
An Object�Oriented Collection of

Minimum Degree Algorithms

Design� Implementation� and Experiences�

Gary Kumfert� and Alex Pothen���

� Department of Computer Science� Old Dominion University
� ICASE� NASA Langley Research Center

Abstract� The multiple minimum degree �MMD� algorithm and its
variants have enjoyed ��� years of research and progress in generating
�ll	reducing orderings for sparse� symmetric positive de�nite matrices

Although conceptually simple� e�cient implementations of these algo	
rithms are deceptively complex and highly specialized

In this case study� we present an object	oriented library that implements
several recent minimum degree	like algorithms
 We discuss how object	
oriented design forces us to decompose these algorithms in a di�erent
manner than earlier codes and demonstrate how this impacts the exi	
bility and e�ciency of our C�� implementation
 We compare the per	
formance of our code against other implementations in C or Fortran


� Introduction

We have implemented a family of algorithms in scienti�c�computing � tradition�
ally written in Fortran�� or C � using object�oriented techniques and C��� The
particular family of algorithms chosen� the Multiple Minimum Degree 	MMD

algorithm and its variants� is a fertile area of research and has been so for the
last twenty years� Several signi�cant advances have been published as recently
as the last three years� Current implementations� unfortunately� tend to be spe�
ci�c to a single algorithm� are highly optimized� and are generally not readily
extensible� Many are also not public domain�

Our goal was to construct an object�oriented library that provides a labora�
tory for creating and experimenting with these newer algorithms� In anticipation
of new variations that are likely to be proposed in the future� we wanted the
code to be extensible� The performance of the code must also be competitive
with other implementations�

These algorithms generate permutations of large� sparse� symmetric matrices
to control the work and storage required to factor that matrix� We explain the

� This work was supported by National Science Foundation grants CCR	������� and
DMS	�������� by a GAANN fellowship from the Department of Education� and by
NASA under Contract NAS�	����� while the second author was in residence at the
Institute for Computer Applications in Science and Engineering �ICASE�� NASA
Langley Research Center� Hampton� VA �����	����



k Lk Gk Gk

�

�

�

�

�

�
done

Fig� �� Examples of factorization and �ll
 For each step� k� in the factorization� there is
the nonzero structure of the factor� Lk� the associated elimination graph� Gk� and the
quotient graph Gk 
 The elimination graph consists of vertices and edges
 The quotient
graph has edges and two kinds of vertices� supernodes �represented by ovals� and enodes
�represented by boxed ovals�


details of how work and storage for factorization of a matrix depends on the
ordering in Sect� �� This is formally stated as the �ll�minimization problem� Also
in Sect� �� we review the Minimum Degree algorithm and its variants emphasizing
recent developments� In Sect� � we discuss the design of our library� eshing out
the primary objects and how they interact� We present our experimental results
in Sect� �� examining the quality of the orderings obtained with our codes� and
comparing the speed of our library with other implementations� The exercise
has led us to new insights into the nature of these algorithms� We provide some
interpretation of the experience in Sect� ��

� Background

��� Sparse Matrix Factorization

Consider a linear system of equations Ax � b� where the coe�cient matrix A is
sparse� symmetric� and either positive de�nite or inde�nite� We knowA and b in



advance and must solve for x� A direct method for solving this problem computes
a factorization of the matrix A � LBLT� where L is a lower triangular matrix�
and B is a block diagonal matrix with �� � or �� � blocks�

The factor L is computed by setting L� � A and then creating Lk�� by
adding multiples of rows and columns of Lk to other rows and columns of Lk�
This implies that L has nonzeros in all the same positions� as A plus some
nonzeros in positions that were zero in A� but induced by the factorization� It is
exactly these nonzeros that are called �ll elements� The presence of �ll increases
both the storage and work required in the factorization�

An example matrix is provided in Fig� � that shows non�zeros in original
positions of A as ��� and �ll elements as ���� This example incurs two �ll
elements� The order in which the factorization takes place greatly inuences
the amount of �ll� The matrix A is often permuted by rows and columns to
reduce the number of �ll elements� thereby reducing storage and ops required for
factorization� Given the example in Fig� �� the elimination order f�� �� �� �� �� �g
produces only one �ll element� This is the minimum number of �ll elements for
this example�

If A is positive de�nite� Cholesky factorization is numerically stable for any
symmetric permutation of A� and the �ll�reducing permutation need not be
modi�ed during factorization� If A is inde�nite� then the initial permutation
may have to be further modi�ed during factorization for numerical stability�

��� Elimination Graph

The graph G of the sparse matrix A is a graph whose vertices correspond to the
columns of A� We label the vertices �� � � � � n� to correspond to the n columns
of A� An edge 	i� j
 connecting vertices i and j in G exists if and only if aij is
nonzero� By symmetry� aj�i is also nonzero�

The graph model of symmetric Gaussian elimination was introduced by
Parter ���� A sequence of elimination graphs� Gk � represent the �ll created in
each step of the factorization� The initial elimination graph is the graph of the
matrix� G� � G	A
� At each step k� let vk be the vertex corresponding to the
kth column of A to be eliminated� The elimination graph at the next step� Gk���
is obtained by adding edges to make all the vertices adjacent to vk pairwise ad�
jacent to each other� and then removing vk and all edges incident on vk� The
inserted edges are �ll edges in the elimination graph� This process repeats until
all the vertices are removed from the elimination graph� The example in Fig� �
illustrates the graph model of elimination� Finding an elimination order that
produces the minimum amount of �ll is NP�complete �����

��� Ordering Heuristics

An upper bound on the �ll that a vertex of degree d can create on elimination is
d	d��
��� The minimum degree algorithm attempts to minimize �ll by choosing

� No �accidental� cancellations will occur during factorization if the numerical values
in A are algebraic indeterminates




Abbreviation Algorithm Name Primary Reference

MMD Multiple Minimum Degree Liu ���
AMD Approximate Minimum Degree Amestoy� Davis and Du� ���
AMF Approximate Minimum Fill Rothberg ���
AMMF Approximate Minimum Mean Local Fill Rothberg and Eisenstat ���
AMIND Approximate Minimum Increase in Rothberg and Eisenstat ���

Neighbor Degree
MMDF Modi�ed Minimum De�ciency Ng and Raghavan ���
MMMD Modi�ed Multiple Minimum Degree Ng and Raghavan ���

Table �� Algorithms that �t into the Minimum Priority family


the vertex with the minimum degree in the current elimination graph� hence
reducing �ll by controlling this worst�case bound� In Multiple Minimum Degree
	MMD
� a maximal independent set of vertices of low degree are eliminated in
one step to keep the cost of updating the graph low�

Many more enhancements are necessary to obtain a practically e�cient im�
plementation of MMD� A survey article by George and Liu ��� provides the
details� There have been several contributions to the �eld since the survey� A
list of algorithms that we implement in our library and references are in Table ��
Most of these adaptations increase the runtime by ����� but reduce the amount
of arithmetic required to generate the factor by �������

��� The Quotient Graph

Up to this point we have been discussing the elimination graph to model �ll
in a minimum priority ordering� While it is an important conceptual tool� it
has di�culties in implementation arising from the fact that the storage required
can grow like the size of the factor and cannot be predetermined� In practice�
implementations use a quotient graph� G� to represent the elimination graph in
no more space than that of the initial graph G	A
� A quotient graph can have
the same interface as an elimination graph� but it must handle internal data
di�erently� essentially through an extra level of indirection�

The quotient graph has two distinct kinds of vertices� supernodes and enodes�

A supernode represents a set of one or more uneliminated columns of A� Sim�
ilarly� an enode represents a set of one or more eliminated columns of A� The
initial graph� G�� consists entirely of supernodes and no enodes� further� each
supernode contains one column� Edges are constructed the same as in the elimi�
nation graph� The initial quotient graph� G�� is identical to the initial elimination
graph� G��

When a supernode is eliminated at some step� it is not removed from the
quotient graph� instead� the supernode becomes an enode� Enodes indirectly
represent the �ll edges in the elimination graph� To demonstrate how� we �rst

� Also called �eliminated supernode� or �element� elsewhere




k � �
while k � n

Let m be the minimum known degree� deg�x�� of all x � Gk

while m is still the minimum known degree of all x � Gk

Choose supernode xk such that deg�xk� � m

for all of the p columns represented by supernode xk�
Number columns �k � ��
 
 
 �k � p�


Form enode ek from supernode xk and all adjacent enodes

for all supernodes x adjacent to ck�

Label deg�x� as �unknown
�
k � k � p

for all supernodes x where deg�x� is unknown�
Update lists of adjacent supernodes and enodes of x

Check for various QuotientGraph optimizations

Compute deg�x�


Fig� �� The Multiple Minimum Degree algorithm de�ned in terms of a Quotient Graph


de�ne a reachable path in the quotient graph as a path 	i� e�� e�� � � � ep� j
� where
i and j are supernodes in Gk and e�� e�� � � � ep are enodes� Note that the number
of enodes in the path can be zero� We also say that a pair of supernodes i� j
is reachable in Gk if there exists a reachable path joining i and j� Since the
number of enodes in the path can be zero� adjacency in Gk implies reachability
in Gk� If two supernodes i� j are reachable in the quotient graph Gk� then the
corresponding two vertices i� j in the elimination graph Gk are adjacent in Gk�

In practice� the quotient graph is aggressively optimized� all non�essential
enodes� supernodes� and edges are deleted� Since we are only interested in paths
through enodes� if two enodes are adjacent they are amalgamated into one� So
in practice� the number of enodes in all reachable paths is limited to either
zero or one� Alternatively� one can state that� in practice� the reachable set of a
supernode is the union of its adjacent supernodes and all supernodes adjacent
to its adjacent enodes� This amalgamation process is one way how some enodes
come to represent more than their original eliminated column�

Supernodes are also amalgamated but with a di�erent rationale� Two su�
pernodes are indistinguishable if their reachable sets 	including themselves
 are
identical� When this occurs� all but one of the indistinguishable supernodes can
be removed from the graph� The remaining supernode keeps a list of all the
columns of the supernodes compressed into it� When the remaining supernode
is eliminated and becomes an enode� all its columns can be eliminated together�
The search for indistinguishable supernodes can be done before eliminating a
single supernode using graph compression ���� More supernodes become indis�
tinguishable as elimination proceeds� An exhaustive search for indistinguishable
supernodes during elimination is prohibitively expensive� so it is often limited
to supernodes with identical adjacency sets 	assuming a self�edge
 instead of
identical reachable sets�



Edges between supernodes can be removed as elimination proceeds� When a
pair of adjacent supernodes share a common enode� they are reachable through
both the shared edge and the shared enode� In this case� the edge can be safely
removed� This not only improves storage and speed� but allows tighter approxi�
mations to supernode degree as well�

Going once more to Fig� �� we consider now the quotient graph� Initially� the
elimination graph and quotient graph are identical� After the elimination of col�
umn �� we see that supernode � is now an enode� Note that unlike the elimination
graph� no edge was added between supernodes � and � since they are reachable
through enode �� After the elimination of column �� we have removed an edge
between supernodes � and �� This was done because the edge was redundant�
supernode � is reachable from � through enode �� When we eliminate column ��
supernode � becomes an enode� it absorbs enode � 	including its edge to supern�
ode �
� Now enode � is adjacent to supernodes �� � and �� The �ll edge between
supernodes � and � is redundant and can be removed� At this point �� �� and
� are indistinguishable� However� since we cannot a�ord an exhaustive search�
a quick search 	by looking for identical adjacency lists
 �nds only supernodes �
and � so they are merged to supernode f�� �g� Then supernode � becomes an
enode and absorbs enode �� Finally supernode f�� �g is eliminated� The relative
order between columns � and � has no e�ect on �ll�

We show the Multiple Minimum Degree algorithm de�ned in terms of a quo�
tient graph in Fig� �� A single elimination Minimum Degree algorithm is similar�
but executes the inner while loop only once� We point out that we have not
provided an exhaustive accounting of quotient graph features and optimizations�
Most of the time is spent in the last three lines Fig� �� and often they are tightly
intertwined in implementations�

� Design

To provide a basis for comparison� we briey discuss the design and implemen�
tation characteristics of MMD ��� and AMD ���� Both implementations were
written in Fortran�� using a procedural decomposition� They have no dynamic
memory allocation and implement no abstract data types in the code besides
arrays�

GENMMD is implemented in roughly ��� lines of executable source code
with about ��� lines of comments� The main routine has �� parameters in its
calling sequence and uses four subroutines that roughly correspond to initial�
ization� supernode elimination� quotient graph update�degree calculation� and
�nalization of the permutation vector� The code operates in a very tight foot�
print and will often use the same array for di�erent data structures at the same
time� The code has over �� goto statements and can be di�cult to follow�

AMD has roughly ��� lines of executable source code which almost doubles
when the extensive comments are included� It is implemented as a single routine
with �� calling parameters and no subroutine calls� It is generally well structured
and documented� Manually touching up our f�c conversion� we were able to



� Quotient Graph
�
 Must provide a method for extracting the Reachable Set of a vertex

�
 Be able to eliminate supernodes on demand

�
 Should have a separate lazy update method for multiple elimination

�
 Should provide lists of compressed vertices that can be ignored for the rest of

the ordering algorithm

�
 Must produce an elimination tree or permutation vector after all the vertices

have been eliminated

�
 Should allow const access to current graph for various Priority Strategies


� Bucket Sorter
�
 Must remove an item from the smallest non	empty bucket in constant time

�
 Must insert an item	key pair in constant time

�
 Must remove an item by name from anywhere in constant time


� Priority Strategy
�
 Must compute the new priority for each vertex in the list

�
 Must insert the priority	vertex pairs into the Bucket Sorter


Fig� �� Three most important classes in a minimum priority ordering and some of their
related requirements


easily replace the �� goto statements with while loops� and break and continue
statements� This code is part of the commercial Harwell Subroutine Library�
though we report results from an earlier version shared with us�

The three major classes in our implementation are shown in a basic outline in
Fig� �� Given these classes� we can describe our fourth object� the MinimumPrior�
ityOrdering class that is responsible for directing the interactions of these other
objects� The main method of this class 	excluding details� debugging statements�
tests� comments� etc�
 is approximately the code fragment in Fig� �� By far the
most complicated 	and expensive
 part of the code is line �� of Fig� � where the
graph update occurs�

The most elegant feature of this implementation is that the PriorityStrategy
object is an abstract base class� We have implemented several derived classes�
each one implementing one of the algorithms in Table �� Each derived class
involves overriding two virtual functions 	one of them trivial
� The classes derived
from PriorityStrategy average �� lines of code each� This is an instance of the
Strategy Pattern ����

The trickiest part is providing enough access to the QuotientGraph for the
PriorityStrategy to be useful and extensible� but to provide enough protection
to keep the PriorityStrategy from corrupting the rather complicated state infor�
mation in the QuotientGraph�

Because we want our library to be extensible� we have to provide the Pri�
orityStrategy class access to the QuotientGraph� But we want to protect that
access so that the QuotientGraph�s sensitive and complicated internal workings
are abstracted away and cannot be corrupted� We provided a full�edged iterator
class� called ReachableSetIterator� that encapsulated the details of the Quotient�



�� Major Classes
QuotientGraph� qgraph�

BucketSorter� sorter�

PriorityStrategy� priority�

SuperNodeList� reachableSuperNodes� � mergedSuperNodes�

�� Initialization







�� Load all vertices into sorter

�
 priority��computeAndInsert� priority��ALL NODES� qgraph� sorter 	�

�
 if � priority��requireSingleElimination�	 

 true 	

�
 maxStep 
 ��

else

�
 maxStep 
 graph��size�	�

�� Main loop
�
 while � sorter��notEmpty�	 	 f
�
 int min 
 sorter��queryMinNonemptyBucket�	�

�
 int step 
 ��

�
 while � � min 

 sorter��queryMinNonemptyBucket�	 

� step � maxStep 	 	 f
�
 int snode 
 sorter��removeItemFromBucket� min 	�

��
 qgraph��eliminateSupernode� snode 	�

SuperNodeList� tempSuperNodes�

��
 tempSuperNodes 
 qgraph��queryReachableSet� snode 	�

��
 sorter��removeSuperNodes� tempSuperNodes 	�

��
 �reachableSuperNodes �
 �tempSuperNodes�

��
 ��step�

g
��
 qgraph��update� reachableSuperNodes� mergedSuperNodes 	�

��
 sorter��removeSuperNodes� mergedSuperNodes 	�

��
 priority��computeAndInsert� reachableSuperNodes� qgraph� sorter 	�

��
 mergedSuperNodes��resize� � 	�

��
 reachableSuperNodes��resize� � 	�

g

Fig� �� A general Minimum Priority Algorithm using the objects described in Fig
 �



Graph from the PriorityStrategy� making the interface indistinguishable from an
EliminationGraph�

Unfortunately� the overhead of using these iterators to compute the prior�
ities was too expensive� We rewrote the PriorityStrategy classes to access the
QuotientGraph at a lower level� � � traversing adjacency lists instead of reachable
sets� This gave us the performance we needed� but had the unfortunate e�ect of
increasing the coupling between classes� However� the ReachableSetIterator was
left in the code for ease of prototyping�

Currently we have implemented a PriorityStrategy class for all of the algo�
rithms listed in Table �� They all compute their priority as a function of either
the external degree� or a tight approximate degree� of a supernode� Computing
the external degree is more expensive� but allows multiple elimination� For tech�
nical reasons� to get the approximate degree tight enough the quotient graph
must be updated after every supernode is eliminated� hence all algorithms that
use approximate degree are single elimination algorithms�� For this reason� all
previous implementations are either multiple elimination codes or single elimina�
tion codes� not both� The quotient graph update is the most complicated part of
the code and single elimination updates are di�erent from multiple elimination
updates�

The MinimumPriorityOrdering class queries the PriorityStrategy whether it
requires quotient graph updates after each elimination or not� It then relays this
information to the QuotientGraph class which has di�erent optimized update
methods for single elimination and multiple elimination� The QuotientGraph
class can compute partial values for external degree or approximate degree as a
side�e�ect of the particular update method�

Given this framework� it is possible to modify the MinimumPriorityOrder�
ing class to switch algorithms during elimination� For example� one could use
MMD at �rst to create a lot of enodes fast� then switch to AMD when the quo�
tient graph becomes more tightly connected and independent sets of vertices
to eliminate are small� There are other plausible combinations because di�er�
ent algorithms in Table � prefer vertices with di�erent topological properties�
It is possible that the topological properties of the optimal vertex to eliminate
changes as elimination progresses�

� Results

We compare actual execution times of our implementation to an f�c conversion
of the GENMMD code by Liu ���� This is currently among the most widely
used implementations� In general� our object�oriented implementation is within
a factor of ��� of GENMMD� We expect this to get closer to a factor of ��� as
the code matures� We normalize the execution time of our implementation to

� Readers are cautioned that algorithms in Table � that approximate quantities other
than degree could be multiple elimination algorithms
 Rothberg and Eisenstat ���
have de�ned their algorithms using either external degree �multiple elimination� or
approximate degree �single elimination�




time �seconds� time� normalized �
GENMMD C��

problem jV j jEj no compr
 no compr
 compr


�
 commanche ����� ������ 
�� �
�� �
��
�
 barth� ����� ������ 
�� �
�� �
��
�
 barth ����� ������ 
�� �
�� �
��
�
 ford� ������ ������ 
�� �
�� �
��
�
 ken�� ������ ������ �
�� 
�� 
��
�
 barth� ������ ������ 
�� �
�� �
��
�
 shuttle eddy ������ ������ 
�� �
�� �
��
�
 bcsstk�� ������ ������ 
�� �
�� �
��
�
 bcsstk�� ����� ������� 
�� �
�� �
��
��
 bcsstk�� ����� ������ 
�� �
�� �
��
��
 bcsstk�� ����� ������ 
�� �
�� �
��
��
 bcsstk�� ������ ������� 
�� �
�� �
��
��
 pwt ������ ������� 
�� �
�� �
��
��
 ford� ������� ������� �
�� �
�� �
��
��
 bcsstk�� ������ ��������� 
�� �
�� �
��
��
 tandem vtx ������ ������� 
�� �
�� �
��
��
 pds�� ������ ������ ���
�� �
�� �
��
��
 copter� ������ ������ 
�� �
�� �
��
��
 bcsstk�� ������ ������� �
�� �
�� �
��
��
 nasasrb ������ ��������� �
�� �
�� �
��
��
 skirt ������ ��������� �
�� �
�� �
��
��
 tandem dual ������ ������� �
�� �
�� �
��
��
 onera dual ������ ������� �
�� �
�� �
��
��
 copter� ������ ������� �
�� �
�� �
��

geometric mean �
�� �
��
median �
�� �
��

Table �� Relative performance of our implementation of MMD �both with and with	
out precompression� to GENMMD
 GENMMD does not have precompression
 The
problems are sorted in nondecreasing size of the Cholesky factor


GENMMD and present them in Table �� For direct comparison� pre�compressing
the graph was disabled in our C�� code� We also show how our code performs
with compression�

All runtimes are from a Sun UltraSPARC�� with ��MB of main memory�
The software was compiled with GNU C�� version ����� with the ��� and
�fno�exceptions ags set� The list of �� problems are sorted in nondecreasing
order of the work in computing the factor with the MMD ordering� The numbers
presented are the average of eleven runs with di�erent seeds to the random num�
ber generator� Because these algorithms are extremely sensitive to tie�breaking�
it is common to randomize the graph before computing the ordering�

We refer the reader to Table � for relative quality of orderings and execution
times� As with the previous table� the data represents the average of �� runs
with di�erent seeds in the random number generator� The relative improvement



