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Abstract. We describe a parallel algorithm for computing incomplete factor (ILU) precondi-
tioners. The algorithm attains a high degree of parallelism through graph partitioning and a two-level
ordering strategy. Both the subdomains and the nodes within each subdomain are ordered to pre-
serve concurrency. We show through an algorithmic analysis and through computational results that
this algorithm is scalable. Experimental results include timings on three parallel platforms for prob-
lems with up to 20 million unknowns running on up to 216 processors. The resulting preconditioned
Krylov solvers have the desirable property that the number of iterations required for convergence is
insensitive to the number of processors.
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1. Introduction. Incomplete factorization (ILU) preconditioning is currently
among the most robust techniques employed to improve the convergence of Krylov
space solvers for linear systems of equations. (ILU stands for incomplete LU fac-
torization, where L and U are the lower and upper triangular (incomplete) factors
of the coefficient matrix.) However, scalable parallel algorithms for computing ILU
preconditioners have not been available despite the fact that they have been used for
more than twenty years [12]. We report the design, analysis, implementation, and
computational evaluation of a parallel algorithm for computing ILU preconditioners.

Our parallel algorithm assumes that three requirements are satisfied.
• The adjacency graph of the coefficient matrix (or the underlying finite element

or finite difference mesh) must have good edge separators, i.e., it must be
possible to remove a small set of edges to divide the problem into a collection
of subproblems that have roughly equal computational work requirements.

• The size of the problem must be sufficiently large relative to the number
of processors so that the work required by the subgraph on each processor
is suitably large to dominate the work and communications needed for the
boundary nodes.

• The subdomain intersection graph (to be defined later) should have a small
chromatic number. This requirement will ensure that the dependencies in
factoring the boundary rows do not result in undue losses in concurrency.

An outline of the paper is as follows. In section 2, we describe the steps in
the parallel algorithm for computing the ILU preconditioner in detail and provide
theoretical justification. The algorithm is based on an incomplete fill path theorem;
the proof and discussion of the theorem are deferred to an appendix. We also discuss
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the role that a subdomain graph constraint plays in the design of the algorithm,
show that the preconditioners exist for special classes of matrices, and relate our
work to earlier work on this problem. Section 3 contains an analysis that shows that
the parallel algorithm is scalable for two-dimensional (2D-) and three-dimensional
(3D-)model problems, when they are suitably ordered and partitioned. Section 4
contains computational results on Poisson and convection-diffusion problems. The
first subsection shows that the parallel ILU algorithm is scalable on three parallel
platforms; the second subsection reports convergence studies. We tabulate how the
number of Krylov solver iterations and the number of entries in the preconditioner
vary as a function of the preconditioner level for three variations of the algorithm.
The results show that fill levels higher than one are effective in reducing the number
of iterations; the number of iterations is insensitive to the number of subdomains;
and the subdomain graph constraint does not affect the number of iterations while it
makes possible the design of a simpler parallel algorithm.

The background needed for ILU preconditioning may be found in several books;
see, e.g., [1, 15, 17, 33]. A preliminary version of this paper was presented at Super-
computing ’99 and was published in the conference proceedings [18]. The algorithm
has been revised, additional details have been included, and the proof of the theorem
on which it is based has been added. The experimental results in section 4 are new,
and most of them have been included in the technical reports [19, 20].

2. Algorithms. In this section we discuss the Parallel ILU (PILU) algorithm
and its underlying theoretical foundations.

2.1. The PILU algorithm. Figure 2.1 describes the steps of the PILU algo-
rithm at a high level; the algorithm is suited for implementation on both message-
passing and shared-address space programming models.

The PILU algorithm consists of four major steps. In the first step, we create
parallelism by dividing the problem into subproblems by means of graph partitioning.
In the second step, we preserve the parallelism in the interior of the subproblems by
locally scheduling the computations in each subgraph. In the third step, we preserve
parallelism in the boundaries of the subproblems by globally ordering the subprob-
lems through coloring a suitably defined graph. In the final step, we compute the
preconditioner in parallel. Now we will describe the four steps in greater detail.

Step 1: Graph partitioning. In the first step of PILU, we partition the
adjacency graph G(A) of the coefficient matrix A into p subgraphs by removing a
small set of edges that connects the subgraphs to each other. Each subgraph will be
mapped to a distinct processor that will be responsible for the computations associated
with the subgraph.

An example of a model five-point grid partitioned into four subgraphs is shown
in Figure 2.2. For clarity, the edges corresponding to the coefficient matrix elements
(within each subgraph or between subgraphs) are not shown. The edges drawn corre-
spond to fill elements (elements that are zero in the coefficient matrix but are nonzero
in the incomplete factors) that join the different subgraphs.

To state the objective function of the graph partitioning problem, we need to intro-
duce some terminology. An edge is a separator edge if its endpoints belong to different
subgraphs. A vertex in a subgraph is an interior vertex if all of its neighbors belong to
that subgraph; it is a boundary vertex if it is adjacent to one or more vertices belonging
to another subgraph. By definition, an interior vertex in a subgraph is not adjacent to
a vertex (boundary or interior) in another subgraph. In Figure 2.2, the first 25 vertices
are interior vertices of the subgraph S0, and vertices numbered 26 through 36 are its
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Input: A coefficient matrix, its adjacency graph, and the number of pro-
cessors p.
Output: The incomplete factors of the coefficient matrix.

1. Partition the adjacency graph of the matrix into p subgraphs (sub-
domains), and map each subgraph to a processor. The objectives
of the partitioning are that the subgraphs should have roughly
equal work, and there should be few edges that join the different
subgraphs.

2. On each subgraph, locally order interior nodes first, and then order
boundary nodes.

3. Form the subdomain intersection graph corresponding to the par-
tition, and compute an approximate minimum vertex coloring for
it. Order subdomains according to color classes.

4. Compute the incomplete factors in parallel.
a. Factor interior rows of each subdomain.
b. Receive sparsity patterns and numerical values of the nonzeros
of the boundary rows of lower-numbered subdomains adjacent to
a subdomain (if any).
c. Factor boundary rows in each subdomain and send the spar-
sity patterns and numerical values to higher-numbered neighboring
subdomains (if any).

Fig. 2.1. High level description of the PILU algorithm.

boundary vertices. The goal of the partitioning is to keep the amount of work associ-
ated with the incomplete factorization of each subgraph roughly equal, while keeping
the communication costs needed to factor the boundary rows as small as possible.

There is a difficulty with modeling the communication costs associated with the
boundary rows. In order to describe this difficulty, we need to relate this cost more
precisely to the separators in the graph. Define the higher degree of a vertex v as
the number of vertices numbered higher than v in a given ordering. We assume that
upward-looking, row-oriented factorization is used. At each boundary between two
subgraphs, elements need to be communicated from the lower numbered subgraph to
the higher numbered subgraph. The number of these elements is proportional to the
sum of the higher degrees (in the filled graph G(F )) of the boundary vertices in the
lower numbered subgraph. But unfortunately, we do not know the fill edges at this
point since we have neither computed an ordering of G(A) nor computed a symbolic
factorization. We could approximate by considering higher degrees of the boundary
vertices in the graph G(A) instead of the filled graph G(F ), but even this requires us
to order the subgraphs in the partition.

The union of the boundary vertices on all the subgraphs forms a wide vertex sep-
arator . This means that the shortest path from an interior vertex in any subgraph
to an interior vertex in another subgraph consists of at least three edges; such a path
has length at least three. The communication cost in the (forward and backward)
triangular solution steps is proportional to the sum of the sizes of the wide vertex
separators. None of the publicly available graph partitioning software has the min-
imization of wide separators as its objective function, but it is possible to modify
existing software to optimize this objective.
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Fig. 2.2. An example that shows the partitioning, mapping, and vertex ordering used in the
PILU algorithm. The graph on the top is a regular 12× 12 grid with a five-point stencil partitioned
into four subdomains and then mapped on four processors. The subdomains are ordered by a coloring
algorithm to reduce dependency path lengths. Only the level one and two fill edges that join the
different subdomains are shown; all other edges are omitted for clarity. The figure on the bottom
right shows the subdomain intersection graph when the subdomain graph constraint is enforced. (This
prohibits fill between the boundary nodes of the subdomains S1 and S2, indicated by the broken edges
in the top graph.) The graph on the bottom left shows the subdomain intersection graph when the
subdomain graph constraint is not enforced.

The goal of the partitioning step is to keep the amount of work associated with
each subgraph roughly equal (for load balance) while making the communication costs
due to the boundaries as small as possible. As the previous two paragraphs show,
modeling the communication costs accurately in terms of edge and vertex separators
in the initial graph G(A) is difficult, but we could adopt the minimization of the
wide separator sizes as a reasonable goal. This problem is NP-complete, but there
exist efficient heuristic algorithms for partitioning the classes of graphs that occur in
practical situations. (Among these graph classes are 2D-finite element meshes and
3D-meshes with good aspect ratios.)

Step 2: Local reordering. In the second step, in each subgraph we order the
interior vertices before the boundary vertices. This ordering ensures that during the
incomplete factorization, an interior vertex in one subgraph cannot be joined by a
fill edge to a vertex in another subgraph, as will be shown later. Fill edges between
two subgraphs can join only their boundary vertices together. Thus interior vertices
corresponding to the initial graph G(A) remain interior vertices in the graph of the
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factor G(F ). The consequences of this are that the rows corresponding to the interior
vertices in each subdomain of the initial problem G(A) can be factored concurrently,
and that communication is required only for factoring rows corresponding to the
boundary rows. The reader can verify that in each subgraph in Figure 2.2 the interior
nodes have been ordered before the boundary nodes.

The observation concerning fill edges in the preceding paragraph results from
an application of the following incomplete fill path theorem. Given the adjacency
graph G(A) of a coefficient matrix A, the theorem provides a static characterization
of where fill entries arise during an incomplete factorization A = L̂Û + E, where
L̂ is the lower triangular incomplete factor, Û is the upper triangular incomplete
factor, and E is the remainder matrix. The characterization is static in that fill is
completely described by the structure of the graph G(A); no information from the
factor is required.

We need a definition before we can state the theorem. A fill path is a path joining
two vertices i and j, all of whose interior vertices are numbered lower than the end
vertices i and j.1

Recall also the definition of the levels assigned to nonzeros in an incomplete
factorization. To discuss the sparsity pattern of the incomplete factors, we consider
the filled matrix F = L̂ + Û − I. The sparsity pattern of F is initialized to that of
A. All nonzero entries in F corresponding to nonzeros in A have level zero, and zero
entries have level infinity. New entries that arise during factorization are assigned a
level based on the levels of the causative entries, according to the rule

level(fij) = min
1≤h<min{i,j}

{level(fih) + level(fhj) + 1}.

The incomplete fill path theorem describes an intimate relationship between fill
entries in ILU(k) factors and path lengths in graphs.

Theorem 2.1. Let F = L̂ + Û − I be the filled matrix corresponding to an
incomplete factorization of A, and let fij be a nonzero entry in F . Then fij is a level
k entry if and only if there exists a shortest fill path of length k + 1 that joins i and j
in G(A).

A proof and a discussion of this theorem are included in the appendix.
Now consider the adjacency graph G(A) and a partition Π = {S0, . . . , Sp−1}

of it into subgraphs (subdomains). Any path joining two interior nodes in distinct
subdomains must include at least two boundary nodes, one from each of the subgraphs;
since each boundary node is numbered higher than (at least one of) the path’s end
vertices (since these are interior nodes in the subgraph), this path cannot be a fill
path. If two interior nodes belonging to separate subgraphs were connected by a fill
path and the corresponding fill entry were permitted in F , the interior nodes would be
transformed into boundary nodes in G(F ). This is undesirable for parallelism, since
then there would be fewer interior nodes to be eliminated concurrently.

The local ordering step preserves interior and boundary nodes during the factor-
ization and ensures that a subdomain’s interior rows can be factored independently
of row updates from any other subdomain. Therefore, when subdomains have rela-
tively large interior/boundary node ratios, and contain approximately equal amounts
of computational work, we expect PILU to exhibit a high degree of parallelism.

1The reader has doubtless noted that interior is used in a different sense here than previously.
We trust it will be obvious from the context where interior is used to refer to nodes in paths and
where it is used to refer to nodes in subgraphs.
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Step 3: Global ordering. The global ordering phase is intended to preserve
parallelism while factoring the rows corresponding to the boundary vertices. In order
to explain the loss of concurrency that could occur during this phase of the algo-
rithm, we need the concept of a subdomain intersection graph, which we shall call a
subdomain graph for brevity.

The subdomain graph S(G,Π) = (Vs, Es) is computed from a graph G and its
partition Π = {S0, . . . , Sp−1} into subgraphs. The vertex set Vs contains a vertex cor-
responding to every subgraph in the partition; the edge set Es contains edge {Si, Sj}
if there is an edge in G with one endpoint in Si and the other in Sj . We can compute
a subdomain graph S(A) corresponding to the initial graph G(A) and its partition.
(This graph should be denoted S(G(A),Π), but we shall write S(A) for simplicity.)
We could also compute a subdomain graph S(F ) corresponding to the graph of the
factor G(F ). The subdomain graph S(A) corresponding to the partition of the initial
graph G(A) (the top graph) in Figure 2.2 is shown in the graph at the bottom right
in that figure.

We impose a constraint on the fill, the subdomain graph constraint. The sub-
domain graph corresponding to G(F ) is restricted to be identical to the subdomain
graph corresponding to G(A). This prohibits some fill in the filled graph G(F ): if two
subdomains are not joined by an edge in the original graph G(A), any fill edge that
joins those subdomains is not permitted in the graph of the incomplete factor G(F ).
The description of the PILU algorithm in Figure 2.1 assumes that the subdomain
graph constraint is satisfied. This constraint makes it possible to obtain scalability in
the parallel ILU algorithm. Later, we discuss how the algorithm should be modified
if this constraint is relaxed.

Each subdomain’s nodes (in G(A)) are ordered contiguously. Consequently, say-
ing “subdomain r is ordered before subdomain s” is equivalent to saying “all nodes
in subdomain r are ordered, and then all nodes in subdomain s are ordered.” This
permits S(A) to be considered as a directed graph, with edges oriented from lower to
higher numbered vertices.

Edges in S(F ) indicate data dependencies in factoring the boundary rows of the
subdomains. If an edge in S(F ) joins r and s and subdomain r is ordered before
subdomain s, then updates from the boundary rows of r have to be applied to the
boundary rows of s before the factorization of the latter rows can be completed. It
follows that ordering S(F ) so as to reduce directed path lengths reduces serial bottle-
necks in factoring the boundary rows. If we impose the subdomain graph constraint,
these observations apply to the subdomain graph S(A) as well since then S(A) is
identical with S(F ).

We reduce directed path lengths in S(A) by coloring the vertices of the subdomain
graph with few colors using a heuristic algorithm for graph coloring, and then by
numbering the subdomains by color classes. The boundary rows of all subdomains
corresponding to the first color can be factored concurrently without updates from any
other subdomains. These subdomains update the boundary rows of higher numbered
subdomains adjacent to them. After the updates, the subdomains that correspond
to the second color can factor their boundary rows. This process continues by color
classes until all subdomains have factored their boundary rows. The number of steps
it takes to factor the boundary rows is equal to the number of colors it takes to color
the subdomain graph.

In Figure 2.2, let pi denote the processor that computes the subgraph Si. Then p0

computes the boundary rows of S0 and sends them to processors p1 and p2. Similarly,
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p3 computes the boundary rows of subgraph S3 and sends them to p1 and p2. The
latter processors first apply these updates and then compute their boundary rows.

How much parallelism can be gained through subdomain graph reordering? We
can gain some intuition through analysis of simplified model problems, although we
cannot answer this question a priori for general problems and all possible partitions.
Consider a matrix arising from a second order PDE that has been discretized on a
regularly structured 2D grid using a standard five-point stencil. Assume that the grid
is naturally ordered and that it has been partitioned into square subgrids and mapped
into a square grid of p processors. In the worst case, the associated subdomain graph,
which itself has the appearance of a regular 2D grid, can have a dependency path
of length 2(

√
p − 1). Similarly, a regularly structured 3D grid discretized with a

seven-point stencil that is naturally ordered and then mapped on a cube containing
p processors can have a dependency path length of 3( 3

√
p − 1). However, regular 2D

grids with the five-point stencil and regular 3D grids with the seven-point stencil are
bipartite graphs and can be colored with two colors. If all subdomains of the first
color class are numbered first, and then all subdomains of the second color class are
numbered, the longest dependency path in S will be reduced to one. This discussion
shows that coloring the subdomain graph is an important step in obtaining a scalable
parallel algorithm.

Step 4: Preconditioner computation. Now that the subdomains and the
nodes in each subdomain have been ordered, the preconditioner can be computed.
We employ an upward-looking, row oriented factorization algorithm. The interior of
each subdomain can be computed concurrently by the processors, and the boundary
nodes can be computed in increasing order of the color classes. Either a level-based
ILU(k) or a numerical threshold based ILUT(τ , p) algorithm may be employed on
each subdomain. Different incomplete factorization algorithms could be employed in
different subdomains when appropriate, as in multiphysics problems. Different fill
levels could be employed for the interior nodes in a subdomain and for the boundary
nodes to reduce communication and synchronization costs.

2.2. Relaxing the subdomain graph constraint. Now we consider how the
subdomain graph constraint might be relaxed. Given a graph G(A) and a partition
of it into subgraphs, we color the subdomain graph S(A) and order its subdomains as
before. Then we compute the graph G(F ) of an incomplete factor and its subdomain
graph S(F ). To do this, we need to discover the dependencies in S(F ), but initially
we have only the dependencies in S(A) available. This has to be done in several
rounds, because fill edges could create additional dependencies between the boundary
rows of subdomains, which in turn might lead to further dependences. The number
of rounds needed is the length of a longest dependency path in the subdomain graph
G(F ), and this could be Ω(p). This discussion applies when an ILU(k) algorithm
is employed, with symbolic factorization preceding numerical factorization. If ILUT
were to be employed, then symbolic factorization and numerical factorization must
be interleaved, as would be done in a sequential algorithm.

We can then color the vertices of S(F ) to compute a schedule for factoring the
boundary rows of the subdomains. For achieving concurrency in this step the subdo-
main graph S(F ) should have a small chromatic number (independent of the number
of vertices in G(A)). Note that the description of the PILU algorithm in Figure 2.1
needs to be modified to reflect this discussion when the subdomain graph constraint
is relaxed.

The graph G(F ) in Figure 2.2 indicates the fill edges that join S1 to S2 as broken
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lines. The corresponding subdomain intersection graph S(F ) is shown on the lower
left. The edge between S1 and S2 necessitates three colors to color S(F ): the subdo-
mains S0 and S3 form one color class; S1 by itself constitutes the second color class;
and S2 by itself makes up the third color class. Thus three steps are needed for the
computation of the boundary rows of the preconditioner when the subdomain graph
constraint is relaxed. Note that the processor responsible for the subdomain S2 can
begin computing its boundary rows when it receives an update from either S0 or S3,
but that it cannot complete its computation until it has received the update from the
subdomain S1.

Theorem 2.1 has an intuitively simple geometric interpretation. Given an initial
node i in G(A), construct a topological “sphere” containing all nodes that are at a
distance less than or equal to k + 1 edges. Then a fill entry fij is admissible in an
ILU(k) factor only if j is within the sphere. Note that all such nodes j do not cause
fill edges since there needs to be a fill path joining i and j. By applying Theorem 2.1,
we can gain an intuitive understanding of the fill entries that may be discarded on
account of the subdomain graph constraint. Referring again to Figure 2.2, we see that
prohibited edges arise when two nonadjacent subdomains in G(A) have nodes that
are joined by a fill path of length less than k + 1. No level zero edge is discarded by
the constraint.

2.3. Existence of PILU preconditioners. The existence of preconditioners
computed from the PILU algorithm can be proven for some classes of problems.

Meijerink and van der Vorst [28] proved that if A is an M-matrix, then ILU
factors exist for any predetermined sparsity pattern, and Manteuffel [27] extended
this result to H-matrices with positive diagonal elements. These results immediately
show that PILU preconditioners with sparsity patterns based on level values exist for
these classes of matrices. This is true even when different level values are used for the
various subdomains and boundaries.

Incomplete Cholesky (IC) preconditioners for symmetric problems could be com-
puted with our parallel algorithmic framework using preconditioners proposed by
Jones and Plassmann [21] and by Lin and Moré [23] on each subdomain and on the
boundaries. The sparsity patterns of these preconditioners are determined by the nu-
merical values in the matrix and by memory constraints. Lin and Moré have proved
that these preconditioners exist for M- and H-matrices. Parallel IC preconditioners
also can be shown to exist for M- and H-matrices. If the subdomain graph constraint
is not enforced, then the preconditioner computed in parallel corresponds to a precon-
ditioner computed by the serial algorithm from a reordered matrix. If the constraint
is enforced, some specified fill elements are dropped from the Schur complement; it
can be shown that the resulting Schur complement matrix is componentwise larger
than the former and hence still an M-matrix.

2.4. Relation to earlier work. We now briefly discuss earlier parallel ILU
algorithms that are related to the PILU algorithm proposed here. Earlier attempts at
parallel algorithms for preconditioning (including approaches other than incomplete
factorization) are surveyed in [6, 12, 34]; orderings suitable for parallel incomplete
factorizations have been studied inter alios in [4, 11, 13]. The surveys also describe
the alternate approximate inverse approach to preconditioning.

Saad [33, section 12.6.1] discusses a distributed ILU(0) algorithm that has the fea-
tures of graph partitioning, elimination of interior nodes in a subdomain before bound-
ary nodes, and coloring the subdomains to process the boundary nodes in parallel.
Only level 0 preconditioners are discussed there, so that fill between subdomains, or
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within each subdomain, do not need to be considered. No implementations or results
were reported, although Saad has informed us recently of a technical report [24] that
includes an implementation and results. Our work, done independently, shows how fill
levels higher than zero can be accommodated within this algorithmic framework. We
also analyze our algorithm for scalability and provide computational results on the
performance of PILU preconditioners. Our results show that fill levels higher than zero
are indeed necessary to obtain parallel codes with scalability and good performance.

Karypis and Kumar [22] have described a parallel ILUT implementation based
on graph partitioning. Their algorithm does not include a symbolic factorization, and
they discover the sparsity patterns and the values of the boundary rows after the
numerical computation of the interior rows in each subdomain. The factorization of
the boundary rows is done iteratively, as in the discussion given above, where we show
how the subdomain graph constraint might be relaxed. The partially filled graph of
the boundary rows after the interior rows are eliminated is formed, and this graph
is colored to compute a schedule for computing the boundary rows. Since fill edges
in the boundary rows are discovered as these rows are being factored, this approach
could lead to long dependency paths that are Θ(p). The number of boundary rows is
Ω(N1/2) for 2D meshes, and Ω(N2/3) for 3D meshes with good aspect ratios. If the
cost of factoring and communicating a boundary row is proportional to the number
of rows, then this phase of their algorithm could cost Ω(p

√
N), severely limiting the

scalability of the algorithm (cf. the discussion in section 3).
Recently Magolu monga Made and van der Vorst [25, 26] have reported variations

of a parallel algorithm for computing ILU preconditioners. They partition the mesh,
linearly order the subdomains, and then permit fill in the interior and the boundaries
of the subdomains. The boundary nodes are classified with respect to the number
of subdomains they are adjacent to, and are eliminated in increasing order of this
number. Since the subdomains are linearly ordered, a “burn from both ends” ordering
is employed to eliminate the subdomains. Our approaches are similar, except that
we additionally order the subdomains by means of a coloring to reduce dependency
path lengths to obtain a scalable algorithm. They have provided an analysis of the
condition number of the preconditioned matrices for a class of 2D second order elliptic
boundary value problems. They permit high levels of fill (four or greater) as we do,
and show that the increased fill permitted across the boundaries enables the condition
number of the preconditioned matrix to be insensitive to the number of subdomains
(except when the latter gets too great). We have worked independently of each other.

A different approach, based on partitioning the mesh into rectangular strips and
then computing the preconditioner in parallel steps in which a “wavefront” of the
mesh is computed at each step by the processors, was proposed by Bastian and Hor-
ton [3] and was implemented for shared memory multiprocessors recently by Vuik,
van Nooyen, and Wesseling [36]. This approach has less parallelism than the one
considered here.

3. Performance analysis. In this section we present simplified theoretical anal-
yses of algorithmic behavior for matrices arising from PDEs discretized on 2D grids
with five-point stencils and 3D grids with seven-point stencils. Since our arguments
are structural in nature, we assume ILU(k) is the factorization method used. After a
word about nomenclature, we begin with the 2D case.

The word grid refers to the grid (mesh) of unknowns for regular 2D and 3D grids
with five- and seven-point stencils, respectively; this is identical to the adjacency
graph G(A) of the coefficient matrix of these problems. We use the terms eliminating
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Fig. 3.1. Counting lower triangular fill edges in a naturally ordered grid. We count the number
of edges incident on vertex 9. Considering the graphs from top to bottom, we find that there are two
level 0 edges; there is one level 1 edge, due to fill path 9, 3, 4; there is one level 2 edge due to fill
path 9, 3, 4, 5; there are two level 3 edges, due to fill paths 9, 3, 4, 5, 6 and 9, 3, 2, 1, 7. We can
generalize that two additional fill edges are created for every level greater than three, except near
the boundaries. We conclude that asymptotically there are 2k lower triangular edges incident on a
vertex in a level k factorization. Since the mesh corresponds to a structurally symmetric problem,
there are 2k upper triangular edges incident on a vertex as well.

a node and factoring a row synonymously.
We assume the grid has been block-partitioned, with each subdomain consisting

of a square subgrid of dimension c × c. We also assume the subdomain grid has
dimensions

√
p×√

p, so there are p processors in total. There are thus N = c2p nodes

in the grid, and subdomains have at most 4c = 4
√

N
p boundary nodes.

If subdomain interior nodes are locally numbered in natural order and k � c, each
row in the factor F asymptotically has 2k (strict) upper triangular and 2k (strict)
lower triangular nonzero entries. The justification for this statement arises from a con-
sideration of the incomplete fill path theorem; the intuition is illustrated in Figure 3.1.

Assuming that the classical ILU(k) algorithm is used for symbolic factorization,
both symbolic and numeric factorization of row j entails 4k2 arithmetic operations.
This is because for each lower triangular entry fji in matrix row j, factorization
requires an arithmetic operation with each upper triangular entry in row i.

A red-black ordering of the subdomain graph gives an optimal bipartite division.
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If red subdomains are numbered before black subdomains, our algorithm simplifies to
the following three stages.

1. Red processors eliminate all nodes; black processors eliminate interior nodes.
2. Red processors send boundary-row structure and values to black processors.
3. Black processors eliminate boundary nodes.

If these stages are nonoverlapping, the cost of the first stage is bounded by the cost

of eliminating all nodes in a subdomain. This cost is 4k2c2 = 4k2N
p .

The cost for the second stage is the cost of sending structural and numerical values
from the upper-triangular portions of the boundary rows to neighboring processors.
If k � c, the incomplete fill path theorem can be used to show that, asymptotically,
a processor only needs to forward values from c rows to each neighbor. We assume a
standard, noncontentious communication model wherein α and β represent message
startup and per-word-transfer times, respectively. We measure these times in non-
dimensional units of flops by dividing them by the time it takes to execute one flop.
The time for an arithmetic operation is thus normalized to unity. Then the cost for

the second step is 4(α + 2kβc) = 4(α + 2kβ
√

N
p ).

Since the cost of factoring a boundary row can be shown to be asymptotically
identical to that for factoring an interior row, the cost for eliminating the 4c boundary

nodes is (4k2)(4c) = 16k2
√

N
p . Speedup can then be expressed as

speedup =
4k2N

4k2N
p + 4(α + 2kβ

√
N
p ) + 16k2

√
N
p

.

The numerator represents the cost for sequential execution, and the three terms in the
denominator represent the costs for the three stages (arithmetic for interior nodes,
communication costs, and arithmetic for the boundary nodes) of the parallel algo-
rithm.

Three implications from this equation are in order. First, for a fixed problem
size and number of processors, the parallel computational cost (the first and third
terms in the denominator) is proportional to k2, while the communication cost (the
second term in the denominator) is proportional to k. This explains the increase in
efficiency with level that we have observed. Second, if the ratio N/p is large enough,
the first term in the denominator will become preeminent, and efficiency will approach
100%. Third, if we wish to increase the number of processors p by some factor while
maintaining a constant efficiency, we need only increase the size of the problem N
by the same factor. This shows that our algorithm is scalable. This observation is
not true for a direct factorization of the coefficient matrix, where the dependencies
created by the additional fill cause loss in concurrency.

