
Object�oriented design for sparse direct solvers �

Florin Dobrian�� Gary Kumfert�� and Alex Pothen���

� Department of Computer Science� Old Dominion University
� ICASE� NASA Langley Research Center

Abstract� We discuss the object�oriented design of a software package
for solving sparse� symmetric systems of equations �positive de�nite and
inde�nite� by direct methods� At the highest layers� we decouple data
structure classes from algorithmic classes for �exibility� We describe the
important structural and algorithmic classes in our design� and discuss
the trade�o	s we made for high performance� The kernels at the lower
layers were optimized by hand� Our results show no performance loss
from our object�oriented design� while providing �exibility� ease of use�
and extensibility over solvers using procedural design�

� Introduction

The problem of solving linear systems of equations Ax � b� where the coef�
�cient matrix is sparse and symmetric� represents the core of many scienti�c�
engineering and �nancial applications� In our research� we investigate algorith�
mic aspects of high performance direct solvers for sparse symmetric systems�
focusing on parallel and out�of�core computations� Since we are interested in
quickly prototyping our ideas and testing them� we decided to build a software
package for such experimentation� High performance is a major design goal� in
addition to requiring our software to be highly �exible and easy to use�

Sparse direct solvers use sophisticated data structures and algorithms� at
the same time� most software packages using direct solutions for sparse systems
were written in Fortran 		� These programs are di
cult to understand and
di
cult to use� modify� and extend due to lack of support for abstract data
types� encapsulation� and dynamic memory allocation� The lack of abstract data
types and encapsulation leads to global data structures scattered among software
components� causing tight coupling and poor cohesion� The lack of abstract data
types and dynamic memory allocation leads to function calls with long argument
lists� many arguments having no relevance in the context of the corresponding
function calls� In addition� some memory may be wasted because all allocations
are static� Modifying and extending such a solver is also di
cult because of the
tight coupling and poor cohesion�

� This work was partially supported by the National Science Foundation grants
CCR�
���
� and DMS�
������ by the Department of Energy grant DE�FG���

�ER���� and by NASA under Contract NAS���
��� while the third author was
in residence at the Institute for Computer Applications in Science and Engineering
�ICASE�� NASA Langley Research Center� Hampton� VA ����������



We designed our package using object�oriented techniques� Most data struc�
tures and algorithms we make use of are classical� and our new contribution is
in the design of the software� To the best of our knowledge� this work repre�
sents the �rst object�oriented design of a sparse direct solver� We were aware
of the performance loss caused by some object�oriented techniques� and so we
designed our code carefully� making some necessary tradeo�s to preserve high
performance�

We chose C�� as a programming language since it has full support for
object�oriented design� yet it does not enforce it� The �exibility of C�� allows
a software designer to chose the appropriate tools for each particular software
component� Another candidate could have been Fortran �� but it does not have
inheritance and polymorphism� We need inheritance in several cases outlined
later� We also wish to derive new classes for a parallel version of our code� We
do not want to replicate data and behavior that is common to some classes� As
for polymorphism� there are several situations when we declare just interfaces in
a base class and we want to let derived classes implement a proper behavior�

In this paper we present the design of our sequential solver�Work on a parallel
version using the message�passing model is in progress� Object�oriented packages
for iterative methods are described in ��� ���

� Overview of the problem

Graph theory provides useful tools for computing the solution of sparse systems�
Corresponding to a symmetric matrix A is an undirected graph G�A�� Each
vertex in the graph corresponds to a column �or row� in the matrix and each
edge to a symmetric pair of o��diagonal nonzero entries�

The factorization of A can be modeled as the elimination of vertices in its
adjacency graph� The factorization adds edges to G�A�� ending up with a new
graph G��A�P �� where P is a permutation that describes the order in which the
columns of A are eliminated� Edges in G� but not in G are called �ll edges and
they correspond to �ll elements� nonzero entries in the �lled matrix L�D�LT

that are zero in A�
The computation of the solution begins thus by looking for an ordering that

reduces the �ll� Several heuristic algorithms �minimum degree algorithm based
on a greedy approach� and nested dissection based on graph partitioning� may
be used during this step� The result is a permutation P �

Next� an elimination forest F �A�P �� a spanning forest of G��A�P �� is com�
puted� The elimination forest represents the dependencies in the computation�
and is vital in organizing the factorization step� Even though it is a spanning for�
est of the �lled graph� it can be computed directly from the graph of A and the
permutation P � without computing the �lled graph� In practice� a compressed
version of the elimination forest is employed� Vertices that share a common
adjacency set in the �lled graph are grouped together to form supernodes� Ver�
tices in a supernode appear contiguously in the elimination forest� and hence a
supernodal version of the elimination forest can be used�



Th factorization step is split in two phases� symbolic and numerical� The �rst
computes the structure of the factors and the second computes their entries� The
symbolic factorization can be computed e
ciently using the supernodal elimi�
nation forest� The elimination forest also guides the numerical factorization� A
multifrontal factorization processes the elimination forest in postorder� Corre�
sponding to each supernode are two dense matrices� a frontal matrix and an
update matrix� Entries in the original matrix and updates from the children of
a supernode are assembled into the frontal matrix of a supernode� and then
partial dense factorization is performed on the frontal matrix to compute factor
entries� The factored columns are written to the factor matrix� and the remain�
ing columns constitute the update matrix that carries updates higher in the
elimination forest�

Finally� the solution is computed by a sequence of triangular and diagonal
solves� Additional solve steps with the computed factors �iterative re�nement�
may be used to reduce the error if it is large�

When the coe
cient matrix is positive de�nite� there is no need to pivot
during the factorization� For inde�nite matrices� pivoting is required for stability�
Hence the permutation computed by the ordering step is modi�ed during the
factorization�

Additional details about the graph model may be found in ���� about the
multifrontal method in ���� and about inde�nite factorizations in ����

� Design of the higher layers

At the higher layers of our software� the goal was to make the code easy to
understand� use� modify and extend� Di�erent users have di�erent needs� Some
wish to minimize the intellectual e�ort required to understand the package�
others wish to have more control� Accordingly� there must be di�erent amounts
of information a user has to deal with� and di�erent levels of functionality a user
is exposed to�

At the highest level� a user is aware of only three entities� the coe
cient
matrix A� the right hand side vector b� and the unknown vector x� Thus a user
could call a solver as follows�

x � Compute�A� b��

expecting the solver to make the right choices� Of course it is di
cult to achieve
optimal results with such limited control� so a more experienced user would
prefer to see more functionality� Such a user knows that the computation of the
solution involves three main steps� ��� ordering� to preserve sparsity and thus
to reduce work and storage requirements� ��� factorization� to decompose the
reordered coe
cient matrix into a product of factors from which the solution
can be computed easily� and ��� solve� to compute the solution from the factors�
This user would then like to perform something like this�

P � Order�A��



�L�D�P � � Factor�A�P ��
x � Solve�L�D�P � b��

Here� P is a permutation matrix that trades sparsity for stability� L is a unit
lower triangular or block unit lower triangular matrix� and D is a diagonal or
block diagonal matrix�

At this level the user has enough control to experiment with di�erent algo�
rithms for each one of these steps� The user could choose a minimum degree or a
nested dissection ordering� a left�looking or a multifrontal factorization� In addi�
tion� the user may choose to run some of the steps more than once to solve many
related systems of equations� or for iterative re�nement to reduce the error�

We organized the higher layers of our software as a collection of classes that
belong to one inheritance tree� At the root of the tree we put the Object class�
which handles errors and provides a debugging interface� Then� since the two
basic software components are data structures and algorithms� and since decou�
pling them achieves �exibility� we derived aDataStructure class and anAlgorithm
class from Object� The �rst one handles general information about all structural
objects and the second one deals with the execution of all algorithmic objects�

An important observation is necessary here� While full decoupling needs per�
fect encapsulation� the overhead introduced by some interfaces may be too high�
Thus� performance reasons forced us to weaken the encapsulation allowing more
knowledge about several objects� For sparse matrices� for example� we store the
data �indices and values� column�wise� in a set of arrays� We allow other ob�
jects to retrieve these arrays� making them aware of the internal representation
of a sparse matrix� We protect the data from being corrupted by providing
non�const access only to functions that need to change the data� Such a design
implementation may be unacceptable for an object�oriented purist� However� a
little discipline from the user in accessing such objects is not a high price for a
signi�cant gain in performance�

A user who does not want to go beyond the high level of functionality of the
main steps required to compute the solution sees the following structural classes�
SparseSymmMatrix� Vector� Permutation and SparseLwTrMatrix� The �rst class
describes coe
cient matrices� the second right hand side and solution vectors�
the third permutations� and the fourth both triangular and diagonal factors�
We decided to couple these last two because they are always accessed together
and a tight coupling between them leads to higher performance without any
signi�cant loss in understanding the code� The derivation of these four classes
from DataStructure is shown in Fig� ��

At the same level the user also sees several algorithmic classes� First there are
various ordering algorithms� such as NestDissOrder or MultMinDegOrder� Then
there are factorization algorithms� like PosDefLeftLookFactor� PosDefMultFrt�

Factor or IndefMultFrtFactor� Finally� the solve step can be performed by Pos�

DefSolve or IndefSolve algorithms� Figure � describes the derivation of some of
these classes from Algorithm� Using them one can easily write a solver �positive
de�nite� for concreteness� in the following way�

main��



DataStructure

SparseSymmMatrix Permutation SparseLwTrMatrix Vector

Fig� �� High level structural classes

�

�� Load the coefficient matrix and the right hand side vector� ��

SparseSymmMatrix a���a�mat		�


Vector b���b�vec		�


�� Reorder the matrix to reduce fill� ��

Permutation p�a�getSize���


MultMinDegOrder order�a� p�


order�run��


�� Factor the reordered matrix� ��

SparseLwTrMatrix l�a�getSize���


PosDefMultFrtFactor factor�a� p� l�


factor�run��


�� Declare algorithmic objects� ��

Vector x�a�getSize���


PosDefSolve solve�l� p� b� x�


solve�run��


�� Save the solution� ��

x�save���x�vec		�


�

Algorithm

MultMinDegOrder PosDefMultFrtFactor PosDefSolve

Fig� �� Some high level algorithmic classes



More details are available beyond this level of functionality� The factoriza�
tion is split in two phases� symbolic and numerical� The symbolic factorization is
guided by an elimination forest� The multifrontal method for numerical factor�
ization uses an update stack and several frontal and update matrices� which are
dense and symmetric� Pivoting strategies for inde�nite systems can be controlled
at the level of frontal and update matrices during the numerical factorization
phase� Figures � and � depict the derivation of the corresponding structural and
algorithmic classes�

DataStructure

ElimForest DenseSymmMatrix UpdateStack

UpdateMatrixFrontalMatrix

Fig� �� Structural classes used by the multifrontal numerical factorization algorithms

Algorithm

PosDefMultFrtNumFactorSymFactor IndefMultFrtNumFactor

Fig� �� Some symbolic and numerical factorization algorithmic classes

Data encapsulated in classes such as SparseSymmMatrix� SparseLwTrMa�

trix� and Permutation in our design are usually scattered across several �les in a
solver written in a language without abstract data types� The coe
cient matrix�
described by the SparseSymmMatrix class� is stored using several arrays� colPtr�
rowIdx and value� The SparseLwTrMatr is similar� The permutation uses two
arrays� oldToNew and newToOld� All these arrays are kept together in our imple�
mentation inside the abstract data types de�ned by the corresponding classes�

In a conventional sparse solver� these arrays are global and some of them are
declared in di�erent modules� A coe
cient matrix� a factor� or a permutation
is not a well de�ned entity but the sum of scattered data� This not only leads



to a lack of coherence but also to very tight coupling� several modules accessing
these arrays without any restriction�

� Design of the lower layers

While the larger part of our code deals with the design of the higher layers�
most of the CPU time is actually spent in few computationally intensive loops�
No advanced software paradigms are needed at this level so we concentrated on
performance by carefully implementing these loops�

A major problem with C�� �also with C� is pointer aliasing� which makes
code optimization more di
cult for a compiler� We get around this problem
by making local copies of simple variables in our kernel code� Another source
of performance loss is complex numbers� since they are not a built�in in C��
data type as in Fortran� Recent C�� programming environments come with a
complex class� Yet� higher performance is still achieved in Fortran 		 for complex
arithmetic�

We implemented our computationally intensive kernels both in C�� and
Fortran 		� A choice between these kernels can be made using a compile time
switch� Another compilation switch selects between real and complex arithmetic�
We de�ned our own class for complex numbers but we make minimal use of com�
plex arithmetic operators� which are overloaded� The bulk of the computation is
performed either in C�� kernels written in C�like style or in Fortran 		 kernels�
Currently� we obtain better results with the Fortran 		 kernels�

� Results

We report results obtained on a ��MHz IBM RS����� machine with ��� MB
main memory� ��� KB L� data cache and �MB L� cache� running AIX ����
Since this machine has two �oating point functional units� each one capable of
issuing one fused multiply�add instruction every cycle� its peak performance is
theoretically ��� M�op�s� We used the Fortran 		 kernels and we compiled the
code with xlC ����� ��O� �qarch�pwr�� and xlf ��� ��O� �qarch�pwr���

We show results for three types of problems� two�dimensional nine�point
grids� Helmholtz problems� and Stokes problems� using multiple minimum de�
gree ordering and multifrontal factorization� We use the following notation� n
is the numbers of vertices in G�A�� �this is the order of the matrix�� m is the
number of edges in G�A�� and m� is the number of edges in G��A�P �� the
�lled graph� The di�erence between m� and m represents the �ll� In Table �
we describe each problem using these three numbers and we also provide the
cputime and the performance for the numerical factorization step� generally the
most expensive step of the computation� The higher performance obtained for
the Helmholtz problems is because complex arithmetic leads to better use of
registers and caches than real arithmetic� We achieved performance comparable
to other solvers� written completely in Fortran 		� Hence there is no performance
penalty due to the object�oriented design of our solver�



Table �� Performance on an IBM RS����� for three sets of problems from �uid dy�
namics and acoustics� The cputimes �in seconds� and performance for the numerical
factorization step are reported�

Problem n m m
� time M�op�s

grid
��� ��
�
 ������ ������� ���� ���
grid
��� ����
 ������ ������ ���� ����
grid
��� ����� ����� �������� ����
 ����

helmholtz� ��� ���� ������� ���� ���
helmholtz� ������ 
����� ��
���� ��� ����
helmholtz ������ �
�
�� ��������� ����� 
���

e�r���� ���� ������ ��
���� ���� ����
e��r���� 
���� ��
���� ��������
 ���� ���
e��r���� ����� ������ �������� ����� ����

We are currently implementing the solver in parallel using the message�
passing paradigm� We plan to derive new classes to deal with parallelism� Con�
sider FrontalMatrix class� which stores the global indices in the index array and
the numerical values in the value array� A ParFrontalMatrix class would need
to add a processor array to store the owner of each column� A ParUpdateM�

atrix class may be derived in a similar way from UpdateMatrix� Some parallel
algorithmic classes would be needed as well� The algorithm that performs the
numerical factorization in parallel must get the distribution of each frontal and
update matrix and process only the columns that are owned by each processor�
sending and receiving columns from the other processors as needed�

References

�� S� Balay� W� D� Gropp� L� C� McInnes� and B� F� Smith� E�cient management
of parallelism in object�oriented numerical software libraries� In Modern Software

Tools in Scienti�c Computing� Birkhauser Press� �

��
� A� M� Bruaset and H� P� Langtangen� Object�oriented design of preconditioned

iterative methods in Di	pack� ACM Trans� Math� Software� pages ������ �

��
�� A� George and J� W� H� Liu� Computer Solution of Large Sparse Positive De�nite

Systems� Prentice Hall� �
���
�� A� Pothen and C� Sun� A distributed multifrontal algorithm using clique trees�

Technical Report CS�
���� Computer Science� Penn State� Aug �

��
�� C� Ashcraft� J� Lewis� and R� Grimes� Accurate symmetric inde�nite linear equa�

tion solvers� Preprint� Boeing Information Sciences� To appear in SIAM J� Matrix
Analysis and its Applications� �

��

�� E� Arge� A� M� Bruaset� and H� P� Langtangen� Object�oriented numerics� InNumer�

ical Methods and Software Tools in Industrial Mathematics� pages ���� Birkhauser�
�

��

�� G� Booch� Object�Oriented Analysis and Design with Applications� Benjamin Cum�
mings Publishing Company� �

�� Second edition�


