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1 Introduction and Background

Solving large, sparse systems of linear equations of the form Ax � b is a key com-
ponent in many scientific and engineering numerical computations. Such systems typ-
ically arise during the discretization or linearization of systems of partial differential
equations (PDEs) in the spatial and time domains. Since the LU factors tend to be
dense even when A is sparse, iterative solution methods are increasingly the solution
methods of choice.

It is frequently desirable to improve a system’s convergence properties by precon-
ditioning. A preconditioner M transforms the linear system into a related system pos-
sessing better convergence properties, M��Ax �M��b. Parallel algorithms have re-
cently been developed for computing approximate inverse preconditioners, but most
results show them to be less effective, in terms of iterations required for convergence,
than are serial preconditioners based on incomplete factorizations (ILU) of A. How-
ever, while ILU preconditioners are popular, effective, and robust, they are, according
to the conventional wisdom, primarily serial in nature.

We have developed and implemented course-grained algorithms that perform well
for 2D and 3D problems. High performance is achieved through use of local and global
orderings of partitioned matrices, coupled with the constraint that subdomain graphs,
which capture communication patterns, be identical for A and the LU factors. Our
algorithmic framework supports threshold-based (ILUT) and level based (ILU(k)) fac-
torization methods, with optional partial pivoting (ILUTP, ILUP(K)).

ILU preconditioning is based on the computation of triangular factors L and U ,
where LU � A. Preconditioner application reduces to the solution of two triangular
systems, Ly � b and Ux � y, during each iteration. The factors are commonly
grouped together as F � L� U � I . Several algorithms for computing the triangular
factors, L and U , are known and widely used in serial contexts.

ILUT algorithms perform row-by-row, upward-looking factorizations, discarding
elements that are smaller than a given value. Perhaps the most popular formulation is
ILUT(�� p) [14], which employs a dual-dropping strategy. The first parameter � is the
dropping threshold, while the second parameter, p, limits the amount of fill in any row
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of the matrix. If a row in the original matrix A has r nonzero entries, then a maximum
of r � p entries are permitted in the corresponding row of F . The limit p is sometimes
applied separately to upper and lower triangular portions of the row. As with other ILU
algorithms, both symmetric and non-symmetric variants exist.

In structurally based ILU(k) algorithms, factorization is separated into symbolic
and numeric phases. The permitted locations of nonzero entries in the factor are de-
termined during the symbolic phase, based on the level, k. All entries in the original
matrix are assigned a level of 0 and are permitted in the factor. During factorization,
whenever two permitted entries cause a new entry, the entry is assigned a level based
on the levels of the causative entries. If this level is less than or equal to k the entry is
permitted in the factor. Since a new entry may be caused by different pairs of existing
fill elements, the new entry retains the minimum value of all computed levels. ILU(k)
techniques were known as early as the 1960s, and were originally developed in the
context of solving finite difference equations for elliptic PDEs. The review article [3]
provides historical references.

Two different functions have been used for assigning levels to newly created fill
entries. Following most present day implementations, we use the sum definition, which
assigns the new entry the sum of the levels of the two causative entries, incremented
by one. For this definition, the length of a fill path corresponds to the number of times
an entry is divided by a pivot value during numerical factorization.

The “classical” algorithm for computing ILU(k) structures operates by mimicking
upward-looking, row-oriented factorization. This algorithm is commonly interpreted
as a unioning of the rows of F , although it also has graph theoretic interpretations.

The upper triangle of any matrix F can be associated with a directed graph,
G�FU � � �V�E�, which has has vertex set V and edge set E. A directed edge
fv� wg � E if and only if there is a nonzero matrix entry, fv�w in the upper triangle
of F . We assume the reader is familiar with the concept of paths in graphs. We call
G�FU � the directed adjacency graph of the upper triangle of F . Similar graphs, G�F �
and G�FL�, can be constructed for the complete matrix or the matrix’s lower triangle.

The classical algorithm, then, can be interpreted as factoring row j by conducting a
graph search in G�FU � starting from all nodes i, where the problem matrix A contains
a nonzero entry ai�j .

A newer Graph Search Algorithm, which we have described elsewhere [11], com-
putes structures identical to those of the classic algorithm, but operates by conducting
breadth-first searches in the underlying graph of G�AT

L�
S
G�AU �. This algorithm

arises from a theorem, cited below, which is an extension of the fill path theorem [12],
originally developed in the context of complete factorizations. The fill path theorem
states that fill edges can only exist between vertices joined by a fill path.

Definition 1 A fill path is a path joining two vertices v and w, all of whose interior
vertices are numbered lower than the minimum of the numbers of v and w.

Theorem 1 The edge fv� wg is a fill edge of level k if and only if there exists a shortest
fill path in G(A) joining v and w whose length is k � �.

D’Azevedo, Forsyth, and Tang defined fill levels in terms of shortest fill path
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lengths in [6], although they used the language of reachability sets rather than fill paths.
Hence they knew the result in Theorem 1, but did not state or prove the theorem.

Theorem 1 has an intuitively simple geometric interpretation. Construct a sphere
of radius k�� about any node i in a graph. Then a fill entry fi�j can only be permitted
in an ILU(k) factor if j is within the sphere. This interpretation will be used in the next
section to explain our constraint on the processor graph.

Many other ILU algorithms are known; these include combinations of partial piv-
oting with ILU(k) and ILUT, preservation of row-sums in the factor, drop-tolerance
versions of ILU(k), Fast Graph Search techniques [11], etc.

Although ILU(k) algorithms are widely known and implemented [1, 4, 13], virtu-
ally all studies we have come across in the literature have been limited to ILU(0) or
ILU(1). This is somewhat unfortunate since our own work, as reported in Section 3,
has shown high-level ILU(k) preconditioning to be highly effective for many problems.
We define a high-level ILU(k) preconditioner as one whose structure results from an
ILU(k) factorization, with k � �. As a rule of thumb, for problems with several hun-
dred thousand unknowns, we are interested in levels as high as ten or twelve.

The structural and numerical relationships between ILU(k) and ILUT factors, par-
ticularly for higher-level ILU(k), have not been well studied, although for some simple
cases (certain symmetric, diagonally-dominant matrices) the algorithms can be shown
to produce identical factors. Published works have tended to report iterations and so-
lution timings, but element-by-element comparisons between the factors themselves
have apparently not been undertaken.

The relationships between matrix orderings and ILU preconditioning perfor-
mance is a complex issue which has, and continues to be, studied by numerous
researchers [2, 5, 7, 8, 9]. At least four interrelated effects can be identified in parallel
contexts. First, matrix ordering can be used to provide parallelism, i.e, as a partitioning
method. Second, from a structural viewpoint, altering a matrix’s ordering and ILU(k)
or ILUT(�� p) parameters changes the amount and/or pattern of fill; this affects the
amount of work required during setup and application phases. Since altering the fill
count and/or pattern also changes a preconditioner’s numerical properties, the third
and fourth effects are alterations in convergence properties and numerical stability.

Since our algorithmic approach intrinsically changes a problem’s ordering, at vari-
ous places in the following sections we comment on how this effects parallelism, total
work (solution time), and convergence properties. We do not address the stability issue
in this work.

2 Parallel Algorithmic Framework

Our approach is based on three constraints, two of which are merely reflective of real-
world problems and hardware. First, we stipulate that the number of processors be
small in relation to the problem size: p � N . This is typically the case for existing
and planned hardware platforms (e.g, ASCI Teraflop machines) where we may have
thousands of processors but need to solve equations with millions of unknowns.

Second, we assume the matrix A is well-partitionable. This is analogous to phys-
ical domain decomposition such that subdomains have large volume to surface ratios.
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To generalize this notion, we call node i (and its associated matrix row) interior if, for
every nonzero entry aij or aji, nodes i and j belong to the same subdomain. Con-
versely, i is a boundary node if there is at least one edge aij or aji such that nodes i
and j belong to different subdomains. In general, then, a matrix is well-partitioned if
all subdomains have large interior to boundary node ratios. Spatially discretized partial
differential equations are frequently well-partitionable.

Prior to stating our final constraint we define a subdomain graph as a graph whose
nodes correspond to subgraphs (subdomains) and whose edgeset contains edge �r� s� if
subgraphs r and s are joined by one or more edges.

Our third constraint, then, is that the subdomain graph of the factor F and the
matrix A be identical. This constraint permits the determination of all communication
patterns prior to actual factorization phases, as discussed below.

Within each subdomain we require that interior nodes be ordered before boundary
nodes. By the fill path theorem [12], this ensures that, if an edge fi�j arises during
factorization and crosses subdomain boundaries, then nodes i and j must have been
boundary nodes in the graph of A. In other words, ordering interior nodes first in
the graph of A ensures that interior nodes can not be converted to boundary nodes in
the graph of F . This permits the independent factorization of interior nodes within
each subdomain. It also preserves parallelism during preconditioner application, since
subdomain interior nodes can be evaluated independently during the triangular solves.

The independence of subdomain interiors also allows selection of ILU algorithms
and parameters (e.g, level, for ILU(k)) on a subdomain by subdomain basis. Hence,
our framework is ideally suited for adaptive preconditioning in multi-physics problems,
wherein different models are used for different physical subdomains.

For the remainder of this paper we assume a one-to-one and onto mapping between
subdomains and processors. Also, due to the intimate connection between matrices and
graphs in the context of matrix factorization, we use the phrases eliminating a node and
factoring a row synonymously.

Figure 1 contains a high-level overview of our algorithm. Comments on particulars
follow.

The first step, which induces a global matrix reordering, generally requires global
communication. However, due to the constraint p � N , this computation is not time-
constraining. If special topological information is available, e.g., a regular 2D or 3D
grid has been used for discrectization, this step can be accomplished without commu-
nication.

Steps four through six can potentially give rise to sequential bottlenecks. If pro-
cessors r and s are neighbors in the subdomain graph and r is ordered before s, then
processor s cannot complete factorization of its boundary rows until it receives fac-
tored boundary row structural and numerical values from r. Regular 2D and 3D grids
can easily be ordered in red black fashion so that dependency paths for the subdomain
graph of A are at most of length one. Additional dependencies, however, can arise
during factorization, as illustrated in Figure 2.

It is not always possible to compute in advance where these dependencies will
arise. Further, if all dependencies are permitted, numerous synchronization points may
be required in order to determine which processors must send what to whom. Our third
constraint, that subdomain graphs of A and F be identical, dispenses with the need for
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Input: A well-partitioned, distributed matrix.

1. Form subdomain graph and order vertices to reduce directed path
lengths by a vertex coloring.

2. On each processor, locally order interior nodes, then order bound-
ary nodes.

3. Factor interior rows. Processors having no lower-ordered neigh-
bors in the subdomain graph also factor boundary rows, and go to
step 6.

4. Receive row structure and values of boundary rows from lower-
ordered neighbors in the subdomain graph.

5. Factor boundary rows.

6. Send boundary row structures and values to higher-ordered neigh-
bors in the subdomain graph.

Figure 1: Parallel Algorithmic Framework

this sort of synchronization.
The constraint, however, may alter the factor’s structural and numerical properties

by preventing the inclusion of some fill edges. Figure 3 is intended to provide an
intuitive characterization of prohibited fill edges. For a typical 2D grid, we see that
prohibited edges can arise near points where subdomains touch corners but are not
neighbors in the subdomain graph. Theorem 1 tells us that these edges can only arise
within a radius of k � � edges about such points.

If desirable, the subdomain graph constraint can be relaxed, as long as the structure
of the subdomain graph of F can be determined before factorization begins. Accept-
able subdomain graphs for F , for example, can be computed by performing ILU(k)
factorizations on the subdomain graph of A.

Several other variants of our algorithm are possible. For example, in earlier work on
serial preconditioning we developed algorithms that compute symbolic factors based
solely on the nonzero structure of A [11]. Incorporating these algorithms into our
framework permits complete separation of symbolic and numeric stages for ILU(k)
factorizations. This may be especially advantageous since we have found–with the ex-
ception of ILU(0)–that the cost for symbolic factorization tends to be equal, or slightly
greater than, that for numeric factorization. These algorithms are also particularly suit-
able for implementation in shared memory environments.

We have recently become aware of work by Karypis and Kumar [10], which is sim-
ilar to ours in that they employ partitioning, followed by elimination of interior nodes,
followed by elimination of boundary (in their terminology, interface) nodes. Their
experimental results are encouraging, since they support our thesis that this general

5



5

64 3

1 2 5

64 3

1 2

Figure 2: Left: ordered processor graph of A; all dependency paths are of length one.
Right: some of the additional dependencies that can arise during factorization; there
is now a path length of three, 1, 3, 4, 6, which necessitates three non-overlapping
communication phases for transmittal of boundary row structure and values.
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Figure 3: 2D grid after global and local reordering phase. Level 1 and level 2 fill
edges which cross subdomain boundaries are shown. The four dotted lines between
processors P 2 and P 4’s subdomains indicate fill edges that are prohibited due to the
subdomain graph constraint. All level 0, and level 1 and 2 edges not crossing subdo-
main boundaries, have been omitted for clarity.
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approach is effective, highly parallel, and scalable. We note the following differences
between their work and ours.

Karypis and Kumar’s work centers on ILUT, while we are developing object-oriented
code which supports tailored selection of numerous ILU variants on a subdomain-by-
subdomain basis. Additionally, our use of the fill path Theorem [12], along with The-
orem 1, its counterpart for ILU(k), enables us to present (see Section 4) theoretical
performance analyses. Our subdomain graph constraint enables an easy computation
of communication patterns; in contrast, Karypis and Kumar compute subdomain de-
pendencies in an ad hoc manner, as factorization progresses.

3 Results

Results in this section are based on the following model problems.
Problem 1. Laplace’s equation in two or three dimensions

�u � ��

Problem 2. Convection-diffusion equation with convection in the xy plane

���u�
�

�x
exyu�

�

�y
e�xyu � g�

Homogeneous boundary conditions were used for both problems. Derivative terms
were discretized on the unit square or cube, using 3-point central differencing on reg-
ularly spaced nx � ny � nz grids (nz � � for 2D). The zero vector was used for
the right-hand side of the resulting systems, Ax � b, and random vectors with values
in the range ���� �� were used for initial guesses. The coefficient for Problem 2 was
� � ��	��, which yields a moderately unsymmetric system of equations.

Although much present day scientific modeling results in systems of Partial Dif-
ferential Equations (PDEs) far more complicated than our model problems, most of
our parallel code’s behavior can be understood by examining these simple problems in
conjunction with ILU(k) preconditioning. ILU(k) preconditioning is amenable to per-
formance analysis since the structures of ILU(k) preconditioners are identical for any
PDE that has been discretized on a 2D or 3D grid with a given stencil. The structure de-
pends on the grid and the stencil only, and is not affected by numerical values. Identical
structures imply identical symbolic factorization costs, as well as identical flop counts
during the numerical factorization and solve phases. In parallel contexts, communi-
cation patterns and costs are also identical. While preconditioner effectiveness–the
number of iterations until the stopping criteria is reached–differs with the numerics of
the particular problem being modeled, the parallelism available in the preconditioner
does not.

The structure of ILUT preconditioners, on the other hand, is a function of the grid,
the stencil, and the numerics. Changing the problem, particularly for non-diagonally
dominant cases, can alter the preconditioner structure, even when the grid and stencil
remain the same. Moreover, even for diagonally dominant problems, the structure of
ILUT(�� p) preconditioners is a function of two parameters, � and p, which makes for
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a much more complicated experimental space than when structure is controlled by the
single parameter, k.

These are the primary reasons why, even though our algorithmic framework is suit-
able with use of ILUT(�� p) and other ILU variants, we find performance evaluation
more meaningful when carried out in the context of ILU(k). In addition, most ILU(k)
implementations separate symbolic from numeric factorization, thus permitting an easy
determination of the time spent in each stage. We typically see that the symbolic phase–
during which no floating point operations are issued–takes as long or longer than the
numeric phase. These relationships are very difficult to determine for ILUT, since the
symbolic and numeric phases must be interleaved on a row-by-row basis.

In addition to demonstrating that our algorithm can provide high degrees of par-
allelism, several other issues must be addressed. Our results show that available par-
allelism increases with level, so we need to examine the effectiveness of high-level
preconditioners for reducing total solution time. Since memory requirements are di-
rectly related to fill count, we should consider whether the storage costs imposed by
high-level preconditioners are acceptable. As there is not much point in parallelizing
operations which only account for very small proportions of execution time, we need
to examine how much run time is typically consumed by preconditioner computation.
Finally, since matrix orderings can significantly effect execution time for both ILU(k)
and ILUT, we should look at how the matrix orderings required by our approach affect
convergence behavior.

3.1 Preconditioner Effectiveness

In this subsection we consider the effectiveness of high-level preconditioners; look at
the relationships between factorization time, total execution time, and level; exam-
ine storage costs; and consider how the orderings imposed by our algorithms effect
convergence. These topics are fairly easy to address since they can be adequately ex-
amined in sequential environments. The results are important, however, because they
lay the groundwork for interpreting our code’s performance in parallel environments,
presented in the next subsection.

Experiments in this subsection were conducted on a Sun Ultra-30, with 1024
Megabytes of main memory and a CPU clock rate of 300 MHz. Problem 1 was
solved using the Conjugate Gradient method and left preconditioning. Problem 2 was
solved using GMRES with restart=30, Unmodified Gram-Schmidt, and 1 step itera-
tive refinement orthogonalization. The solvers were based on optimized code from the
PETSc library, with our own routines used to measure CPU time. Stopping criteria was
k rk k�	 rtol with rtol, the relative decrease in the residual norm, ranging from ����

to ����.
Since Problem 1 is symmetric, it could be preconditioned using Incomplete Cholesky

Factorization (IC(k)) rather than ILU(k). However, if the problem were augmented by
the addition of a first derivative term the resulting system would unsymmetric and we
would be forced to use ILU(k), even if the first-order term had near-negligible coef-
ficients. We therefore believe that reporting on ILU(k) rather than IC(k) makes the
results more general.
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Table 1: Convergence behavior for Laplace’s equation (Problem 1) on 2D, 
��� 
��
grid.

rtol � ���� rtol � ����

level nzF/nzA solution time setup ratio (%) solution time setup ratio (%)
0 1.0 10.1 5 33.2 1.6
1 1.4 7.8 12 24.6 3.6
2 1.8 7.1 15 21.6 4.9
3 2.6 6.4 25 19.1 8.2
4 3.4 6.3 32 17.6 11.6
5 4.2 6.9 39 16.8 16.4
6 4.9 6.5 50 16.4 20.0
7 5.7 7.4 54 15.7 25.0
8 6.5 8.0 62 16.4 30.0
9 7.3 8.8 65 16.6 34.8

Total solution times are reported in preference to iteration counts since work-per-
iteration is largely dependent on the total amount of fill permitted in the preconditioner.
Also, evaluating preconditioner effectiveness by iteration count comparison ignores
preconditioner setup (factorization) time, which can constitute a considerable propor-
tion of total execution time.

We begin by reviewing some statistics concerning ILU(k) behavior in general. Ta-
ble 1 summarizes ILU(k) behavior for Problem 1. The table shows total solution time,
the percentage of total solution time devoted to preconditioner factorization, and the
ratio of nonzeros in the preconditioner to that in the problem (nzF/nzA).

There are three points to be noted in this data. First, the most time-efficient solu-
tions require relatively high fill levels. Second, as greater resolution is required (smaller
rtol), the optimal preconditioner level increases. Changing the stopping criteria by a
factor of 100, from rtol � ���� to rtol � ����, results in a change from ILU(4)
to ILU(7), for fastest solution. Finally, for the most time-efficient solutions, between
1/3 and 1/4 of execution time was spent in the preconditioner setup phase (symbolic
and numeric factorization). Application of Amdahl’s Law tells us that, if we can not
effectively parallelize ILU(k) factorization, we can never obtain more than a three-fold
speedup.

Table 2 contains similar statistics for Problem 2. The same trends noted for Prob-
lem 1 are evident here, although the fastest solutions required an even greater fill level.

It is illuminating to note how the amounts of fill in ILU(k) preconditioners com-
pare with the amounts commonly permitted in ILUT preconditioners. In [2], Benzi,
et. al., compared preconditioner performance between ILU(0), ILU(1), ILUT(.005,5),
and ILUT(.001,10) 2, for a variety of problems and matrix orderings. We noticed that,
for most of the cases reported, the amount of fill permitted in the ILUT precondition-

2more accurately, they used SILUT, a modification of the ILUT algorithm which gives rise to symmetric
preconditioners when the original matrix is symmetric.
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Table 2: Convergence behavior for Convection-Diffusion equation (Problem 2) on 2D,

��� 
�� grid.

rtol � ���� rtol � ����

level nzF/nzA solution time setup ratio (%) solution time setup ratio (%)
0 1.0 39.2 1.3 165.8 0.3
1 1.4 34.3 2.2 108.2 0.7
2 1.8 33.5 2.7 99.5 0.9
3 2.6 31.4 4.1 82.1 1.5
4 3.4 30.2 5.8 77.6 2.2
5 4.2 28.0 8.7 69.4 3.5
6 4.9 26.4 11.2 56.9 5.2
7 5.7 25.4 13.8 54.3 6.6
8 6.5 23.5 18.8 54.0 8.0
9 7.3 23.6 21.8 48.4 10.5

10 8.1 25.8 25.6 50.0 13.2

Table 3: Comparison of ILU(k) and ILUT fill counts, 2D domain.

grid size ILUT(.01,5), ILUT(.001,10) ILU(1) ILU(2) ILU(3) ILU(4) ILU(5)
��� �� 31 154 16 31 62 93 124
�	�� �	� 126 628 64 128 256 383 509

��� 
�� 174 865 88 177 353 528 702
���� ��� 310 1544 158 316 630 944 1257

ers exceeded that permitted in the ILU(k) factors. This motivated us to wonder what
ILU(k) levels would be required to produce amounts of fill comparable to those in the
ILUT factors. Tables 3 and 4 show this comparison. The figures for the ILUT levels
are from [2]. The figures for ILU(k) were computed using the PETSc library. In these
tables we use Benzi’s method of reporting fill counts, which is the amount of fill greater
than level zero, in either the upper or lower triangle of the factor.

Even though the entries are computed differently, every entry in an ILUT factor
can be assigned the level it would have, if it were permitted in an ILU(k) factor. Since
The fill counts in the 2D ILUT(.001,10) factors in Table 3 exceed the fill counts for the
ILU(5) factors, it follows that the ILUT factors must include at least some level six, or
larger, entries.

High-level preconditioners are effective for many problem types. The Driven Cav-
ity set from the SPARSKIT Collection consists of a series of non-symmetric, indefinite
matrices which arise from modeling of the incompressible Navier-Stokes equations.
They are reportedly difficult to solve iteratively due to the high condition numbers of
the coefficient matrices. All the problem can be solved, however, using high-level pre-
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Table 4: Comparison of ILU(k) and ILUT fill counts, 3D domain.

grid size ILUT(.01,5), ILUT(.001,10) ILU(1) ILU(2) ILU(3)
��� ��� �� 14 38 9 22 47

�� 
�� 
� 119 313 83 216 475
��� ��� �� 236 615 167 439 971
	�� 	�� 	� 466 1206 336 885 1965

Table 5: Iterative performance for Driven Cavity problem e40r3000. ILU(1) converged
very slowly, and was terminated before achieving exit criteria.

level solution PC formation residual iterations
time (s) time ��� norm

1 95.7 8 8.0e-3 NA
2 91.8 14 3.0e-5 299
3 49.2 49 1.8e-5 85
4 58.2 58 3.6e-5 56
5 64.5 64 4.7e-5 29
6 78.7 85 1.5e-5 27

conditioners. Table 5 shows a typical problem, for which the fastest solution time was
obtained with ILU(3) preconditioning. This problem can also be solved using high-
level ILUT preconditioning, although we found that solution times were slower, with
larger amounts of fill required to force convergence.

The use of high-level preconditioning is counter-intuitive in the sense that a pri-
mary reason for employing iterative solvers is to reduce storage requirements. There
are, however, large gaps between the amounts of fill we have been talking about and
that required for direct factorization. Figure 4 shows storage requirements as a func-
tion of level, for k � �� � � � �K, where ILU(K) results in complete factorization. The
conclusion is that memory requirements for high-level preconditioning, given the lev-
els we have been discussing, do not begin to approach that needed for direct solution
methods.

While the curve in Figure 4 shows fill growth typical of what we have observed for
all medium to large matrices studied, a word of caution is in order. Smaller matrices,
such as most in the Harwell Boeing collection, tend to have relatively small maximum
levels. For such problems, employing ILU(k) for k � � may result in factors whose
sizes approach those for complete factorization.

We now turn to the question of how our algorithm’s matrix reorderings affect con-
vergence. Although our algorithm admits a high degree of parallelism (as demonstrated
in the following subsection), the parallelism will not be of much utility if an imposed
ordering results in a significant degradation of convergence behavior.

There are several ways we might investigate this question. For example, we could
completely solve linear systems in parallel environments, using our preconditioner
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code in conjunction with some iterative software library such as PETSc. This is, of
course, the ultimate goal. However, measurements from such a procedure do not al-
low us to isolate the effects of matrix orderings from other influences. Instead, the
measurements would reflect a combination of influences from our algorithm, its imple-
mentation, the PETSc library, the MPI specification as implemented on some selected
platform/communication network, contention with other users for system resources,
and so on.

We therefore elected to examine ordering effects in a more tightly controlled envi-
ronment. Problems were generated, and local and global orderings carried out, using
our parallel code. Each subdomain’s interior nodes were locally numbered using nat-
ural ordering. At this point the matrices were written to file, after which convergence
behavior was studied on a uni-processor platform.

For each series of runs we generated problems for 2D grids ranging in size from
��� �� to ���� ��� grid-points, and optimally partitioned the grids amongst 1, 4,
9, 16, and 25 processors. Our findings are summarized in Figures 5 and 6. The figures
show that the partitioning and subsequent ordering does affect convergence behavior,
but that the effect is relatively minor. Further, the effect decreases as the problem
size increases, relative to the number of processors. The fastest solution time on the
��� � ��� grid was 18% slower for 25 processors than for a single processor, while
there was only a 3.8% difference on the ���� ��� grid.
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Figure 7: Symbolic factorization performance on 4, 9, and 16 processors, SGI Origin

3.2 Parallel Performance

The present version of our code uses MPI library calls for communication, though we
are investigating shared-memory implementations.

Figure 7 shows symbolic factorization performance for ILU(k) symbolic factoriza-
tion on an SGI Origin2000. We have experienced considerable contention with other
users on this machine, as evidenced in the noise spikes in the four-processor line. Fig-
ure 8 shows similar results on the Coral Beowulf cluster at ICASE

Careful readers may note that Figure 7 plots level on the x-axis, while Figure 8
plots nzF/nzA. This difference is more reflective of the author’s fickleness than of any
substantive distinction. When a given problem is partitioned amongst differing num-
bers of processors while fill level is set at some value greater than one, fill counts in
the computed preconditioners will vary. The variance is slight, however, given the
conditions assumed throughout this paper. Our opinion as to how this data ought best
be represented continues to oscillate between the options of plotting efficiency vs.time,
or efficiency vs. fill level.

We have tested debugging versions of our code using two different grid partitioning
strategies. With respect to the underlying grid, block partitioning divides the grid into
square (cubic) sub-grids, while striped partitioning divides the grid into horizontal
slices. Blocked partitioning is optimal in the sense that the ratio of interior/boundary
nodes remains constant when problem size is scaled linearly with the number of pro-
cessors. Striped partitioning would arise in an application wherein grid points were
naively numbered globally, in natural order. Table 6 compares efficiency for symbolic
factorization for blocked vs. striped partitioning. Efficiency for the striped cases is in-
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Table 6: Performance comparison between blocked and striped partitioning for ���
�� grid; data is for symbolic factorization on an SGI Origin2000, for 4 and 16 proces-
sors.

Efficiencies (�)
p = 4 p = 16

level blocked striped blocked striped
0 51 57 22 21
1 58 56 26 23
2 69 65 33 31
4 79 76 45 43
6 83 78 62 54
8 88 77 57 53

10 93 82 68 66
12 92 76 78 70

ferior to that for the blocked cases, which is expected from the scaling considerations.
However, these results indicate that our methods can produce favorable results even for
matrices whose underlying grids are poorly partitioned.

4 Performance Analysis

In this section we present simplified theoretical analyses of algorithmic behavior for
matrices arising from PDEs discretized on 2D grids with five-point stencils and 3D
grids with seven-point stencils. Since our arguments are structural in nature, we assume
ILU(k) is the factorization method of choice. After a word about nomenclature, we
begin with the 2D case.

The word grid refers to the grid (mesh) of unknowns; for Regular 2D and 3D grids
with five and seven point stencils, respectively, this is identical to the undirected graph,
G�A�. We remind the reader that we use the terms eliminating a node and factoring a
row synonymously.

We assume the grid has been block-partitioned, with each subdomain consisting of
a square subgrid of dimension c�c. We also assume the subdomain grid has dimensionsp
p �pp, so there are p total processors. There are thus N � c�p nodes in the grid,

and subdomains have at most �c � �
q

N
p boundary nodes.

If subdomain interior nodes are locally numbered in natural order and k � c,
matrix rows in the factorF can asymptotically be considered as having �k (strict) upper
triangular and �k (strict) lower triangular nonzero entries. The justification for this
statement arises from consideration of Theorem 1; the geometric intuition is illustrated
in Figure 9.

Assuming the classic ILU(k) algorithm is used for symbolic factorization, both
symbolic and numeric factorization of row j entails �k� work. This is because, for
each lower triangular entry fj�i in matrix row j, factorization requires “touching” each
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Figure 9: Counting lower triangular fill edges in a naturally ordered grid. From top
to bottom, there are two level 0 edges; there is one level 1 edge, due to fill path 9,
3, 4; there is one level 2 edge due to fill path 9, 3, 4, 5; there are two level 3 edges,
due to fill paths 9, 3, 4, 5, 6 and 9, 3, 2, 1, 7. Two additional fill edges are created
for every level greater than three. Since there is a total of six fill edges for a level 3
factorization, we conclude that asymptotically there are �k lower triangular edges in a
level k factorization. By symmetry, the upper triangle must contain the same number
of entries.
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upper triangular entry in row i.
A red-black ordering of the subdomain grid gives an optimal bipartite division. If

red subdomains are numbered before black subdomains, our algorithm simplifies to the
following three stages.

1. Red processors eliminate all nodes; black processors eliminate interior nodes.

2. Red processors send boundary-row structure and values to black processors.

3. Black processors eliminate boundary nodes.

If these stages are non-overlapping, the cost of the first stage reduces to the cost of
eliminating all nodes in a subdomain. This cost is �k�c� � �k�N

p .
The cost for the second stage is the cost of sending structural and numerical values

from the upper-triangular portions of the boundary rows to neighboring processors. If
k � c, Theorem 1 can be used to show that, asymptotically, a processor only needs to
forward values from c rows to each neighbor. Assuming a standard, non-contentious
communication model wherein 	 and 
 represent message startup and cost-per-word
respectively, and with time for each operation normalized to unity, the cost for this step

is ��	� �k
c� � ��	� �k

q

N
p �.

Since the cost of factoring a boundary row can be shown to be asymptotically iden-
tical to that for factoring an interior row, the cost for eliminating the �c boundary nodes

is ��k����c� � ��k�
q

N
p .

Speedup can then be expressed as

speedup �
�k�N

�k�N
p � ��	� �k


q
N
p � � ��k�

q
N
p

�

where the numerator represents cost for uni-processor (sequential) execution, and the
three denominator terms represent the costs for the corresponding stages of the simpli-
fied algorithm for parallel execution.

Two interpretations of this equation are in order. First, for a fixed problem size
and number of processors, the parallel computational cost (the first and third terms in
the denominator) is proportional to k�, while the communication cost (the second term
in the denominator) is proportional to k. This explains the experimentally observed
increase in efficiency with level. Second, if the ratio N�p is large enough, the first
term in the denominator will dominate the second and third terms, and efficiency will
approach 100%.

For the 3D case we assume partitioning into cubic subgrids of dimension c � c �
c and a subdomain grid of dimension p��� � p��� � p���, which gives N � c�p.
Subdomains have at most �c� boundary nodes. A development similar to that above
shows that, asymptotically, matrix rows in the factor F have k� (strict) upper and lower
triangular entries, so the cost for factoring a row is k�. Speedup for this case can then
be expressed as

speedup �
k�N

k�N
p � ��	� k�
�Np �

���� � �k��Np �
���

�
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