For the 3D case we assume partitioning into cubic subgrids of dimension c ×
c × c and a subdomain grid of dimension p1/3 × p1/3 × p1/3, which gives N = c3p.
Subdomains have at most 6c2 boundary nodes. A development similar to that above
shows that, asymptotically, matrix rows in the factor F have 2k2 (strict) upper and
lower triangular entries, so the cost for factoring a row is 4k4. Speedup for this case
can then be expressed as

speedup =
4k4N

4k4N
p + 6(α + 2k2β(Np )1/3) + 24k4(Np )1/3

=
2k4N

2k4N
p + 3(α + 2k2β(Np )1/3) + 12k4(Np )1/3

.
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4. Results. Results in this section are based on the following model problems.
Problem 1. Poisson’s equation in two or three dimensions:

Δu = g.

Problem 2. Convection-diffusion equation with convection in the xy plane:

−ε�u +
∂

∂x
exyu +

∂

∂y
e−xyu = g.

Homogeneous boundary conditions were used for both problems. Derivative terms
were discretized on the unit square or cube, using 3-point central differencing on
regularly spaced nx × ny × nz grids (nz = 1 for 2D). The values for ε in Problem
2 were set to 1/500 and 1/1000. The problem becomes increasingly unsymmetric,
and more difficult to solve accurately as ε decreases. The right-hand sides of the
resulting systems, Ax = b, were artificially generated as b = Aê, where ê is the
all-ones vector.

ILU(k) preconditioning is amenable to performance analysis since the nonzero
structures of ILU(k) preconditioners are identical for any PDE that has been dis-
cretized on a 2D or 3D grid with a given stencil. The structure depends on the grid
and the stencil only and is not affected by numerical values if pivoting is not needed
for numerical stability. Identical structures imply identical symbolic factorization
costs, as well as identical flop counts during the numerical factorization and solve
phases. In parallel contexts, communication patterns and costs are also identical.
While preconditioner effectiveness—the number of iterations until the stopping cri-
teria is reached—differs with the numerics of the particular problem being modeled,
the parallelism available in the preconditioner does not.

The structure of ILUT preconditioners, on the other hand, is a function of the
grid, the stencil, and the numerics. Changing the problem, particularly for non-
diagonally dominant cases, can alter the preconditioner structure, even when the grid
and stencil remain the same.

We report our performance evaluation for ILU(k) preconditioners, although the
parallel algorithmic framework proposed here could just as easily work with ILUT(τ ,
p). We have compared the performance of ILU(k) with ILUT in an earlier report [18].
We report there that for Problem 2 with ε = 1/500, ILUT(0.001, 10) incurred more
fill than ILU(5) on a 2D domain for grid sizes up to 400 × 400; for 3D domains and
grid sizes up to 64 × 64 × 64, the same ILUT preconditioner incurred fill between
ILU(2) and ILU(3).

In addition to demonstrating that our algorithm can provide high degrees of
parallelism, we address several other issues. We study the influence of the subdomain
graph constraint on the fill permitted in the preconditioner and on the convergence of
preconditioned Krylov space solvers. We also report convergence results as a function
of the number of nonzeros in the preconditioner.

4.1. Parallel performance. We now report timing and scalability results for
preconditioner factorization and application on three parallel platforms:

• an SGI Origin2000 at NASA Ames Research Center (AMES);
• the Coral PC Beowulf cluster at ICASE, NASA Langley Research Center;
• a Sun HPC 10000 Starfire server at Old Dominion University (ODU).
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Table 4.1

Time (sec.) required for incomplete (symbolic and numeric) factorization for a 3D scaled
problem; 91, 125 unknowns per processor, seven-point stencil, ILU(2) factorization on interior nodes,
and ILU(1) factorization on boundary nodes. Dashes (-) for Beowulf and HPC 10000 indicate that
the machines have insufficient cpus to perform the runs.

Procs Origin2000 Beowulf HPC 10000
AMES (ICASE) (ODU)

1 2.04 2.27 2.13
8 2.44 3.11 2.43

27 2.96 4.06 2.97
64 3.11 4.64 -

125 3.18 - -
216 3.32 - -

Both problems were solved using Krylov subspace methods as implemented in the
PETSc [2] software library. Problem 1 was solved using the conjugate gradient
method, and Problem 2 was solved using Bi-CGSTAB [35]. PETSc’s default con-
vergence criterion was used, which is five orders of magnitude (105) reduction in the
residual of the preconditioned system. We used our own codes for problem generation,
partitioning, ordering, and symbolic factorization.

Table 4.1 shows incomplete factorization timings for a 3D memory-scaled problem
with approximately 91, 125 unknowns per processor. As the number of processors
increases, so does the size of the problem. The coefficient matrix of the problem
factored on 216 processors has about 19.7 million rows. ILU(2) was employed for the
interior nodes, and ILU(1) was employed for the boundary nodes. Reading down any
of the columns shows that performance is highly scalable, e.g., for the SGI Origin2000,
factorization for 216 processors and 19.7 million unknowns required only 62% longer
than the serial case. Scanning horizontally indicates that performance was similar
across all platforms, e.g., execution time differed by less than a factor of two between
the fastest (Origin2000) and slowest (Beowulf) platforms.

Table 4.2 shows similar data and trends for the triangular solves for the scaled
problem. Scalability for the solves was not quite as good as for factorization; e.g., the
solve with 216 processors took about 2.5 times longer than the serial case. This is
expected due to the lower computation cost relative to communication and synchro-
nization costs in triangular solution.

We observed that the timings for identical repeated runs on the HPC 10000
and SGI typically varied by 50% or more, while repeated runs on the Beowulf were
remarkably consistent.

Table 4.3 shows speedup for a constant-sized problem of 1.7 million unknowns.
There is a clear correlation between performance and subdomain interior/boundary
node ratios; this ratio needs to be reasonably large for good performance.

The performances reported in these tables are applicable to any PDE that has
been discretized with a seven-point central difference stencil since the sparsity pattern
of the symbolic factor depends on the grid and the stencil only.

4.2. Convergence studies. Our approach for designing parallel ILU algorithms
reorders the coefficient matrices whose incomplete factorization is being computed.
This reordering could have a significant influence on the effectiveness of the ILU
preconditioners. Accordingly, in this section we report the number of iterations of a
preconditioned Krylov space solver needed to reduce the residual by a factor of 105.

We compare three different algorithms.
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Table 4.2

Time (sec.) to compute triangular solves for 3D scaled problem; 91, 125 unknowns per processor,
seven-point stencil, ILU(2) factorization on interior nodes, ILU(1) factorization on boundary nodes.
Dashes (-) for Beowulf and HPC 10000 indicate that the machines have insufficient cpus to perform
the runs.

Procs Origin2000 Beowulf HPC 10000
(AMES) (ICASE) (ODU)

1 .182 .187 .289
8 .431 .359 .515

27 .405 .508 .629
64 .472 .556 -

125 .610 - -
216 .646 - -

Table 4.3

Speedup for 3D constant-size problem; the grid was 120×120×120 for a total of approximately
1.7 million unknowns; data is for ILU(0) factorization performed on the SGI Origin2000; “I/B
ratio” is the ratio of interior to boundary nodes in each subdomain.

Procs Unknowns/ I/B Time Efficiency
Processor ratio (sec.) (%)

8 216,000 9.3 2.000 100
27 64,000 6.0 0.846 70
64 27,000 4.3 .408 62

125 13,824 3.4 .307 42

• Constrained PILU(k) is the parallel ILU(k) algorithm with the subdomain
graph constraint enforced.

• In unconstrained PILU(k), the subdomain graph constraint is dropped, and
all fill edges up to level k between the boundary nodes of different subdomains
are permitted, even when such edges join two nonadjacent subdomains of the
initial subdomain graph S(A).

• In block Jacobi ILU(k) (BJILU(k)), all fill edges joining two different subdo-
mains are excluded.

Intuitively, one expects, especially for diagonally dominant matrices, that larger
amounts of fill in preconditioners will reduce the number of iterations required for
convergence.

4.2.1. Fill count comparisons. For a given problem, the number of permitted
fill edges is a function of three components: the factorization level, k; the subdomain
size(s); and the discretization stencil. While the numerical values of the coefficients
of a particular PDE influence convergence, they do not affect fill counts. Therefore,
our first set of results consists of fill count comparisons for problems discretized on a
64 × 64 × 64 grid using a standard, seven-point stencil.

Table 4.4 shows fill count comparisons between unconstrained PILU(k), con-
strained PILU(k), and block Jacobi ILU(k) for various partitionings and factorization
levels. The data shows that more fill is discarded as the factorization level increases,
and as subdomain size (the number of nodes in each subdomain) decreases. These
two effects hold for both constrained PILU(k) and block Jacobi ILU(k) but are much
more pronounced for the latter. For example, less than 5% of fill is discarded from un-
constrained PILU(k) factors when subdomains contain at least 512 nodes (so that the
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Table 4.4

Fill comparisons for the 64 × 64 × 64 grid. U denotes unconstrained, C denotes constrained,
and B denotes block Jacobi ILU(k) preconditioners. The columns headed “nzF/nzA” show the ratio
of the number of nonzeros in the preconditioner to the number of nonzeros in the original problem
and are indicative of storage requirements. The columns headed “constraint effects” present another
view of the same data: here, the percentage of nonzeros in the constrained PILU(k) and block Jacobi
ILU(k) factors are shown relative to that for the unconstrained PILU(k). These columns show the
amount of fill dropped due to the subdomain graph constraint.

Nodes per Subdom. nzF/nzA Constraint effects (%)
subdom. count Level U C B C B

262,144 1 0 1.00 1.00 1.00 100.00 100.00
1 1.84 1.84 1.84 100.00 100.00
2 3.22 3.22 3.22 100.00 100.00
3 5.96 5.96 5.96 100.00 100.00
4 9.73 9.73 9.73 100.00 100.00

32,768 8 0 1.00 1.00 0.99 100.00 98.64
1 1.87 1.87 1.80 99.99 96.53
2 3.36 3.35 3.12 99.96 92.91
3 6.32 6.32 5.70 99.92 90.13
4 10.50 10.49 9.19 99.89 87.56

4,096 64 0 1.00 1.00 0.96 100.00 95.93
1 1.89 1.89 1.72 99.90 91.24
2 3.45 3.44 2.91 99.62 84.36
3 6.51 6.47 5.19 99.34 79.72
4 10.81 10.70 8.17 99.06 75.61

512 512 0 1.00 1.00 0.90 100.00 90.50
1 1.92 1.91 1.57 99.46 81.62
2 3.59 3.52 2.53 98.05 70.35
3 6.72 6.50 4.27 96.62 63.47
4 10.96 10.43 6.32 95.20 57.69

64 4,096 0 1.00 1.00 0.80 100.00 79.64
1 1.97 1.92 1.29 97.58 65.15
2 3.73 3.42 1.86 91.67 49.79
3 6.60 5.64 2.71 85.37 41.04
4 10.01 7.76 3.35 77.56 33.45

8 32,768 0 1.00 1.00 0.58 100.00 57.92
1 2.05 1.85 0.80 90.07 38.81
2 3.98 2.55 0.87 64.14 21.84
3 6.15 2.89 0.90 46.95 14.72
4 7.40 2.90 0.90 39.26 12.23

subgraphs on each processor are not too small), but up to 42% is discarded from block
Jacobi factors. Thus, one might tentatively speculate that, for a given subdomain size
and level, PILU(k) will provide more effective preconditioning than BJILU(k). We
have observed similar behavior for 2D problems also. For both 2D and 3D problems,
when there is a single subdomain the factors returned by the three algorithms are
identical. For the single subdomain case, the ordering we have used corresponds to
the natural ordering for these model problems.

An important observation to make in Table 4.4 is how the sizes (number of nonze-
ros) of the preconditioners depend on levels of fill. For the 3D problems considered
here (cube with 64 points on each side, seven-point stencil), a level one preconditioner
typically requires twice as much storage as the coefficient matrix A; when the level is
two, this ratio is about three; when the level is three, it is about six; and when the
level is four, it is about ten. For 2D problems (square grid with 256 points on a side,
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Table 4.5

Iteration comparisons for the 64×64×64 grid. U denotes unconstrained, C denotes constrained,
and B denotes block Jacobi ILU(k) preconditioners. The starred entries (*) indicate that, since
there is a single subdomain, the factor is structurally and numerically identical to the unconstrained
PILU(k). Dashed entries (-) indicate the solutions either diverged or failed to converge after 200
iterations. For Problem 2, when ε = 1/500 the level zero preconditioners did not reduce the relative
error in the solution by a factor of 105 at termination; when ε = 1/1000, the level one preconditioners
did not do so either.

Problem 1 Problem 2
Nodes per Subdom. ε = 1/500 ε = 1/1000

subdom. count Level U C B U C B U C B

262,144 1 0 43 * * 19 * * - * *
1 29 * * 16 * * 30 * *
2 24 * * 8 * * 32 * *
3 19 * * 8 * * 14 * *
4 16 * * 6 * * 8 * *

32,768 8 0 45 45 53 32 32 26 - - -
1 32 33 41 14 14 19 38 39 41
2 27 29 37 11 11 17 38 38 66
3 22 24 33 8 8 13 16 15 21
4 19 21 29 7 7 13 10 11 18

4,096 64 0 43 43 55 33 33 49 - - -
1 31 32 45 15 15 21 42 41 46
2 25 27 41 12 11 22 24 28 78
3 20 23 39 9 9 16 18 17 28
4 17 20 36 8 8 19 11 12 27

512 512 0 41 41 56 28 28 67 - - -
1 29 31 48 18 16 29 39 40 111
2 25 26 46 11 12 36 21 21 106
3 21 23 44 11 11 31 20 21 110
4 18 21 43 9 12 34 13 14 70

64 4,096 0 43 43 64 28 28 - 63 63 -
1 30 33 60 17 18 124 55 56 -
2 26 30 58 13 15 115 25 28 -
3 21 28 58 12 17 127 24 36 -
4 17 28 58 10 17 132 11 27 -

8 32,768 0 46 46 83 43 43 - 83 83 -
1 32 41 82 24 46 - 152 - -
2 25 40 82 11 45 - 13 115 -
3 19 40 82 5 44 - 7 107 -
4 16 40 82 4 45 - 6 111 -

five-point stencil), the growth of fill with level is slower; the ratios are about 1.4 for
level one, 1.8 for level two, 2.6 for level three, 3.5 for level four, 4.3 for level five, and
5.4 for level six.

In parallel computation fill levels higher than those employed in sequential com-
puting are feasible since modern multiprocessors are either clusters or have virtual
shared memory, and these have memory sizes that increase with the number of pro-
cessors. Another point to note is that the added memory requirement for these level
values is not as prohibitive as it is for a complete factorization. Hence it is practical
to trade-off increased storage in preconditioners for reducing the number of iterations
in the solver.

4.2.2. Convergence of preconditioned iterative solvers. The fill results
in the previous subsection are not influenced by the actual numerical values of the
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nonzero coefficients; however, the convergence of preconditioned Krylov space solvers
is influenced by the numerical values. Accordingly, Table 4.5 shows iterations re-
quired for convergence for various partitionings and fill levels for the three vari-
ant algorithms that we consider. The data in these tables can be interpreted in
various ways; we begin by discussing two ways that we think are primarily signifi-
cant.

First, by scanning vertically one can see how changing the number of subdomains,
and hence, matrix ordering, affects convergence. The basis for comparison is the
iteration count when there is a single subdomain. The partitioning and ordering
for these cases is identical to, and our data in close agreement with, that reported
by Benzi, Joubert, and Mateescu [4] for natural ordering. (They report results for
Problem 2 with ε = 1/500 but not for ε = 1/1000.)

A pleasing property of both the constrained and unconstrained PILU algorithms
is that the number of iterations increases only mildly when we increase the number
of subdomains from one to 512 for these problems. This insensitivity to the number
of subdomains when the number of nodes per subdomain is not too small confirms
that the PILU algorithms enjoy the property of parallel algorithmic scalability. For
example, Poisson’s equation (Problem 1) preconditioned with a level two factorization
and a single subdomain required 24 iterations. Preconditioning with the same level,
constrained PILU(k) on 512 subdomains needed only two more iterations. Similar
results are observed for the convection-diffusion problems also. This property is a
consequence of the fill between the subdomains that is included in the PILU algorithm.
Similar results have been reported in [26, 36], and the first paper includes a condition
number analysis supporting this observation.

Increasing the level of fill generally has the beneficial effect of reducing the number
of iterations needed; this influence is largest for the worse-conditioned convection-
diffusion problem with ε = 1/1000. For this problem, level zero preconditioners do not
converge for reasonable subdomain sizes. Also, even though level one preconditioners
require fewer iteration numbers than level two preconditioners in some cases, when the
PETSc solvers terminate because the residual norms are reduced by 105, the relative
errors are larger than 10−5 for the former preconditioners. The relative errors are
also large for the convection-diffusion problem with ε = 1/500 when the level is set
to zero.

Second, scanning the data in Table 4.5 horizontally permits evaluation of the
subdomain graph constraint’s effects. Again, unless subdomains are small and the
factorization level is high; constrained and unconstrained PILU(k) show very simi-
lar behavior. Consider, for example, Poisson’s equation (Problem 1) preconditioned
with a level two factorization and 512 subdomains. The solution with unconstrained
PILU(k) required 25 iterations while constrained PILU(k) required 26.

We also see that PILU(k) preconditioning is more effective than BJILU(k) for all
3D trials. (Recall that the single apparent exception, Problem 2, ε = 1/500, ILU(0)
with 32, 768 nodes per subdomain, has large relative errors at termination.) Again,
the extremes of convergence behavior are seen for Problem 2 with ε = 1/1000. Here,
with level one preconditioners, BJILU(k) suffers large relative errors at termination
while the other two algorithms do not, when the number of subdomains is 64 or fewer.

On 2D domains, while PILU(k) is more effective than BJILU(k) for Poisson’s
equation, BJILU(k) is sometimes more effective in the convection-diffusion problems.

We also examine iteration counts as a function of preconditioner size graphically.
A plot of this data appears in Figure 4.1. In these figures the performance of the
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Fig. 4.1. Convergence comparison as a function of preconditioner size for the convection-
diffusion problem, ε = 1/500 on the 64 × 64 × 64 grid. Data points are for levels 0 through 4. Data
points for constrained and unconstrained PILU(k) are indistinguishable in the third graph.

constrained and unconstrained PILU algorithms is often indistinguishable. We find
again that PILU(k) preconditioning is more effective than BJILU(k) for 3D problems
for a given preconditioner size; however, this conclusion does not always hold for 2D
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problems, especially for lower fill levels. As the number of vertices in the subdomains
increases, higher fill levels become more effective in reducing the number of iterations
needed for convergence. We find that fill levels as high as four to six can be the most
effective when the subdomains are sufficiently large. Fill levels higher than these do
not seem to be merited by these problems, even for the difficult convection-diffusion
problems with ε = 1/1000, where a level four preconditioner reduces the number of
iterations below ten.

5. Conclusions. We have designed and implemented a PILU algorithm, a scal-
able parallel algorithm for computing ILU preconditioners that creates concurrency
by means of graph partitioning. The theoretical basis of the algorithm is the in-
complete fill path theorem that statically characterizes fill elements in an incomplete
factorization in terms of paths in the adjacency graph of the initial coefficient matrix.
To obtain a scalable parallel algorithm, we employ a subdomain graph constraint that
excludes fill between subgraphs that are not adjacent in the adjacency graph of the
initial matrix. We show that the PILU algorithm is scalable by an analysis for 2D-
and 3D-model problems and by computational results from parallel implementations
on three parallel computing platforms.

We also study the convergence behavior of preconditioned Krylov solvers with
preconditioners computed by the PILU algorithm. The results show that fill levels
higher than one are effective in reducing the number of iterations, that the number of
iterations is insensitive to the number of subdomains, and that the subdomain graph
constraint does not affect the number of iterations needed for convergence while it
makes possible the design of a scalable parallel algorithm.

Appendix. Proof of the incomplete fill path theorem.
Theorem A.1. Let F = L̂ + Û − I be the filled matrix corresponding to an

incomplete factorization of A, and let fij be a nonzero entry in F . Then fij is a level
k entry if and only if there exists a shortest fill path of length k + 1 that joins i and j
in G(A).

Proof. If there is a shortest fill path of length k+1 joining i and j, we prove that
the edge exists by induction on the length of the fill path.

Define a chord of a path to be an edge that joins two nonconsecutive vertices on
the path. The fill path joining i and j is chordless, since a chord would lead to a
shorter fill path.

The base case k = 0 is immediate, since a fill path of length one in the graph
G(A) is an edge {i, j} in G(A) that corresponds to an original nonzero in A.

Now assume that the result is true for all lengths less than k + 1. Let h denote
the highest numbered interior vertex on the fill path joining i and j.

We claim that the (i, h) section of this path is a shortest fill path in G(A) joining
i and h. This section is a fill path by the choice of h since all intermediate vertices on
this section are numbered lower than h. If there were a fill path joining i and h that
is shorter than the (i, h) section, then we would be able to concatenate it with the
(h, j) section to form a shorter (i, j) fill path. Hence the (i, h) section is a shortest fill
path joining i and h. Similarly, the (h, j) section of this path is the shortest fill path
joining h and j.

Each of these sections has fewer than k + 1 edges, and hence the inductive hy-
pothesis applies. Denote the number of edges in the (i, h) ((h, j)) section of this path
by k1 (k2), where k1 + k2 = k + 1. By the inductive hypothesis, the edge {i, h} is a
fill edge of level k1 − 1, and the edge {h, j} is a fill edge of level k2 − 1. Now by the
sum rule for updating fill levels, when the vertex h is eliminated, we have a fill edge



PARALLEL INCOMPLETE FACTOR PRECONDITIONING 2213

{i, j} of level

(k1 − 1) + (k2 − 1) + 1 = (k1 + k2) − 1 = (k + 1) − 1 = k.

Now we prove the converse. Suppose that {i, j} is a fill edge of level k; we show
that there is a fill path in G(A) of length k + 1 edges by induction on the level k.

The base case k = 0 is immediate, since the edge {i, j} constitutes a trivial fill
path of length one. Assume that the result is true for all fill levels less than k. Let h
be a vertex whose elimination creates the fill edge {i, j} of level k. Let the edge {i, h}
have level k1, and let the edge {h, j} have level k2; by the sum rule for computing
levels, we have that k1 + k2 + 1 = k. By the inductive hypothesis, there is a shortest
fill path of length k1 + 1 joining i and h, and such a path of length k2 + 1 joining h
and j. Concatenating these paths, we find a fill path joining i and j of length

(k1 + 1) + (k2 + 1) = k1 + k2 + 2 = k + 1.

We need to prove that the (i, j) fill path in the previous paragraph is a shortest
fill path between i and j. Consider the elimination of any another vertex g that causes
the fill edge {i, j}. By the choice of the vertex h, if the level of the edge {i, g} is k′1
and that of {g, j} is k′2, then k′1 + k′2 +1 ≥ k. The inductive hypothesis applies to the
(i, g) and (g, j) sections, and hence the sum of their lengths is at least k + 1.

This completes the proof.
This result is a generalization of the following theorem that characterizes fill in

complete factorizations for direct methods, due to Rose and Tarjan [30].
Theorem A.2. Let F = L + U − I be the filled matrix corresponding to the

complete factorization of A. Then fij �= 0 if and only if there exists a fill path joining
i and j in the graph G(A).

Here we associate level values with each fill edge and relate it to the length of
shortest fill paths. The incomplete fill path theorem enables new algorithms for incom-
plete symbolic factorization that are more efficient than the conventional algorithm
that simulates numerical factorization. We have described these algorithms in an
earlier work [29] and the report is in preparation.

D’Azevedo, Forsyth, and Tang [9] have defined the (sum) level of a fill edge {i, j}
using the length criterion employed here, and hence they were aware of this result.
However, the theorem is neither stated nor proved in their paper. Definitions of level
that compute levels of fill nonzeros by rules other than by summing the levels of the
causative pairs of nonzeros have been used in the literature. The “maximum” rule
defines the level of a fill nonzero to be the minimum over all causative pairs of the
maximum value of the levels of the causative entries:

level(fij) = min
1≤h≤min{i,j}

max{level(fih), level(fhj)} + 1.

A variant of the incomplete fill path theorem can be proved for this case, but it is not
as simple or elegant as the one for the “sum” rule. Further discussion of these issues
will be deferred to a future report.

Acknowledgments. We thank Dr. Edmond Chow of CASC, Lawrence Liver-
more National Laboratory, and Professor Michele Benzi of Emory University for help-
ful discussions.



2214 DAVID HYSOM AND ALEX POTHEN

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[2] S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith, PETSc home page,

http://www.mcs.anl.gov/petsc, 1999.
[3] P. Bastian and G. Horton, Parallelization of robust multigrid methods: ILU factorization

and frequency decomposition method, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1457–
1470.

[4] M. Benzi, W. Joubert, and G. Mateescu, Numerical experiments with parallel orderings for
ILU preconditioners, Electron. Trans. Numer. Anal., 8 (1999), pp. 88–114.

[5] A. M. Bruaset and H. P. Langtangen, Object-oriented design of preconditioned iterative
methods in Diffpack, ACM Trans. Math. Software, 23 (1997), pp. 50–80.

[6] T. F. Chan and H. A. van der Vorst, Approximate and incomplete factorizations, in Par-
allel Numerical Algorithms, ICASE/LaRC Interdiscip. Ser. Sci. Engrg. 4, D. E. Keyes,
A. Sameh, and V. Venkatakrishnan, eds., Kluwer Academic, Dordecht, The Netherlands,
1997, pp. 167–202.

[7] E. Chow and M. A. Heroux, An object-oriented framework for block preconditioning, ACM
Trans. Math. Software, 24 (1998), pp. 159–183.

[8] E. Chow and Y. Saad, Experimental study of ILU preconditioners of indefinite matrices, J.
Comput. Appl. Math, 86 (1997), pp. 387–414.

[9] E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Ordering methods for preconditioned
conjugate gradient methods applied to unstructured grid problems, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 944–961.

[10] S. Doi and A. Lichnewsky, A Graph-Theory Approach for Analyzing the Effects of Ordering
on ILU Preconditioning, Tech. report 1452, Institut National de Recherche in Informatique
et en Automatique, Rocqhencourt, BP105-78153, Le Chesnay Cedex, France, 1991.

[11] S. Doi and T. Washio, Ordering strategies and related techniques to overcome the trade-off
between parallelism and convergence in incomplete factorizations, Parallel Comput., 25
(1995), pp. 1995–2014.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Numerical Linear
Algebra for High Performance Computers, SIAM, Philadelphia, 1998.

[13] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate gradients,
BIT, 29 (1983), pp. 635–657.

[14] V. Eijkhout, Analysis of parallel incomplete point factorizations, Linear Algebra Appl., 154–
156 (1991), pp. 723–740.

[15] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[16] G. Haase, Parallel incomplete Cholesky preconditioners based on the nonoverlapping data

distribution, Parallel Comput., 24 (1998), pp. 1685–1703.
[17] W. Hackbusch and G. Wittum, eds., Incomplete Decomposition (ILU): Algorithms, Theory,

and Applications, Notes Numer. Fluid Mech. 41, Vieweg, Braunschweig, Wiesbaden, 1993.
[18] D. Hysom and A. Pothen, Efficient parallel computation of ILU(k) preconditioners, in Pro-

ceedings of Supercomputing 99, ACM, New York, 1999, published on CDROM.
[19] D. Hysom and A. Pothen, Efficient Parallel Computation of ILU(k) Preconditioners, Tech.

report 2000-23, ICASE, NASA Langley Research Center, Hampton, VA, 2000.
[20] D. Hysom and A. Pothen, Parallel ILU Ordering and Convergence Relationships: Numerical

Experiments, Tech. report 2000-24, ICASE, NASA Langley Research Center, Hampton,
VA, 2000.

[21] M. T. Jones and P. E. Plassmann, An improved incomplete Cholesky factorization, ACM
Trans. Math. Software, 21 (1995), pp. 5–17.

[22] G. Karypis and V. Kumar, Parallel threshold-based ILU factorization, in Proceedings of the
ACM Conference on Supercomputing, San Jose, CA, 1997, CD-ROM, ACM, New York,
1997.
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