�� c�g�
S	 � S�� S
 � fc�� c�� c�� c	� c
g� and S� � S
�

���� Paths in the auxiliary graph Bj

Let sj denote the set of rows adjacent in H�A� to columns in
Sj � For j � �� � � �� n� recall that the bipartite graph Bj is
the subgraph of H�Aj� obtained by excluding the columns in
Sj�� and the rows in sj��� There is a pretty characterization
of the structure of Bj in terms of its D�M decomposition� We
use unprimed entities to refer to the graph H�A� and primed
entities to refer to Bj�

Theorem ���� The D	M decomposition of the graph Bj has
one of the following mutually exclusive structures�

�� cj belongs to the overdetermined subgraph H �

v� the square
subgraph Hs

� is empty�
�� cj belongs to the square subgraph H �

s� then cj � C�
�� where

C�
� is the least predecessor of all other square strong Hall

components�

The proof of this theorem is by a lengthy case analysis which
obtains the D�M decomposition of Bj in terms of that of H�A��
and makes use of Lemmas ��� and ���� The proof is omitted
here but may be found in ���
�
An example of the structure of Bj when the square subgraph

is present may be seen from Fig� ���� In the Figure� when j � 
�
since S	 � fc�� c�� c�g� the D�M decomposition of the graph Bj

is C �

� � fc
g� C
�

� � fc	g� V C
� � fc�g� and V R

� � fr�� r�g�
We now make use of the structural characterization of Bj in

Theorem ��� to prove the main result of this section�

Theorem ���� Given a vertex v � pj 	 Pj � there exists a
column	perfect matching M �which may depend on v� in the
auxiliary graph Bj such that there is a c	alternating path from
v to cj�

Proof� Since v � pj 	 Pj� there is a path in Bj from v to
cj � What the Theorem asserts is that we can choose the path
to be c�alternating from v to cj� relative to some column�perfect
matching that depends on v�
From Theorem ���� the graph Bj has two possible structures�

If cj belongs to the overdetermined subgraph� then the square
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subgraph is empty� and Bj has the SHP� Hence by Lemma ����
it is possible to construct a column�perfect matching M in Bj

such that there is a c�alternating path from v to cj �
If cj belongs to the square subgraph� then it belongs to C �

��
There are now two cases to consider�
The �rst case is when v belongs to the square subgraph of Bj�

If the vertex v is a row� let R�

k denote the row set it belongs to�
and let C �

k be the column set matched in any perfect matching of
the square subgraph of Bj to R�

k� If v is a column vertex� let C
�

k
be the column set that it belongs to� Then from Theorem ����
C �

� is a predecessor of C
�

k�
Let M be any column perfect matching of Bj� Let rj � R�

�

be the row matched to cj� If v is a row� let c � C �

k be the column
matched to v� and otherwise� let c denote the column v� By the
de�nition of a predecessor� there is an r�alternating path from
cj to v in Bj � By traversing this path in the reverse direction�
we �nd the desired c�alternating path from v to cj �
Finally� consider the case when the vertex v belongs to the

overdetermined subgraph of Bj� If v is a column� let D
�

i denote
the column set of a connected overdetermined strong Hall com�
ponent that it belongs to� If v is a row� let U �

i denote the row
set of a connected overdetermined strong Hall component that
it belongs to� and let D�

i be the column set of this component�
Since v � pj 	Pj � there is a path �not necessarily c�alternating�
from v to cj in Bj � Hence there exists a column cl � D�

i which
is adjacent to some row rk � R�

s such that the edge �cl� rk� lies
on the above path from v to cj � From Lemma ���� there is
a column�perfect matching N� of the overdetermined subgraph
such that there is a c�alternating path from v to cl� The last
edge of this path is a matched edge� From the column cl� we
take the edge �cl� rk� as an unmatched edge� and then continue
as in the preceding paragraph to �nd a c�alternating path �with
respect to any perfect matchingN� of the square subgraph� from
rk to cj � We let M � N� 	N�� and obtain a c�alternating path
from v to cj by concatenating the path from v to cl� the edge
�cl� rk�� and the path from rk to cj�
By de�nition� every vertex on a c�alternating path from r to

cj is matched to another vertex on the path� Since the path is
de�ned with respect to a column�perfect matchingM � a column
of Bj not on the path continues to be matched in M to a row
of Bj� Further� since the column set Sj�� is perfectly matched
to the row set sj��� and both these sets are outside Bj � M can
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be extended to a column perfect matching of H�Aj�� This fact
will enable us in the next section to construct a matrix of full
column rank such that the j�th column of its orthogonal factor
has nonzero elements in the row set pj �

	� STRUCTURE PREDICTION

In this section� we use the c�alternating path characterization
of the set pj 	 Pj and some algebraic techniques to characterize
the structures of the orthogonal factors� In addition to the bi�
partite graph of a matrix� we will work with two other classes
of graphs� the adjacency graph of a symmetric matrix� and a
product bipartite graph computed from two bipartite graphs�
Let A be a symmetric matrix of order k with a nonzero di�

agonal� We will �nd it useful to consider the adjacency graph
G � G�A� � �V�E� of A in predicting the structure of the fac�
tor Q� The vector structure of a k�vector b is structure�b� �
fi � bi �� �g� We interpret this set as a subset of vertices in
the adjacency graph G� For ease of notation� we will say that a
vertex v is in b to indicate that it belongs to structure�b�� The
closure of b with respect to G� closure�b�� is the set of vertices
of G which are reachable by undirected paths from vertices in
b�
We will make use of the following result due to Gilbert in

characterizing the nonzero structure of Q�

Theorem ��� �����	 Consider the symmetric system Ax �
b� where the nonzeros in A and b are speci
ed� and A has a
nonzero diagonal� Then there exist symmetric values for the
nonzeros in A such that structure�x� � closure�b��

We need to clarify what we mean by the phrase �there exist
values � � �� in the statement of the Theorem� To do so� we require
some algebra� A �nite set �x�� � � �� �xt of complex numbers is
algebraically independent over the rational �eldQ if �x�� � � � � �xt is
not a root of any nonzero polynomial with integer coe�cients in
the t variables x�� � � �� xt� If we assign algebraically independent
values to the nonzeros of A� then the result of the Theorem
holds�
We now show that it is possible to assign values to the nonze�

ros in the overdetermined matrix A to make the element qij �� �
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for every ri � pj � Since the j�th column of Q depends only on
the �rst j columns of A� we indicate only how nonzeros in the
submatrix Aj should be assigned values� In the proof� we make
use of the fact that each distinct perfect matching of a square
matrix contributes a term to the determinant� Thus if a matrix
has a unique perfect matching� then any assignment of nonzero
values to the elements corresponding to the edges in the perfect
matching will make the matrix nonsingular�

Theorem ���� There exists a single assignment of values to
the nonzeros in Aj to make qij �� � for every ri � pj�

Proof� Consider the structure of Aj shown in ������ and re�
call that H�Aj� represents the structure of a matrix with full
column rank� Hence the subgraph of H�Aj� induced by the
columns in Sj�� 	Uj has the Hall property� Thus we can �nd a
column�perfect matching in this induced subgraph� and assign
algebraically independent values to the nonzeros corresponding
to the matched edges and the value zero to the unmatched edges�
With this assignment of values� the submatrix of Aj induced by
Sj��	Uj has full column rank� By Theorem ���� qij � � for every
row ri � R n pj� Since the nonzero values in qj are determined

only by the columns in Pj and rows in pj� we need consider only
how the submatrix AP induced by the sets �pj� Pj� should be
assigned values�
Let q �a� denote the restriction of q

j
�aj� to the rows in pj �

and let jPj j � K� We order the columns in AP in their natural
ordering� and thus a is the last column in AP � The bipartite
graph H�AP � corresponding to AP is a subgraph of Bj induced
by the connected component whose row set is pj and column set
is Pj�
Since the vector q belongs to the linear space spanned by the

columns of Pj � there exists a K�vector y such that

AP y � q� �	���

Further� the vector q is orthogonal to all the columns of Pj
except a� Thus

AT
P q � eK� �	���

Combining these two equations� we obtain the symmetric sys�
tem

AT
P AP y � eK � �	���
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Our strategy will be to �rst predict the structure of y from �	����
and then to obtain the structure of q from �	����
Replace each nonzero in AP by a variable xl� We will show

how to assign values to the variables in x to make qij �� � for
every ri � pj �
Let c be any column in Pj� By Theorem ��	� there is a

c�alternating path from c to cj with respect to some column�
perfect matching M in the bipartite graph H�AP �� Let r � pj
be the row matched inM to c� Choose a subgraph �B of H�AP �
to consist of the edges on the c�alternating path from r to cj�
and the other matched edges in H�AP �� Since columns on the

c�alternating path are matched to rows on the path� �B has a
unique perfect matching� Let �A be the submatrix of AP with
nonzeros corresponding to edges in �B� The submatrix �AT �A
has an unique nonzero diagonal because of the unique column�
perfect matching in �B� The adjacency graph G� �AT �A� is the

column�intersection graph of �A� i�e�� its vertices are the columns
of �A� and it has an edge �ck� cl� if the columns ck and cl have

nonzeros in a common row of �A� Thus the c�alternating path
from c to cj in Bj induces an undirected path between c and cj
in G� �AT �A�� Hence the set closure�eK� with respect to G� �A