Work Work �normalized�
problem MMD AMD AMF AMMF AMIND MMDF MMMD

�
 commanche �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
�
 barth� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
�
 barth �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
�
 ford� �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
�
 ken�� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
�
 barth� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
�
 shuttle eddy �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
�
 bcsstk�� �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
�
 bcsstk�� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 bcsstk�� �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
��
 bcsstk�� �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
��
 bcsstk�� �
��e��� �
�� 
�� 
�� 
�� �
�� 
��
��
 pwt �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 ford� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 bcsstk�� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 tandem vtx �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
��
 pds�� �
��e��� 
�� 
�� 
�� 
�� 
�� �
��
��
 copter� �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
��
 bcsstk�� �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 nasasrb �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
��
 skirt �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 tandem dual �
��e��� 
�� 
�� 
�� 
�� 
�� 
��
��
 onera dual �
��e��� �
�� 
�� 
�� 
�� 
�� 
��
��
 copter� �
��e��� 
�� 
�� 
�� 
�� 
�� 
��

geometric mean �
�� 
�� 
�� 
�� 
�� 
��
median �
�� 
�� 
�� 
�� 
�� 
��

Table �� Comparison of quality of various priority policies
 Quality of the ordering
here is measured in terms of the amount of work to factor the matrix with the given
ordering
 Refer to Table � for algorithm names and references


in the quality of the orderings over MMD is comparable with the improvements
reported by other authors� even though the test sets are not identical�

We have successfully compiled and used our code on Sun Solaris workstations
using both SunPRO C�� version ��� and GNU C�� version �������� The code
does not work on older versions of the same compilers� We have also compiled
our code on Windows NT using Microsoft Visual C�� ����

� Conclusions

Contrary to popular belief� our implementation shows that the most expensive
part of these minimum priority algorithms is not the degree computation� � � it
is the quotient graph update� With all other implementations�including GEN�
MMD and AMD�the degree computation is tightly coupled with the quotient



graph update� making it impossible to separate the costs of degree computation
from graph update with any of the earlier procedural implementations� The pri�
ority computation 	for minimum degree
 involves traversing the adjacency set of
each reachable supernode after updating the graph� Updating the graph� how�
ever� involves updating the adjacency sets of each supernode and enode adjacent
to each reachable supernode� This update process often requires several distinct
passes�

By insisting on a exible� extensible framework� we required more decoupling
between the priority computation and graph update� between algorithm and data
structure� In some cases� we had to increase the coupling between key classes
to improve performance� We are generally satis�ed with the performance of our
code and with the value added by providing implementations of the full gamut
of state�of�art algorithms� We will make the software publicly available�

Acknowledgements We thank Tim Davis and Joseph Liu for their help and
insights from their implementations and experiences� We are especially grate�
ful to Cleve Ashcraft for stimulating discussions about object�oriented design�
e�ciency� and programming tricks�

References

�
 Patrick Amestoy� Timothy A
 Davis� and Iain S
 Du�
 An approximate minimum
degree ordering algorithm
 Technical Report TR�������� Computer and Informa	
tion Sciences Dept
� University of Florida� December ����


�
 Cleve Ashcraft
 Compressed graphs and the minimum degree algorithm
 SIAM J�

Sci� Comput�� ���������������� ����

�
 Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides
 Design Patterns�

Elements of Reusable Object�Oriented Software
 Addison Wesley Professional Com	
puting Series
 Addison Wesley Longman� ����


�
 J
 Alan George and Joeseph W
 H
 Liu
 The evolution of the minimum degree
algorithm
 SIAM Rev�� ����������� ����


�
 Joseph W
 H
 Liu
 Modi�cation of the minimum	degree algorithm by multiple
elimination
 ACM Trans� Math� Software� ����������� ����


�
 Esmond G
 Ng and Padma Raghavan
 Performance of greedy ordering heuristics
for sparse Cholesky factorization
 Submitted to SIAM J
 Mat
 Anal
 Appl
� ����


�
 S Parter
 The use of planar graphs in Gaussian elimination
 SIAM Rev�� ����������
����


�
 Ed Rothberg
 Ordering sparse matrices using approximate minimum local �ll

Preprint� April ����


�
 Ed Rothberg and Stan Eisenstat
 Node selection strategies for bottom	up sparse
matrix ordering
 SIAM J� Matrix Anal� Appl�� �������������� ����


��
 M
 Yannakakis
 Computing the minimum �ll	in is NP	complete
 SIAM J� Algebraic

and Discrete Methods� �������� ����



