Object-oriented design for sparse direct solvers *

Florin Dobrian', Gary Kumfert!, and Alex Pothen!-2

! Department of Computer Science, Old Dominion University
2 ICASE, NASA Langley Research Center

Abstract. We discuss the object-oriented design of a software package
for solving sparse, symmetric systems of equations (positive definite and
indefinite) by direct methods. At the highest layers, we decouple data
structure classes from algorithmic classes for flexibility. We describe the
important structural and algorithmic classes in our design, and discuss
the trade-offs we made for high performance. The kernels at the lower
layers were optimized by hand. Our results show no performance loss
from our object-oriented design, while providing flexibility, ease of use,
and extensibility over solvers using procedural design.

1 Introduction

The problem of solving linear systems of equations Ax = b, where the coef-
ficient matrix is sparse and symmetric, represents the core of many scientific,
engineering and financial applications. In our research, we investigate algorith-
mic aspects of high performance direct solvers for sparse symmetric systems,
focusing on parallel and out-of-core computations. Since we are interested in
quickly prototyping our ideas and testing them, we decided to build a software
package for such experimentation. High performance is a major design goal, in
addition to requiring our software to be highly flexible and easy to use.

Sparse direct solvers use sophisticated data structures and algorithms; at
the same time, most software packages using direct solutions for sparse systems
were written in Fortran 77. These programs are difficult to understand and
difficult to use, modify, and extend due to lack of support for abstract data
types, encapsulation, and dynamic memory allocation. The lack of abstract data
types and encapsulation leads to global data structures scattered among software
components, causing tight coupling and poor cohesion. The lack of abstract data
types and dynamic memory allocation leads to function calls with long argument
lists, many arguments having no relevance in the context of the corresponding
function calls. In addition, some memory may be wasted because all allocations
are static. Modifying and extending such a solver is also difficult because of the
tight coupling and poor cohesion.

* This work was partially supported by the National Science Foundation grants
CCR-9412698 and DMS-9807172, by the Department of Energy grant DE-FGO05-
94ER25216, and by NASA under Contract NAS1-19480 while the third author was
in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.



We designed our package using object-oriented techniques. Most data struc-
tures and algorithms we make use of are classical, and our new contribution is
in the design of the software. To the best of our knowledge, this work repre-
sents the first object-oriented design of a sparse direct solver. We were aware
of the performance loss caused by some object-oriented techniques, and so we
designed our code carefully, making some necessary tradeoffs to preserve high
performance.

We chose C++ as a programming language since it has full support for
object-oriented design, yet it does not enforce it. The flexibility of C++ allows
a software designer to chose the appropriate tools for each particular software
component. Another candidate could have been Fortran 90, but it does not have
inheritance and polymorphism. We need inheritance in several cases outlined
later. We also wish to derive new classes for a parallel version of our code. We
do not want to replicate data and behavior that is common to some classes. As
for polymorphism, there are several situations when we declare just interfaces in
a base class and we want to let derived classes implement a proper behavior.

In this paper we present the design of our sequential solver. Work on a parallel
version using the message-passing model is in progress. Object-oriented packages
for iterative methods are described in [1, 2].

2 Overview of the problem

Graph theory provides useful tools for computing the solution of sparse systems.
Corresponding to a symmetric matrix A is an undirected graph G(A). Each
vertex in the graph corresponds to a column (or row) in the matrix and each
edge to a symmetric pair of off-diagonal nonzero entries.

The factorization of A can be modeled as the elimination of vertices in its
adjacency graph. The factorization adds edges to G(A), ending up with a new
graph G* (A, P), where P is a permutation that describes the order in which the
columns of A are eliminated. Edges in GT but not in G are called fill edges and
they correspond to fill elements, nonzero entries in the filled matrix L + D+ LT
that are zero in A.

The computation of the solution begins thus by looking for an ordering that
reduces the fill. Several heuristic algorithms (minimum degree algorithm based
on a greedy approach, and nested dissection based on graph partitioning) may
be used during this step. The result is a permutation P.

Next, an elimination forest F(A, P), a spanning forest of GT (A, P), is com-
puted. The elimination forest represents the dependencies in the computation,
and is vital in organizing the factorization step. Even though it is a spanning for-
est of the filled graph, it can be computed directly from the graph of A and the
permutation P, without computing the filled graph. In practice, a compressed
version of the elimination forest is employed. Vertices that share a common
adjacency set in the filled graph are grouped together to form supernodes. Ver-
tices in a supernode appear contiguously in the elimination forest, and hence a
supernodal version of the elimination forest can be used.



Th factorization step is split in two phases: symbolic and numerical. The first
computes the structure of the factors and the second computes their entries. The
symbolic factorization can be computed efficiently using the supernodal elimi-
nation forest. The elimination forest also guides the numerical factorization. A
multifrontal factorization processes the elimination forest in postorder. Corre-
sponding to each supernode are two dense matrices: a frontal matriz and an
update matriz. Entries in the original matrix and updates from the children of
a supernode are assembled into the frontal matrix of a supernode, and then
partial dense factorization is performed on the frontal matrix to compute factor
entries. The factored columns are written to the factor matrix, and the remain-
ing columns constitute the update matrix that carries updates higher in the
elimination forest.

Finally, the solution is computed by a sequence of triangular and diagonal
solves. Additional solve steps with the computed factors (iterative refinement)
may be used to reduce the error if it is large.

When the coefficient matrix is positive definite, there is no need to pivot
during the factorization. For indefinite matrices, pivoting is required for stability.
Hence the permutation computed by the ordering step is modified during the
factorization.

Additional details about the graph model may be found in [3]; about the
multifrontal method in [4]; and about indefinite factorizations in [5].

3 Design of the higher layers

At the higher layers of our software, the goal was to make the code easy to
understand, use, modify and extend. Different users have different needs: Some
wish to minimize the intellectual effort required to understand the package,
others wish to have more control. Accordingly, there must be different amounts
of information a user has to deal with, and different levels of functionality a user
is exposed to.

At the highest level, a user is aware of only three entities: the coefficient
matrix A, the right hand side vector b, and the unknown vector x. Thus a user
could call a solver as follows:

x = Compute(A,b),

expecting the solver to make the right choices. Of course it is difficult to achieve
optimal results with such limited control, so a more experienced user would
prefer to see more functionality. Such a user knows that the computation of the
solution involves three main steps: (1) ordering, to preserve sparsity and thus
to reduce work and storage requirements, (2) factorization, to decompose the
reordered coefficient matrix into a product of factors from which the solution
can be computed easily, and (3) solve, to compute the solution from the factors.
This user would then like to perform something like this:

P = Order(A),



(L,D, P) = Factor(A, P),
x = Solve(L, D, P,b).

Here, P is a permutation matrix that trades sparsity for stability, L is a unit
lower triangular or block unit lower triangular matrix, and D is a diagonal or
block diagonal matrix.

At this level the user has enough control to experiment with different algo-
rithms for each one of these steps. The user could choose a minimum degree or a
nested dissection ordering, a left-looking or a multifrontal factorization. In addi-
tion, the user may choose to run some of the steps more than once to solve many
related systems of equations, or for iterative refinement to reduce the error.

We organized the higher layers of our software as a collection of classes that
belong to one inheritance tree. At the root of the tree we put the Object class,
which handles errors and provides a debugging interface. Then, since the two
basic software components are data structures and algorithms, and since decou-
pling them achieves flexibility, we derived a DataStructure class and an Algorithm
class from Object. The first one handles general information about all structural
objects and the second one deals with the execution of all algorithmic objects.

An important observation is necessary here. While full decoupling needs per-
fect encapsulation, the overhead introduced by some interfaces may be too high.
Thus, performance reasons forced us to weaken the encapsulation allowing more
knowledge about several objects. For sparse matrices, for example, we store the
data (indices and values) column-wise, in a set of arrays. We allow other ob-
jects to retrieve these arrays, making them aware of the internal representation
of a sparse matrix. We protect the data from being corrupted by providing
non-const access only to functions that need to change the data. Such a design
implementation may be unacceptable for an object-oriented purist. However, a
little discipline from the user in accessing such objects is not a high price for a
significant gain in performance.

A user who does not want to go beyond the high level of functionality of the
main steps required to compute the solution sees the following structural classes:
SparseSymmMatriz, Vector, Permutation and SparseLwTrMatriz. The first class
describes coefficient matrices, the second right hand side and solution vectors,
the third permutations, and the fourth both triangular and diagonal factors.
We decided to couple these last two because they are always accessed together
and a tight coupling between them leads to higher performance without any
significant loss in understanding the code. The derivation of these four classes
from DataStructure is shown in Fig. 1.

At the same level the user also sees several algorithmic classes. First there are
various ordering algorithms, such as NestDissOrder or MultMinDegOrder. Then
there are factorization algorithms, like PosDefLeftLookFactor, PosDefMultFrt-
Factor or IndefMultFrtFactor. Finally, the solve step can be performed by Pos-
DefSolve or IndefSolve algorithms. Figure 2 describes the derivation of some of
these classes from Algorithm. Using them one can easily write a solver (positive
definite, for concreteness) in the following way:

main()



DataStructure

AN

SparseSymmMatrix

Permutation

SparseLwTrMatrix

Vector

Fig. 1. High level structural classes

/* Load the coefficient matrix and the right hand side vector.

SparseSymmMatrix a(‘‘a.mat’’);

Vector b(‘‘b.vec’?);

/* Reorder the matrix to reduce fill. */
Permutation p(a.getSize());
MultMinDegOrder order(a, p);

order.run();

/* Factor the reordered matrix. */
SparseLwTrMatrix 1(a.getSize());
PosDefMultFrtFactor factor(a, p, 1);

factor.run();

/* Declare algorithmic objects. */
Vector x(a.getSize());

PosDefSolve solve(l,
solve.run();

p, b, x);

/* Save the solution. */

x.save(‘‘x.vec’’);

Algorithm

MultMinDegOrder

PosDefMultFrtFactor

PosDefSolve

Fig. 2. Some high level algorithmic classes

*/



More details are available beyond this level of functionality. The factoriza-
tion is split in two phases: symbolic and numerical. The symbolic factorization is
guided by an elimination forest. The multifrontal method for numerical factor-
ization uses an update stack and several frontal and update matrices, which are
dense and symmetric. Pivoting strategies for indefinite systems can be controlled
at the level of frontal and update matrices during the numerical factorization
phase. Figures 3 and 4 depict the derivation of the corresponding structural and
algorithmic classes.

DataStructure

ElimForest DenseSymmM atrix UpdateStack

FrontalMatrix UpdateMatrix

Fig. 3. Structural classes used by the multifrontal numerical factorization algorithms

Algorithm

SymFactor PosDefMultFrtNumFactor IndefMultFrtNumFactor

Fig. 4. Some symbolic and numerical factorization algorithmic classes

Data encapsulated in classes such as SparseSymmMatriz, SparseLwTrMa-
triz, and Permutation in our design are usually scattered across several files in a
solver written in a language without abstract data types. The coefficient matrix,
described by the SparseSymmMatriz class, is stored using several arrays: colPtr,
rowldr and value. The SparseLwTrMatr is similar. The permutation uses two
arrays: oldToNew and newToOld. All these arrays are kept together in our imple-
mentation inside the abstract data types defined by the corresponding classes.

In a conventional sparse solver, these arrays are global and some of them are
declared in different modules. A coefficient matrix, a factor, or a permutation
is not a well defined entity but the sum of scattered data. This not only leads



to a lack of coherence but also to very tight coupling, several modules accessing
these arrays without any restriction.

4 Design of the lower layers

While the larger part of our code deals with the design of the higher layers,
most of the CPU time is actually spent in few computationally intensive loops.
No advanced software paradigms are needed at this level so we concentrated on
performance by carefully implementing these loops.

A major problem with C++ (also with C) is pointer aliasing, which makes
code optimization more difficult for a compiler. We get around this problem
by making local copies of simple variables in our kernel code. Another source
of performance loss is complex numbers, since they are not a built-in in C++
data type as in Fortran. Recent C++ programming environments come with a
complex class. Yet, higher performance is still achieved in Fortran 77 for complex
arithmetic.

We implemented our computationally intensive kernels both in C++ and
Fortran 77. A choice between these kernels can be made using a compile time
switch. Another compilation switch selects between real and complex arithmetic.
We defined our own class for complex numbers but we make minimal use of com-
plex arithmetic operators, which are overloaded. The bulk of the computation is
performed either in C++ kernels written in C-like style or in Fortran 77 kernels.
Currently, we obtain better results with the Fortran 77 kernels.

5 Results

We report results obtained on a 66MHz IBM RS/6000 machine with 256 MB
main memory, 128 KB L1 data cache and 2MB L2 cache, running AIX 4.2.
Since this machine has two floating point functional units, each one capable of
issuing one fused multiply-add instruction every cycle, its peak performance is
theoretically 266 Mflop/s. We used the Fortran 77 kernels and we compiled the
code with x1C 3.1.4 (-O3 -qarch=pwr2) and xIf 5.1 (-O4 -qarch=pwr2).

We show results for three types of problems: two-dimensional nine-point
grids, Helmholtz problems, and Stokes problems, using multiple minimum de-
gree ordering and multifrontal factorization. We use the following notation: n
is the numbers of vertices in G(A), (this is the order of the matrix), m is the
number of edges in G(A), and m™ is the number of edges in G*(A, P), the
filled graph. The difference between m™ and m represents the fill. In Table 1
we describe each problem using these three numbers and we also provide the
cputime and the performance for the numerical factorization step, generally the
most expensive step of the computation. The higher performance obtained for
the Helmholtz problems is because complex arithmetic leads to better use of
registers and caches than real arithmetic. We achieved performance comparable
to other solvers, written completely in Fortran 77. Hence there is no performance
penalty due to the object-oriented design of our solver.



Table 1. Performance on an IBM RS/6000 for three sets of problems from fluid dy-
namics and acoustics. The cputimes (in seconds) and performance for the numerical
factorization step are reported.

Problem n m m™ time Mflop/s
grid9.63 3,969 15,500 104,630 0.77 34.2
grid9.127 (16,129 63,756 552,871 1.70 41.6
grid9.255 165,025 258,572 2,717,313 10.89 474
helmholtz0| 4,224 24,512 130,500 0.77 62.3
helmholtz1|{16,640 98,176 639,364 4.72 77.8
helmholtz2|66,048 392,960 3,043,076 30.88 90.8
e20r0000 4,241 64,185 369,843 1.70 35.8
e30r0000 9,661 149,416 1,133,759 6.56 40.2
e40r0000 |17,281 270,367 2,451,480 17.77 43.6

We are currently implementing the solver in parallel using the message-
passing paradigm. We plan to derive new classes to deal with parallelism. Con-
sider FrontalMatriz class, which stores the global indices in the index array and
the numerical values in the value array. A ParFrontalMatriz class would need
to add a processor array to store the owner of each column. A ParUpdateM-
atriz class may be derived in a similar way from UpdateMatriz. Some parallel
algorithmic classes would be needed as well. The algorithm that performs the
numerical factorization in parallel must get the distribution of each frontal and
update matrix and process only the columns that are owned by each processor,
sending and receiving columns from the other processors as needed.

References

1. S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Efficient management
of parallelism in object-oriented numerical software libraries. In Modern Software
Tools in Scientific Computing. Birkhauser Press, 1997.

2. A. M. Bruaset and H. P. Langtangen. Object-oriented design of preconditioned
iterative methods in Diffpack. ACM Trans. Math. Software, pages 50-80, 1997.

3. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

4. A. Pothen and C. Sun. A distributed multifrontal algorithm using clique trees.
Technical Report CS-91-24, Computer Science, Penn State, Aug 1991.

5. C. Ashcraft, J. Lewis, and R. Grimes. Accurate symmetric indefinite linear equa-
tion solvers. Preprint, Boeing Information Sciences. To appear in STAM J. Matrix
Analysis and its Applications, 1995.

6. E. Arge, A. M. Bruaset, and H. P. Langtangen. Object-oriented numerics. In Numer-
ical Methods and Software Tools in Industrial Mathematics, pages 7-26. Birkhauser,
1997.

7. G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-
mings Publishing Company, 1994. Second edition.