T �A�
contains all column vertices on the path from c to cj�

Because of the nonzero diagonal in the matrix �AT �A� we can
assign values to x to make det� �AT �A� nonzero� Then by Theo�
rem 	��� structure�y� � closure�eK� includes the column c� We
can repeat this argument for each column c � Pj� to show that
the component of y corresponding to column c is nonzero� Cor�
responding to each column c� we have identi�ed a submatrix
�AT �A with a nonzero determinant� Each determinant det� �AT �A�
is a polynomial with integer coe�cients in x� and hence its roots
lie in a set of measure zero� Since each determinant vanishes on
a set of measure zero� the union of these K sets has measure
zero� Thus we can assign values to x such that none of the
determinants vanish� and then structure�y� � Pj�
We now relate the structure of q

j
to that of y by means of

the transformation APy � q� By Cramer�s rule� each element yl
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is the ratio of two determinants�

yl � det�A
T
PAP j

K
l ��det�A

T
PAP ��

where the matrix in the numerator is obtained by replacing col�
umn l of AT

PAP by the right�hand�side vector eK� Since each
determinant is a polynomial with integer coe�cients in x� the
component yl is a rational function in x�
Since there is a path from ri � pj to cj in the auxiliary graph

Bj� �i
T � the row of AP corresponding to the i�th row of A� has

at least one nonzero� Now qij � �i
T y implies that qij has at

least one nonzero term since y is full� Furthermore� each qij is
a rational function of x� Since a rational function vanishes on a
set of measure zero� we can choose values for x such that qij �� �
simultaneously for every ri � pj �
By the above Theorem� the adjacency list of a column vertex

cj in the graph HQ is the row set pj � We can represent by
a bipartite graph HQ � �R� C� EQ�� the structure obtained by
repeatedly applying Theorem 	�� for every column j � �� � � �� n�
Clearly� by construction� the structure of the orthogonal factor
of a matrix in A is then contained in HQ�
We can predict the structure of the triangular factor R by

forming the structural product QTA� To represent the structure
of R by means of a bipartite graph HR� we describe the concept
of a product bipartite graph� Let H� � �R� C� E�� and H� �
�R� C� E�� be two bipartite graphs with common row and column
sets� We number R � fr�� � � � � rmg and C � fc�� � � � � cng� The
�upper triangular� product bipartite graph � � ��H��H�� �
�C� C� E�� has its row and column vertices both numbered from
� to n� and for i � j� has an edge �i� j� joining vertices i and j if
and only if �rk� ci� is an edge in H� and �rk� cj� is an edge in H��
for some � � k � m� The bipartite graph HR � ��HQ�H�A��
then represents the predicted structure of R�
We are now in a position to prove the major result in this

paper�

Theorem ���� Let A be an m � n matrix with full column
rank� where m � n� and let HQ and HR denote the structures
of the orthogonal factors predicted� as described above� from the
bipartite graph H�A�� There exists a matrix A� � A with factors
Q� and R� such that H�Q�� � HQ� and H�R�� � HR�
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Proof� Let each nonzero in A be assigned a variable xl� We
will �rst prove that the diagonal elements and zero elements of
R are predicted correctly in HR� and then prove that HQ and
HR are simultaneously tight for some matrix A� � A�
The j�th column of Q� q

j
� belongs to the linear space spanned

by columns in Pj� and is orthogonal to all these columns except
aj� Hence rjj � q

j
T aj is nonzero from the assumption of full

column rank in A� We need to show that there is an edge �j� j�
in HR corresponding to this diagonal element� In the bipartite
graph HQ� the column vertex cj is adjacent to all rows in pj �
by Theorem 	��� In the bipartite graph H�A�� cj is adjacent to
some row in pj � since by de�nition of the row set pj � there is a
path in Bj from every row in pj to cj with intermediate vertices
belonging only to pj and Pj � Now by its de�nition� the product
bipartite graph HR contains the edge �j� j��
Now consider a �xed element rij � where � � i � n � �� and

j � i�
If the columns q

i
and aj do not have a nonzero element in a

common row� then these two columns are structurally orthogo�
nal� and rij � q

i
T aj is zero� By Theorem 	��� pi is the the set of

row vertices that ci is adjacent to in HQ� and by assumption� in
H�A� the vertex cj is not adjacent to any vertex in pi� By the
de�nition of HR� then it does not contain the edge �i� j�� and
thus the zero elements in HR are predicted correctly�
Now consider the situation when q

i
and aj have a nonzero

element in a common row� In this case� the edge �i� j� is present
in HR� and we need to show that values can be assigned to A to
make the element rij nonzero� We proved in Theorem 	�� that
the element qij has the form �i

T y� where �i
T is the row of AP

which corresponds to the i�th row of A� and y is a vector whose

components are rational functions in x� Thus rij � q
i
T aj is also

a rational function in x� and the set

Zij � fx � qi
T aj � �g

has measure zero� Thus it is possible to choose values for x such
that rij is nonzero�
We now show that it is possible to assign values to x to

make the structures of the factors Q and R exactly equal to
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the predicted structures HQ and HR� Associate with each edge
�ri� cj� of HQ the sets

Xjk � fx � det� �A
T �A� � �g� and Yij � fx � �i

T y � �g�

where the index k ranges over every ck � Pj � For reasons given
before� each setXjk� Yij � and Zij �from the preceding paragraph�
has measure zero� The union of all these sets corresponding to
every edge in in HQ and HR� being a �nite union� also has
measure zero� It is thus possible to assign a set of values x�

outside these sets to obtain a matrix A� � A whose factors
satisfy H�Q�� � HQ and H�R�� � HR�

�� ALGORITHMS AND PIVOTING

In this section we describe e�cient algorithms for predicting
the structures of the factors Q and R� discuss the structure
of the Householder array� and consider structure prediction for
orthogonal factorization with pivoting�


��� Algorithms for structure prediction
We assume that the D�M decomposition of H�A� has been com�
puted by means of a maximum matching� This step requires
O�n���	 �A�� time and O�	 �A�� space� where 	 �A� is the num�
ber of edges in H�A� ��

��
The bipartite graph HQ can be computed by identifying the

adjacency lists of the column vertices cj� in order from j � ��
� � �� n� The adjacency list of cj in HQ is pj � the set of rows
which belong to the same connected component of Bj as cj�
The set pj can be computed by an appropriate search of the
graph H�A�� without forming Bj as follows� We search the
adjacency lists of vertices in H�A�� starting from the vertex
cj� and continuing the search from each as yet unvisited row
and column vertex reached� We can exclude rows belonging
to sj�� from the search� since such rows do not belong to Bj�
similarly� we exclude columns numbered greater than cj� since
such columns also do not belong to Bj� By the de�nition of a
Hall set� columns in Sj�� are adjacent only to rows in sj��� and
thus these columns will not be reached by the search since rows
in sj�� are excluded�
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The search from cj can be implemented in O�	 �A�� time and
space� Thus the structure of HQ can be computed in O�n	 �A��
time using space O�maxf	 �A�� 	 �Q�g�� where 	 �Q� is the num�
ber of edges in HQ� This algorithm is an improvement on an
O�mn��h � ����time algorithm described by Hare et al� ��

�
where h is the number of distinct� nonempty maximum Hall
sets Sj� Note that h � O�n��
Now we turn to the computation of HR� Since ri

T � q
i
TA�

the structure of the i�th row of R can be predicted from the
structures of A and the i�th column of Q� This is an important
advantage when only the structure of R is required� since then
HQ need not be stored�
Recall that for i � j� there is an edge �i� j� in HR when

�rk� ci� is an edge in HQ and �rk� cj� is an edge in H�A�� for
some � � k � m� The adjacency list of ci in HQ is given by the
set pi� We can thus compute the structure of the i�th row of R
by forming the union

�	r�piadj �r�� 
 fci� � � � � cng�

This set can also be computed in O�	 �A�� time� and thus HR

can be computed in O�n	 �A�� time�
Since the time complexity of our structure prediction algo�

rithms is the same as the complexity of symbolic factorization
in sparse Cholesky factorization� these algorithms can be used
practically for setting up data structures for orthogonal factors�


��� The Householder array
The following remarks concern a data structure that has been
considered by George� Liu� and Ng ���
� When the orthogo�
nalization is computed by means of Householder transforma�
tions� the orthogonal factor is not explicitly computed� but is
implicitly stored in terms of the Householder vectors� De�ne an
m�n Householder array H whose columns are the Householder
vectors� this is a lower trapezoidal matrix� After these results
were mentioned without proofs in ���
� Ng and Peyton ���
 have
shown that when eitherA is a strong Hall matrix with a nonzero
diagonal� or A is a Hall matrix with columns and rows num�
bered consistent with its D�M decomposition �i�e�� columns in
the square subgraph numbered before columns in the overdeter�
mined subgraph� within the square subgraph� columns in prede�
cessors numbered before columns in a strong Hall component�
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rows numbered such that ri is the row matched to column ci
for i � �� � � �� n�� then the structure of the j�th column of H is
obtained from the adjacency set of cj in the bipartite graph HQ

by omitting the superdiagonal rows� i�e�� pj 
 frj� rj��� � � � � rmg�
Hence in these cases� the lower trapezoidal structure of Q and
the Householder array are identical� It can also be seen from
examples that when A is a Hall matrix with columns in some
arbitrary ordering� then the structure of the j�th column of the
Householder array may not be contained in the structure of the
j�th column of Q�
The undirected adjacency graph of the triangular factor R

of a strong Hall matrix A is a chordal graph with the column
ordering of A corresponding to a perfect elimination ordering�
since it has the same structure as the transposed Cholesky factor
of ATA� Then George� Liu� and Ng show that the row structure
of H can be obtained in terms of an appropriately de�ned path
in the elimination tree of R� Unfortunately� when A is a Hall
matrix and not strong Hall� then the adjacency graph of R is
no longer a chordal graph with vertices in a perfect elimination
ordering� Thus there is no elimination tree corresponding to R�
Now consider the directed graph D�R� with vertices num�

bered from � to n� and for i � j� an edge �i� j� if rij �� ��
We could form the transitive reduction of D�R� and then ask
if a similar path characterization may be obtained for the row
structure of H� The answer turns out to be no again�


��� Orthogonal factorization with pivoting

We show by means of an example that when column pivoting is
incorporated into sparse orthogonal factorization� there cannot
exist structures HQ or HR which satisfy the requirements �����
and ������� Let

A �

�
BB�
�
� �

� �
� �

�
CCA �

Depending on the numerical values of the nonzero elements�
when A is factored using column pivoting� three among the pos�
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sible structures for Q are

�
BB�

�
�

�
�

�
CCA �
�
BB�
� � � �
� � � �

� � �
� �

�
CCA �

and �
BB�

� �
� � �
� � �

�

�
CCA �

Since the structure of the �rst column of Q is the structure
of the column of A which is chosen to be factored �rst� it cannot
be full� However� the smallest structure that contains the three
possible structures shown above for Q is a full matrix� Similarly�
it can be shown that the smallest structure that contains all
possible structures of R is a full upper triangular matrix� But
since the �rst column of Q contains at most two nonzeros in
consecutive rows of A� in the structural product QTA � R� the
�rst row of R cannot be full�
Hence for orthogonal factorization with column pivoting� we

will have to be satis�ed with the weaker requirements ����� and
������


� CONCLUSIONS

The results in this paper have important implications for com�
puting the orthogonal factorization of sparse matrices�
For well�conditioned matrices� these results stress the impor�

tance of �rst computing the block triangular form of the given
matrix� and then factoring its strong Hall components rather
than the given matrix� Important advantages then accrue from
the perspective of designing data structures to represent the
structures of the factor matrices� The adjacency graph of the
triangular factor of a strong Hall component is a chordal graph
with vertices ordered in a perfect elimination ordering� and thus
elimination trees and clique trees may be used to represent its
structure� The structure of the Householder array �which im�
plicitly represents the orthogonal matrix� can then be compactly
represented in terms of paths in the elimination tree� On the
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other hand� if the matrix A is not strong Hall� then the adja�
cency graph of its triangular factor is not a chordal graph with
vertices in a perfect elimination ordering� Hence there is no elim�
ination tree or clique tree representation� and no corresponding
compact representation for its Householder array�
For rank�de�cient and ill�conditioned matrices� it no longer

su�ces to factor only the strong Hall components� The tech�
niques described here are potentially useful in predicting the
structures of the factors within the context of orthogonal fac�
torization with column pivoting and rank�revealing orthogonal
factorization� The Dulmage�Mendelsohn decomposition can be
used to guide the selection of the pivot column� Such an al�
gorithm for orthogonal factorization with pivoting would be
similar in spirit to algorithms for sparse unsymmetric Gaus�
sian elimination with pivoting in which combinatorial structure
prediction and numerical computations are interleaved�
The above discussion points out the importance of the block

triangular form of a sparse matrix in computing its orthogonal
factorization� An algorithm for computing this form via the
Dulmage�Mendelsohn decomposition has been implemented in
���
� The block triangular form has also been employed in sparse
Matlab ���
 to solve unsymmetric systems of linear equations�
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