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ABSTRACT We describe our experience in designing object�oriented soft�
ware for sparse direct solvers� We discuss � a library of sparse matrix
ordering codes and � a package that implements the factorization and
triangular solution steps of a direct solver� We discuss the goals of our de�
sign� managing complexity� simplicity of interface� �exibility� extensibility�
safety� and e�ciency� High performance is obtained by carefully implement�
ing the computationally intensive kernels and by making several tradeo�s
to balance the con�icting demands of e�ciency and good software design�
Some of the missteps that we made in the course of this work are also
described�

��� Introduction

We design and implement object�oriented software for solving large� sparse
systems of linear equations by direct methods� Sparse direct methods solve
systems of linear equations by factoring the coe�cient matrix� employing
graph models to control the storage and work required� Sophisticated al�
gorithms and data structures are needed to obtain e�cient direct solvers�
This is an active area of research� and new algorithms are being developed
continually� Our goals are to create a laboratory for quickly prototyping
new algorithmic innovations� and to provide e�cient software on serial and
parallel platforms�

Object�oriented techniques have been applied to iterative solvers such as
those found in Di	pack 
LAN��� DIF� and PETSc 
BGM��� PET�� How�
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ever� the application of object�oriented design to direct methods has not re�
ceived the attention it deserves� Ashcraft and Liu have designed an object�
oriented code called SMOOTH to compute �ll�reducing orderings 
AL����
Ashcraft et� al� have created an object�oriented package of direct and it�
erative solvers called SPOOLES
APW��� SPO�� Both SMOOTH and
SPOOLES are written in C� we discuss SPOOLES in Sect� ���� George
and Liu have implemented object�oriented user interfaces in Fortran�� and
C for the SPARSPAK library� and they have discussed their design goals
in 
GL����

We are interested in object�oriented design of direct solvers since we
need to perform experiments to quickly prototype new algorithms that we
design� We are also interested in extending our work to parallel and out�
of�core computations� and to a variety of computer architectures� While
several direct solvers are currently available� most of them are designed
as �black boxes��di�cult to understand and adapt to new situations�
We needed a robust and extensible platform to serve as a baseline� and a
framework to support inclusion of new components as they are developed�

This project is the result of a balanced approach between sound software
design and the �need for speed�� We achieve the second goal by carefully
implementing highly e�cient algorithms� Our success here can be quanti��
ably measured by comparison to other implementations� both in terms of
quality of the results and the amount of resources needed to compute it�
Determining how well we achieve the �rst goal of good software design is
much more subjective� In this arena� we argue on the grounds of usability�
�exibility� and extensibility�

The research presented here tells the story of two separate but inter�
related projects� parts of two PhD theses� The �rst project� � is
a library of sparse matrix ordering algorithms including a variety of �ll�
reducing orderings� The second project� � handles the remaining steps
in solving a linear system of equations� matrix factorization and triangular
solves� During development� ideas developed in one project were incorpo�
rated into the other when they were found to be suitable� As the projects
matured� several design methodologies and programming techniques proved
themselves useful twice� Currently the two projects have converged on most
major design issues� though they are still maintained separately�

We present the work as a whole and concentrate on the commonalities
of object�oriented design that have proved themselves in both projects� As
this is ongoing research� we also present some equally good ideas that may
not apply to both the ordering and solver codes� or that have not been
incorporated into both yet� We �nd this convergence of design strategies
somewhat surprising and most bene�cial�

We explain the algorithms we chose and discuss the key features of the
implementations� We also show the important tradeo	s that were made�
often sacri�cing more elegant applications of object�oriented techniques
for very real improvements in e�ciency� We include some missteps that
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FIGURE 
�
� A �black box formulation of a sparse direct solver�

were made in the course of our research and the lessons learned from the
endeavor� Our code is written in C�

Background information about direct methods is presented in Sect� ����
We identify the primary goals for our implementations in Sect� ���� The
actual design of the software is presented in Sect� ���� with special emphasis
on the ordering code in Sect� ��� and the factorization code in Sect� ����
We present the results of our software in Sect� ���� Finally� we discuss the
lessons learned in course of our research in Sect� ����

��� Background

The direct solution of a sparse symmetric linear system of equations Ax � b
can be described in three lines� corresponding to the three main computa�
tional steps� order� factor and solve�

P� � order�A�� �����

�L�D� P�� � factor�A�P��� �����

x � solve�L�D� P�� b�� �����

Here A is a sparse� symmetric� positive de�nite or inde�nite matrix� L is
its lower triangular factor� and D is its �block� diagonal factor� satisfying
A � LDLT � P� and P� are permutation matrices� b is the known right�
hand�side vector� and x is an unknown solution vector� We illustrate this
three�step �black box� scheme in Fig� ����

Of the three steps� computing the factorization is usually the most time
consuming step� For the rest of this section� we will discuss the signi�cance
of these three computational steps and their interplay�
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����� Fill and the Elimination Forest

The �rst step of the factorization of a symmetric positive de�nite matrix
A can be described by the equation

A � A� �

�
a�� aT�
a� A�

�

�

�
� �T

l� In��

��
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��
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By multiplying the factors� we see that l� � ���a���a�� and A� � A� �
a��l�l

T
� � Hence the �rst column of L �the subdiagonal elements� is obtained

by dividing the corresponding elements of A by the �rst diagonal element�
and the matrix that remains to be factored� A�� is obtained by subtracting
the term a��l�l

T
� from the corresponding submatrix of A� At the end of the

�rst step� we have computed the �rst column �and row� of the factors L
and D� The remainder of the factorization can be computed recursively by
applying this elimination process to the �rst column of the submatrix that
remains to be factored at each step�

Computing the factors of a symmetric inde�nite matrix is a little more
involved� since we have to consider the elimination of two columns �and
rows� at a step if the �rst diagonal element of the submatrix to be factored
is zero or small� We do not discuss the details of factoring an inde�nite
matrix here�

We observe from the equations above that the factor L has nonzero ele�
ments corresponding to all subdiagonal nonzero positions in A� in addition�
for j � i� if the ith and jth positions of l� are nonzero� then the �i� j� el�
ement of A� is nonzero even when A has a zero element in that position�
These additional nonzeros introduced by the factorization are called �ll el�
ements� Fill increases both the storage needed for the factors and the work
required to compute them�

An example matrix is provided in Fig� ��� that shows non�zeros in original
positions of A as ��� and �ll elements as ���� This example incurs two �ll
elements� As a column j of A is eliminated� multiples of the jth column of
L are subtracted from those columns k of A� where lkj is nonzero�

A graph model �rst introduced by Parter to model symmetric Gaussian
elimination is useful in identifying where �ll takes place� The adjacency
graph of the symmetric matrix� G � G�A�� has n vertices corresponding
to the n columns of A labeled �� �� � � � � n� An edge �i� j� joins vertices i
and j in G if and only if ai�j is nonzero� Since by symmetry� aj�i is also
nonzero� the graph is undirected� It is conventional to not draw the loops
�i� i� corresponding to the n nonzero diagonal elements aii�

The example in Fig� ��� illustrates the graph model of elimination� A
sequence of elimination graphs� Gk� represents the �ll created in each step
of the factorization� The initial elimination graph is the adjacency graph of
the matrix� G� � G�A�� At each step k� let vk be the vertex corresponding
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FIGURE 
�	� Examples of factorization and �ll� For each step k in the factoriza�
tion� the nonzero structure of the factor Lk and the associated elimination graph
Gk are shown�
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to the kth column of Lk to be eliminated� The elimination graph at the next
step�Gk��� is obtained by adding edges needed to make all vertices adjacent
to vk pairwise adjacent to each other� and then removing vk and all edges
incident on vk� The inserted edges are �ll edges in the elimination graph�
This process is repeated until all the vertices are eliminated� We denote by
F the �lled matrix LLT � The �lled graph G�F � �the adjacency graph of
F � contains all the edges of G�A� together with the �lled edges�

When a column j updates another column k during the elimination� de�
pendencies are created between the columns j and k� An important data
structure that captures these dependencies is an elimination tree� or more
generally an elimination forest� The reader unfamiliar with elimination
trees will �nd a comprehensive survey in Liu 
LIU���� The critical detail
for our purposes is that elimination forests minimally represent the depen�
dencies in the factorization� Each column in the matrix is represented as a
node in the forest� The parent of a column j is the smallest row index of
a subdiagonal nonzero element �the �rst subdiagonal nonzero� in column
j� Note that the de�nition of the elimination forest employs the factor and
not the original matrix A� In our example� the parent of column three is
four� and l��� is a �ll element�

An important concept that permits us to perform block operations in
the factorization is that of a supernode� Supernodes are groups of adjacent
vertices that have identical higher numbered neighbors in the �lled graph
G�F �� We group vertices into supernodes using the elimination forest� a
supernode consists of a set of vertices that ��� forms a path in elimination
forest� and ��� have the same higher numbered neighbors� In our example�
the reader can verify that vertices � and �� and vertices � and � form
supernodes� This grouping of vertices into supernodes can then be used to
de�ne a supernodal elimination forest� In the �lled matrix F � a supernode
corresponds to a group of columns with a nested nonzero structure in the
lower triangle�

Although we de�ned the elimination forest in terms of the factor L� in
practice it is computed before the factorization� It turns out that e�cient
algorithms can be designed to compute the elimination forest from the
given matrix A and an ordering P� in time almost linear in the number of
nonzeros in A� The elimination forest is then used in symbolic factorization
algorithms to predict where �ll occurs in the factor� Fill entries can only
occur between a node in the elimination forest and its ancestors�

The elimination forest corresponding to the example in Fig� ��� is a
single tree shown in Fig� ���� It can be shown that any postordering of the
elimination forest leaves the �ll unchanged�

����� Factorization

The example in Fig� ��� illustrates a right�looking factorization� where up�
dates from the current column being eliminated are propagated immedi�
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FIGURE 
��� Examples of elimination forests� �a� An elimination forest of the
example in Fig� 
�	� �b� The corresponding supernodal elimination forest� which
is used in supernodal multifrontal factorization�

ately to the submatrix on the right� In a left�looking factorization� the up�
dates are not applied right away� instead� before a column k is eliminated�
all updates from previous columns of L are applied together to column k of
A� Another approach is a multifrontal factorization� in which the updates
are propagated from a descendant column j to an ancestor column k via
all intermediate vertices on the elimination tree path from j to k�

currently includes a multifrontal factorization code� In the multi�
frontal method� we view the sparse matrix as a collection of submatrices�
each of which is dense� Each submatrix is partially factored� the factored
columns are stored in the factor L� while the updates are propagated to the
parent of the submatrix in the elimination forest� The multifrontal method
and supernodal left�looking algorithms are suited to modern RISC architec�
tures since the regular computations in the dense submatrices make better
use of cache and implicit indexing�

We provide a high�level description of the multifrontal algorithm here�
and the implementation details will be presented in Sect� ���� The multi�
frontal factorization is computed in post�order on the elimination forest�
The algorithm creates a dense submatrix called a frontal matrix for each
supernode� A frontal matrix is a symmetric dense matrix with columns and
rows corresponding to the groups of columns to be eliminated and all the
rows in which these columns have nonzeros� The frontal matrix is partially
factored corresponding to the columns to be eliminated� The remainder of
the frontal matrix forms a dense update matrix that will be stacked� The
factored columns are copied into the sparse factor L� When all the children
of a parent vertex in the elimination forest have been eliminated� the parent
retrieves the update matrices of its children from the stack� and adds them
into its own frontal matrix� The parent then has been �fully assembled��
it can then partially factor its frontal matrix� and propagate an update
matrix to its parent in the elimination forest�

We illustrate the multifrontal factorization process in Fig� ���� At each
step� k� we assemble the frontal matrix� Fk� by adding the entries in the kth

rows and columns of A and any update matrices� Uk� These contributions
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FIGURE 
��� Example of multifrontal factorization� For each step k in the fac�
torization� the frontal matrix Fk is assembled from the appropriate column�s� of
A and any update matrices from the children of supernode k in the supernodal
elimination forest� The fully assembled columns are factored� the factor columns
Ck are scatter�added to the sparse triangular factor L� Corresponding to the
remaining columns in the factor matrix� a new update matrix Uk is computed�

to Fk vary in size� so special attention must be paid to indices� hence we
call this operation scatter�add� and denote it by ���� The frontal matrices
then factor all columns that are �fully assembled�� This looks identical to
how Lk was generated in Fig� ���� except that here� the frontal and update
matrices are dense� not sparse� After the appropriate columns are factored
from Fk � it is split into an update matrix Uk and a factored column Ck �
which is scatter�added to the sparse factor Lk�

����� Ordering

The order in which the factorization takes place can change the structure
of the elimination forest� and therefore greatly in�uences the amount of
�ll produced in the factorization� To control �ll� the coe�cient matrix is
symmetrically permuted by rows and columns in attempts to reduce the
storage�memory� and work��ops� required for factorization� Given the ex�
ample in Fig� ���� the elimination order f�� �� �� �� �� �g produces only one
�ll element� instead of the two shown� This is the minimum amount of �ll
for this example�

If A is inde�nite� the initial permutation may have to be modi�ed during
factorization for numerical stability� This detail is captured in equation ���
and in Fig� ��� by the distinction between the two permutations� P� and
P�� The �rst ordering� P�� reduces �ll and the second ordering� P�� is a
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Abbreviation� Algorithm Name

MMD Multiple Minimum Degree �LIU���
AMD Approximate Minimum Degree �ADD���
AMF Approximate Minimum Fill �ROT���

MMDF Modi�ed Minimum De�ciency �NR���
MMMD Modi�ed Multiple Minimum Degree �NR���
AMMF Approximate Minimum Mean Local Fill �RE���
AMIND Approximate Minimum Increase in Neighbor Degree �RE���

TABLE 
�
� Some of the algorithms in the Minimum Priority family�

modi�cation of P� to preserve numerical stability� In general� any modi�
�cation of P� increases �ll and� hence� the work and storage required for
factorization� If A is positive de�nite� Cholesky factorization is numerically
stable for any symmetric permutation of A�

Fill reduction is handled before the factorization step by ordering algo�
rithms� Finding the elimination order that produces the minimum amount
of �ll is a well�known NP�complete problem� The heuristics used to com�
pute �ll�reducing orderings fall mainly into two classes� divide�and�conquer
algorithms that recursively partition the graph and prevent �ll edges join�
ing two vertices in di	erent partitions� and greedy algorithms that attempt
to control �ll in a local manner�

is a library of symmetric sparse matrix ordering algorithms �
including most of the current �bottom�up� �ll�reducing orderings� Though

has native support for many matrix �le formats� it does not im�
plement a full matrix class and relies entirely on the graph model� There�
fore while we talked about eliminating columns for the factorization� it is
more natural to discuss eliminating vertices from the graph in this context�
These greedy approaches choose which vertex to eliminate next based on
some approximation of the �ll its elimination will induce� An upper bound
on the �ll created by eliminating a vertex of degree d is d�d � ����� hence
in the minimum degree algorithm a vertex whose degree �or some related
quantity� is minimum is eliminated next�

Multiple Minimum Degree �MMD� is an enhancement of the minimum
degree algorithm that eliminates maximal independent sets of vertices at
once to keep the cost of updating the graph low� Many more enhancements
are necessary to obtain a practically e�cient implementation� A survey
article by George and Liu 
GL��� provides all of the details for MMD�
There have been several contributions to the �eld since this survey� A list of
algorithms that we implement in our library and references are in Table ����
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����� Further Information

This �breathless introduction� to sparse direct solvers is intended to help
the reader to understand the basic computational problems in this area�
For readers who desire further information� we recommend the following pa�
pers� the MMD ordering algorithm� 
GL���� the AMD ordering algorithm�

ADD���� the multifrontal method� 
LIU���� elimination trees� 
LIU���� and
symmetric inde�nite solvers� 
AGL���� The books 
DER��� GL��� were
written earlier than these articles� nevertheless they would be helpful too�

��� Goals

Our design and implementation were guided by several principal goals we
wanted to achieve� We list them brie�y here� and then discuss each one in
detail�

� Managing Complexity
� Simplicity of Interface
� Flexibility
� Extensibility
� Safety
� E�ciency

����� Managing Complexity

Writing code for sparse direct solvers is a challenging task because the
design requires sophisticated data structures and algorithms� To manage
such complexity� proper abstractions must be used� Some of the earlier
solvers were written in Fortran ��� which has very limited support for
abstraction� As a consequence� the computation is expressed in terms of the
implementation� For example� a sparse matrix is commonly represented as
several arrays and the algorithms are a collection of subroutines which read
from and write to these arrays� Since there is no support for abstract data
types in the language� these subroutines tend to have long argument lists�
Additionally� since Fortran �� lacks dynamic memory allocation� all arrays
are global� and are reused many times for di	erent purposes� All these
characteristics make the code extremely di�cult to understand� Some of
the more recent codes are written in C� but they tend to be in�uenced by
the earlier codes in Fortran ��� For instance� the collection of subroutines
is often the same�

In contrast to earlier codes� we wish to express the computation in terms
of the mathematical formulation� This means programming in terms of vec�
tors� trees� matrices� and permutations� This is possible in C because
the language supports abstraction through classes� inheritance� and poly�
morphism� By programming at a higher level of abstraction� we are able to
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implement code faster and to relegate minute details to lower layers of the
abstraction�

����� Simplicity of Interface

Simplicity is also achieved by good abstraction� but in a di	erent sense�
Whereas with complexity management we want to build layers of abstrac�
tion� here we focus on intuitive components with a minimal interface� Recall
that the computation is formulated in terms of sparse matrices� vectors and
permutations and in terms of algorithms like orderings� factorizations and
triangular solves� Accordingly� we provide abstractions for such entities�
The code for a solver that uses our libraries becomes then a simple driver
that reads the inputs to the algorithms� runs the algorithms� and writes
their outputs�

����� Flexibility

The key to achieving �exibility in our codes is decoupling� We distinguish
between data structures and algorithms� and design separate abstractions
for structural entities such as sparse matrices� permutations and vectors on
one hand� and for ordering and factorization algorithms on the other hand�
One can and should expect to swap in di	erent ordering or factorization
objects in the solver in much the same way that components in a stereo
system can be swapped in and out� In addition� one has the possibility of
choosing the number of times di	erent components are used� Ordering and
factorization are performed only once in a series of systems with the same
coe�cient matrix with di	erent right hand sides for example� while the
triangular solves must be repeated for every system in the series� A similar
situation occurs with iterative re�nement� where triangular solves must be
repeated for a single run of the ordering and factorization algorithms� It
should also be possible to solve several systems of equations simultaneously�
and to have them at various stages of their solution process�

Swapping components happens not only with data structures and algo�
rithms� more generally� we want to swap smaller components within a larger
one� For instance� factorization is composed of a couple of distinct phases
�symbolic and numerical�� Solvers for positive de�nite and inde�nite prob�
lems di	er only in the numerical part� To switch from a positive de�nite
solver to an inde�nite solver� we only have to swap the components that
perform the numerical factorization� By splitting a factorization algorithm
in this way we also provide the option of performing only the symbolic
work for those who wish to experiment with the symbolic factorization
algorithms�

The design challenge here is that �exibility and simplicity are at odds
with one another� The simplest interface to a solver would be just a black
box� one throws a coe�cient matrix and a right hand side vector in one
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end and produces the solution out the other end of the black box� While
very easy to use� it would not be �exible at all� On the other hand� a very
�exible implementation can expose too many details� making the learning
curve steeper for users� In general� we provide multiple entry points to our
code and let the users decide which one is appropriate for their needs�

����� Extensibility

Whereas �exibility allows us to push di	erent buttons and interchange
components� extensibility allows us to create new components and alter
the e	ects of certain buttons� This software is part of ongoing research and
gets regularly tested� evaluated� and extended�

The best techniques we found for ensuring extensibility in our codes were
to enforce decoupling and to provide robust interfaces� These practices also
encourage code reuse� In the following sections� we will show an example
of how two types of dense matrices in � frontal and update� are used
in numerical factorization and inherit characteristics from a dense matrix�
We also present an example of how polymorphism is used in the ordering
algorithms of �

Extensibility is not an automatic feature of a program written in an
object�oriented language� Rather� it is a disciplined choice early in the de�
sign� In our implementations� we have very explicit points where the code
was designed to be extended� Our intent is to keep the package open to
other ordering and factorization algorithms� We are interested in extend�
ing these codes to add functionality to solve new problems �unsymmetric
factorizations� incomplete factorizations� etc�� and to enable the codes to
run e�ciently in serial� parallel �with widely di	ering communication la�
tencies�� and out�of�core environments�

����� Safety

We are concerned with two major issues concerning safety� protecting the
user from making programming mistakes with components from our codes
�compile�time errors�� and providing meaningful error handling when er�
rors are detected at run�time� Earlier we argued that the simplicity of the
interface enhances the usability of the software� we add here that usability
is further enhanced by safety�

Compile�time safety is heavily dependent on features of the programming
language� Any strongly typed language can adequately prevent users from
putting square pegs in round holes� That is� we can prevent users from
passing a vector to a matrix argument�

Run�time errors are more di�cult to handle� Structural entities such as
sparse matrices and permutations are inputs for factorization algorithms�
When such an algorithm is run� it should �rst verify that the inputs are
valid� and second that the inputs correspond to each other�
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The biggest di�culty about error handling is that while we� the library
writers� know very well how to detect the error conditions when they occur�
we must leave it to the user of the library to determine what action should
be taken� Error handling is an important and all too often overlooked part of
writing applications of any signi�cant size� Because we are writing a multi�
language based application and provide multiple interfaces �Fortran��� C�
Matlab� C� we immediately rejected using C exception handling�

The way in which errors are handled and reported in and
di	er slightly in the details� but the strategies are similar� In both codes�
the classes are self�aware� and are responsible for performing diagnostics to
con�rm that they are in a valid state� Instances that are in invalid states
are responsible for being able to report� upon request� what errors were
detected�

����� E�ciency

An e�cient piece of software is one that makes judicious use of resources�
To achieve e�ciency� data structures and algorithms must be implemented
carefully� Previous direct solver packages tend to be highly e�cient� using
compact data structures and algorithms that are intimately intertwined in
the code� Decoupling the data structures from the algorithms and requiring
them to interact through high�level interfaces can add signi�cant compu�
tational overhead� Choosing robust and e�cient interfaces can be quite
involved� The compromise between �exibility and e�ciency is determined
by these interfaces�

Consider the means by which an algorithmic object accesses the data
stored in a structural object� e�g�� a factorization operating on a sparse
matrix� A rigorous object�oriented design requires full encapsulation of the
matrix� meaning that the factorization algorithm must not be aware of its
internal representation�

In practice� sparse matrix algorithms must take advantage of the storage
format as an essential optimization� This is often done in object�oriented li�
braries like Di	pack and PETSc by �data�structure neutral� programming
�see 
BL��� and 
BGM��� respectively�� This is accomplished by provid�
ing an abstract base class for a matrix or vector� and deriving concrete
implementations for each data�layout� compressed sparse row� compressed
column major� AIJ �row index� column index� value� triples� blocked com�
pressed sparse� etc� Then each concrete derived class must implement its
own basic linear algebra functions� Given t types of matrices and n basic
linear algebra subroutines for each� these libraries provide t � n virtual
functions�

Our goal is somewhat narrower� provide a solver that is as fast as any
other solver written in any other language� but is more usable� �exible�
and extensible� because we use object�oriented design and advanced pro�
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gramming paradigms� Our algorithms are more complicated than a matrix�
vector multiply� and providing a set of algorithms for each possible represen�
tation of the matrix is unreasonable� Even if we designed general algorithms
that operate on matrices regardless of their layout� we could not make any
guarantees about their performance� We are more concerned about adding
new algorithms� not adding more matrix formats� Our codes apply to gen�
eral� sparse� symmetric matrices that must be laid out in a speci�c way for
e�cient computations� and we provide tools to convert to this format� Spe�
ci�c formats are needed because we are forced to make a tradeo	� weaken
the encapsulation to increase the performance�

In terms of running time� it is also important to realize which components
of the code are the most expensive and to focus on e�ciently implementing
them� Usually� a sparse direct solver spends most of the time in the factor�
ization step� A triply nested loop performs the bulk of the computation�
Although most of the time is spent here� the code for the factorization rep�
resents just a tiny piece of the whole program� The rest of the code does
not account for much of the whole time but it is certainly more sophisti�
cated than this kernel� We use a layered approach� in which the focus is on
software design in the higher layers and on e�ciency in the lower ones� To
get the best speed� we use a C subset or Fortran �� code for kernels such
as the triply nested loop inside the factorization�

Finally� we restricted our use of some speci�c object�oriented features�
For example� we avoid operator overloading for matrices and vectors be�
cause this leads to the creation of several temporary objects and unneces�
sary data movement��

��� Design

This section tackles the major issues in designing our solver� We begin
by explaining the base classes in the inheritance hierarchy in Sect� ������
Then in Sect� ������ we discuss the specialization and composition of our
data structure and algorithm classes� We also discuss how we use iterators
to get the algorithms and data structures to interact in Sect� ������ The
important problem of I�O and handling multiple �often disparate� sparse
matrix �le formats is discussed in Sect� ������ Then we focus on implemen�
tation details speci�c to each package� The discussion of details in
Sect� ��� highlights extensibility in using polymorphic �ll reducing ordering
algorithms� The corresponding section for is Sect� ����

�The reader is invited to see the article by Velduizen VEL��� in this book which
explains some solutions to this problem in detail�
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class Object

f
protected�

Error error�

public�

Object�� ferror � None�g
Error getError�void� const freturn error�g
virtual void print�const char �description� const � ��

g�

FIGURE 
��� The Object Class�

����� Base Classes

We have organized most of our heavy�weight classes into a single inheritance
tree� The two main branches are DataStructure and Algorithm� Each ma�
trix� permutation� and graph class inherits from DataStructure a common
set of state information� interfaces for validating its state� and �optionally�
resources to support persistent objects� Similarly classes that perform com�
putational services such as ordering and factorization are derived from the
Algorithm class� which provides support for algorithmic state informa�
tion and the interface for running the algorithm� Both DataStructure and
Algorithm are derived from a common ancestor� the Object class shown
in Fig� ���� Although this class has no physical analogy� it does provide a
suite of useful services to all its descendants such as error handling and
instance counting� Through inheritance from Object� every structural or
algorithmic object remembers when the most recent error occurred� if any�
This error can be retrieved on demand and communicated to other classes�

The DataStructure class shown in Fig� ��� implements the validity
checking mechanism speci�c to all structural objects� A structural object
is usually initialized as invalid� After it is fully initialized� it must be vali�
dated� Later it can be completely reset� Again� the methods for validation
and resetting are pure virtual� every structural class being required to im�
plement its own behavior�

The Algorithm class shown in Fig� ��� handles the execution of algorith�
mic objects� Each algorithmic object requires a certain amount of time for
its execution� This information can be retrieved for later use� The execution
of any algorithmic object is triggered by the same interface� only the im�
plementation is speci�c� This requires the method for running algorithmic
objects to be pure virtual�

There are some distinctions between and in their implemen�
tations� Both have forms of object�persistence through the DataStructure
class� though the exact mechanisms di	er� de�nes a wider variety
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class DataStructure� public Object

f
protected�

bool valid�

public�

DataStructure�� fvalid � False�g
bool isValid�void� const freturn valid�g
virtual void validate�void� � ��

virtual void reset�void� � ��

g�

FIGURE 
��� The DataStructure class�
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�

�

�

class Algorithm� public Object

f
protected�

float runTime�

public�

Algorithm�� frunTime � ��g
float getRunTime�void� freturn runTime�g
virtual void run�void� � ��

g�

FIGURE 
��� The Algorithm class�
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of states for DataStructure classes to be in� and carries a related idea of
state for the Algorithm classes� In both packages� however� the non�trivial
concrete classes are derived from this fundamental hierarchy�

����� Algorithms and Data Structures

We have seen several structural classes such as Matrix� Vector� Graph
and Permutation� Instances of these classes are the inputs and outputs of
algorithmic objects that order� factor� and perform the triangular solves�

The ordering algorithms� for example� require only the Graph of a Matrix
as input� although there are additional options that advanced users could
set� After the algorithm is run� the results could be queried� In � all the
�ll�reducing ordering algorithms can produce either a Permutation or an
EliminationForest �or both� upon successful execution of the algorithm�

Ordering algorithms can enter an invalid state for several reasons� The
input data could have been invalid� the user could have attempted to run
the algorithm without su�cient input information� a run�time error might
have been detected� or there might be a problem servicing the user�s output
request� In all these cases� the instance of the ordering algorithm can be
reset and reused with di	erent input data�

Algorithms can also be composed to obtain more sophisticated algorith�
mic objects� The factorization itself is made of several components� each
derived from the Algorithm class� we provide details in Sect� ���� Having
these subcomputations implemented separately is useful for many reasons�
We subject each component to unit testing and later combine them during
integration testing� It also helps in code reuse� since the factorization algo�
rithms for positive de�nite matrices and inde�nite matrices share several
steps�

The derivation and composition of data structures is just as rich� Mul�
tifrontal factorization requires several dense matrix types that are derived
from a common DenseSymmetricMatrix� these are FrontalMatrix and
UpdateMatrix�

����� Iterators

Separating data structures from algorithms makes it necessary to create
interfaces between the modules� Inspired by the Standard Template Li�
brary �STL��which also makes a distinction between data structures and
algorithms�we explored the paradigm of iterators for this purpose� We
�rst de�ne the iterator construct� and then discuss how we used it� In
later sections� we show examples where the iterator paradigm was applied
with much success �Sect� ���� and where they were misapplied and reduced
performance signi�cantly �Sect� �������
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bool isAdjacent� const Graph	 g
 int i
 int j � const

f
for� int k � g�adjHead�i� k � g�adjHead�i��� ��k � f

if � g�adjList�k �� j � f
return true�

g
g
return false�

g

FIGURE 
��� A C�like function that directly accesses the data in Graph�

De�nition of an Iterator�

An iterator is a class that is closely associated with a particular container
�data structure� class� The iterator is usually a �friend� class of the con�
tainer granting it privileged access� Its purpose is to abstract away the
implementational details of how individual items within the container are
stored�

Assume� for example� that the list of all edges in a Graph is in the array
adjList�� and that a second array adjHead�� stores the beginning index
into adjList�� for each vertex in the graph� Then to check if vertex i is
adjacent to vertex j we simply run through the arrays as in the piece of
code in Fig� ����

This design has a �aw� in that the function assumes the layout of data in
the Graph class and accesses it directly� Consider now a di	erent approach
where the Graph class creates an iterator� Conventionally� an iterator class
mimics the functionality of a pointer accessing an array� The dereference
operator �operator���� is overloaded to access the current item in the
container� and the increment operator �operator����� advances the iter�
ator to the next item in the container� Rewriting our function above� as
shown in Fig� ���� we de�ne Graph��adj begin�int� to create an itera�
tor pointing to the beginning of the adjacency list of a speci�ed vertex and
Graph��adj end�int� to return an iterator pointing to the end of the list��

The bene�t of this second approach is that the function isAdjacent no
longer assumes any information about how the data inside Graph is laid
out� If it is indeed sequential as it was in the previous example� then the
iterator could be simply a pointer to an integer data type� However� if
the adjacency lists are stored in a di	erent format� e�g�� a red�black tree
�for faster insertions and deletions�� the iterator approach still applies for
accessing the adjacency lists� since it assumes a suitable iterator class has

�Actually� it points to one past the end�a standard C�� convention�
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bool isAdjacent� const Graph	 g
 int i
 int j � const

f
for� Graph��adj iterator it � g�adj begin�i��

it �� g�adj end�i�� ��it � f
if � �it �� j � f

return true�

g
g
return false�

g

FIGURE 
��� A C�� global function that uses an iterator to search Graph�

been provided�

Application of Iterators�

Iterators provide a kind of �compile�time� polymorphism� They allow a
level of abstraction between the data structure and the algorithm� but the
concrete implementation is determined at compile time� This allows the
compiler to inline function calls �often through several levels� and get very
good performance��

There were a few di�culties in applying this technique to our prob�
lems� The most complicated aspect was that all STL containers are one�
dimensional constructs� Many of our data structures� such as matrices and
graphs� are two�dimensional� This was not a serious problem since we� as
programmers� tend to linearize things anyway� In the example of iterators
before� for instance� we used the iterator to iterate over the set of vertices
adjacent to a particular vertex�

����� Input	Output

An important problem that we often run into is sharing problems with
other researchers�Whenever we agree to generate some solutions for a client
�either academia or industry� we often �nd that we must adapt our code
to a new �le format� Attempts to standardize sparse matrix �le formats do
exist� most notably the Harwell�Boeing Format 
DGL���� and the Matrix
Market format 
BPR����� However� we found it unreasonable to expect
clients to restrict themselves to a small choice of formats� We found� in fact�
that understanding the nature of this problem and applying object�oriented
techniques is a good exercise in preparation for the harder problems ahead�

Perhaps the easiest way to handle sparse matrix I�O is to have a member

�C�� cannot inline virtual functions�
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�� Matrix�h
�include �MatrixFile�h�

class Matrix

f
public�

Matrix� MatrixFile	 ��

�� ���
g�

�

�

�

�

�include �Matrix�h�

class MatrixFile

f
public�

MatrixFile� Matrix	 ��

�� ���
g�

FIGURE 
�
�� A �rst design of the Matrix and Matrix�le classes�

function of the matrix class to write a particular format and another to
read� This is a simple solution� but it has a scalability problem� First� as
the number of formats increase� the number of member functions grows and
the matrix class becomes more and more cumbersome� Second� if separate
matrix classes are needed then all of the I�O functions must be replicated�

The Chicken and Egg Problem�

One could reasonably create separate Matrix and MatrixFile classes� The
immediate problem with this design is determining which begets which�
One would expect to read a matrix from a �le� but it also makes sense to
generate a matrix and want to save it in a particular format as shown in
Fig� �����

Such a design induces a cyclic dependency between the two objects�
which is bad because such dependencies can dramatically a	ect the cost of
maintaining code� especially if there are concrete classes inheriting from the
cyclic dependency 
LAK��� pg� ����� This is exactly the case here� since the
intention is to abstract away the di	erences between di	erent �le formats�

A solution is to escalate the commonality between the two classes� This
has the advantage that the dependencies are made acyclic� the downside
is that an additional class that has no physical counterpart is introduced
for purely �software design� reasons� We will call this class MatrixBase�
which is the direct ancestor of both the Matrix and MatrixFile classes�
This second design in shown in Fig� �����

Now we can derive various matrix �le formats from the MatrixFile class�
independent of the internal computer representation of the Matrix class�
We will show later that the bene�ts compound when considering matrix to
graph and graph to matrix conversions�

Navigating Layers of Abstraction�

It is important to understand that abstractions involved around the con�
struct we call a �matrix� come from di	erent levels and have di	erent pur�
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�include �MatrixBase�h�

class Matrix

� public MatrixBase

f
public�

Matrix� MatrixBase	 ��

�� ���
g�

�

�

�

�

�include �MatrixBase�h�

class MatrixFile

� public MatrixBase

f
public�

MatrixFile� MatrixBase	 ��

�� ���
g�

FIGURE 
�

� The Matrix and Matrix�le classes derived from a MatrixBase
class�

poses� To de�ne a class Matrix and possibly many subclasses� care must
be taken to capture the abstraction correctly� It is hard to give a formula
for designing a set of classes to implement an abstract concept� However�
when the abstraction is captured just right� using it in the code is natural
and intuitive� Often we have found that good designs open new possibilities
that we had not considered�

For the matrix object� we have identi�ed at least two dimensions of
abstraction that are essentially independent� one from the mathematical
point of view� one from computer science� Along the �rst dimension� the
mathematical one� a matrix can be sparse� dense� banded� triangular� sym�
metric� rectangular� real or complex� rank�de�cient or full�rank� etc� From
a mathematical point of view� all of these words describe properties of the
matrix�

From a computer science point of view� there are di	erent ways that these
two�dimensional constructs are mapped out into computer memory� which
is essentially one�dimensional� Primarily� matrix elements must be listed in
either row�major or column�major order� though diagonal storage schemes
have been used� For sparse matrices� indices can start counting from zero
or one� Layout is further complicated by blocking� graph compression� etc�

The critical question is� in all the speci�cations of matrix listed above�
which are specializations of a matrix and which are attributes The answer
to this question determines which concepts are implemented by subclassing
and which are implemented as �elds inside the class�

The answer also depends on how the class�es� will be used� Rarely will
a programmer �nd a need to implement separate classes for full�rank and
rank�de�cient matrices� but it is not obvious that a programmer must im�
plement sparse and dense matrices as separate classes either� Matlab uses
the same structure for sparse and dense matrices and allows conversion
between the two� On the other hand� PETSc has both sparse and dense
matrices subclassed from their abstract Mat base class�

A third dimension of complexity comes from matrix �le formats� which
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can be either a text or binary �le� and more generally� a pipe� socket con�
nection� or other forms of I�O streams�

Final Layout�

Our major concern was to have a �exible extensible system for getting
matrices in many di	erent formats into our program at runtime� We dis�
cuss in this section how we �nally organized our solution� The inheritance
hierarchy of the subsystem is shown in Fig� �����

First we made non�abstract base classes GraphBase and MatrixBase

which de�ne a general layout for the data� From these� we derive Graph and
Matrix classes that provide the public accessor�mutator functions� each
class provides constructors from both GraphBase and MatrixBase� Fur�
thermore� Graph and Matrix classes also inherit from the DataStructure

class� which gives them generic data structure state� error reporting func�
tionality� etc� In this way both can construct from each other without any
cyclic dependency�

The �nal important piece before �tting together the entire puzzle is a
DataStream class� This abstract base class has no ancestors� It does all
of its I�O using the C style FILE pointers� We chose this C�style of I�O
because� although it lacks the type�safety of C style iostream� it does
allow us to do I�O through �les� pipes� and sockets� This functionality is
�unfortunately� not part of the standard C library�

If we try to open a �le with a �	gz� su�x� the �le object inherits from
the DataStream class the functionality to open a FILE pointer that is in
fact a pipe to the output of gunzip�� The DataStream class is therefore
responsible for opening and closing the �le� uncompressing if necessary�
opening or closing the pipe or the socket� etc�� but it is an abstract class
because it does not know what to do with the FILE once it is initialized�
This class also provides the error handling services that are typical of �le
I�O�

To understand how all these partial classes come together to do I�O
for a sparse matrix format� consider adding a new format to the library�
a Matrix�Market �le� To be able to read this format� we create a class
MatrixMarketFile that inherits from MatrixBase and DataStream� This
new class needs to implement two constructors based on MatrixBase or
GraphBase and two virtual functions� read� FILE � � and write� FILE

� � �in practice� it also implements many more accessor�modi�er methods
speci�c to the Matrix�Market format�� Now we can read a Matrix�Market
�le� and create instances of either Graph or Matrix �or any other class that
uses a MatrixBase in its constructor�� Furthermore� from any class that
inherits from MatrixBase or GraphBase we can write the object in Matrix�

�The ��gz� su�x indicates a �le that is compressed with the GNU zip utility �gzip�
and can be uncompressed by its complement� gunzip�
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Market format� A graph�based �le format� for instance Chaco 
HL���� can
be created using a similar inheritance hierarchy based on GraphBase�

��� Ordering Speci�cs

is a C library of sparse matrix ordering algorithms for reduc�
ing bandwidth� envelope� wavefront� or �ll� We had earlier developed new
envelope and wavefront reducing algorithms 
KP���� but since they were
implemented in C� we faced problems with complexity� scaling� and exten�
sibility of the code� This motivated us to create � Although
has several stand�alone drivers� it is intended to be used as a library� and
is distributed with C� C� Matlab� and PETSc calling interfaces	�

In this section� we provide some examples of major concrete classes in
� one from the DataStructure and one from the Algorithm branches

of the inheritance hierarchy� In Sect� ����� we introduce the QuotientGraph
class and describe its use� It will be revisited again in Sect� ����� when we
discuss lessons learned� We also discuss the framework for implementing a
family of algorithms in Sect� ������ We believe that this section provides a
compelling example for how �exibility and extensibility can be achieved by
proper design�

����� The Quotient Graph

A quotient graph 
GL��� is an implicit representation of the sequence of
elimination graphs obtained during the factorization process� The quotient
graph represents �implicitly� the elimination graph at any stage in the same
amount of space as the original graph� even though the ordering algorithm
creates new �ll edges in the elimination graph� Thus the quotient graph is
immune to the e	ects of �ll� the price to be paid for this property is greater
searching costs to determine from the quotient graph the adjacency set of
a node in the elimination graph� The space e�ciency helps avoid dynamic
storage allocation for the ordering step� since the total �ll is known only at
the end of this step�

The quotient graph is an augmented graph with two distinct types of
vertices� nodes and enodes� Nodes represent uneliminated nodes from the
original graph� suitably grouped together� enodes represent groups of elim�
inated nodes that are adjacent to each other� The edges in a quotient graph
join either one node to another� or a node to an enode� There are no edges
connecting two enodes
�

�Fortran interfaces are also possible� but have not been implemented yet�
�Conceptually� an edge could connect two enodes in some intermediate state� but it

would immediately be removed and the enodes would be merged into one�
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FIGURE 
�
	� A fragment of the inheritance hierarchy highlighting how multiple
�le formats are implemented and extended� To add an additional format� create a
class that inherits from DataStream and one of GraphBase or MatrixBase� Then
implement the two pure virtual methods inherited from DataStream�
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FIGURE 
�
�� An example of a quotient graph� The nodes are represented as
circles� and enodes as boxes� The reachable set of a node v is the union of the set
of nodes adjacent to v� and the set of all nodes adjacent to enodes adjacent to v�
The degree of a node in a quotient graph is the size of its reachable set� and not
the cardinality of its adjacency set� as is usual in graphs�

The set of nodes adjacent to a node v in an elimination graph can be
computed from the quotient graph by computing the nodes that can be
reached from v in the latter graph� This reachable set of v includes two
groups of nodes� First� the set of all nodes adjacent to v in the quotient
graph� second� the union of the nodes that are adjacent to the enodes
adjacent to v� The union of these two sets is the reachable set of v in the
quotient graph� and hence the adjacency set of v in the elimination graph�
Fig� ���� shows a sample quotient graph and the reachable sets and degrees
for each node�

����� Polymorphic Fill Reducing Orderings

One example where object�oriented implementation had substantial pay�
o	s in terms of extensibility was in our ability to construct polymorphic
�ll reducing orderings� Recall from Table ��� that there are several di	er�
ent variants of these algorithms� many of which are quite recent� Currently
there is no known library containing all of these algorithms� besides �
While some of these heuristics are related� others�particularly MMD and
AMD�are radically di	erent in the ways priorities are computed� the un�
derlying graph is updated� and in the allowed and disallowed optimizations�
A fundamental distinction is that MMD allows multiple elimination� while
AMD is restricted to single elimination� This means that MMD allows many
vertices to be eliminated between each graph update �but the eliminated
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FIGURE 
�
�� The Strategy Pattern�

nodes have to belong to non�adjacent supernodes�� AMD does not require
as much work per graph update� but the graph needs to be updated after
every node is eliminated� this is a consequence of the way in which priorities
are approximated in AMD�

Polymorphism was achieved using the Strategy Pattern 
GHJ��� pg�
����� We created a complete framework for the entire family of minimum�
degree like algorithms but deferred the ability to compute the �exact or
approximate� degree of a node to a separate class in its own mini hierarchy�
See Fig� ���� for the basic layout�

In this arrangement� the class MinimumPriorityEngine �which we will
call Engine for short� is an algorithm that repeatedly selects a node of
minimum priority from the given graph� eliminates it from the graph� and
then updates the graph by adding appropriate �ll edges when necessary�
The catch is that it has no idea how to determine the priority of the vertices�
It must rely on a PriorityStrategy class �Strategy for short�� or more
speci�cally� a specialized descendant of the Strategy�

This important design pattern o	ers several bene�ts� It provides a more
e�cient and more extensible alternative to long chains of conditional state�
ments for selecting desired behavior� It allows new strategies to be imple�
mented without changing the implementation of the engine� It is also more
attractive than overriding a member function of the engine class directly
because of the engine�s overall complexity� This design also forces a sep�
aration between the work that is done and how the quality of work is
measured�

There are potential drawbacks for using this pattern in general� The �rst
drawback is that there is an increased number of classes in the library�
one for each ordering algorithm� This is not a major concern� though users
should be insulated from this by reasonable defaults being provided� A sec�
ond drawback is the communication overhead� The calling interface must
be identical for all the strategies� though individual types may not need
all the information provided� A third drawback is the potential algorithmic
overhead in decoupling engine and strategy� In our case� the engine could
query the strategy once for each vertex that needs to be evaluated� though
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FIGURE 
�
�� Interaction of the classes in the ordering step�

the virtual�function call overhead would become high� Alternatively� the
engine might request all uneliminated nodes in the current quotient graph
to be re�prioritized after each node is eliminated� This may result in too
much work being done inside the strategy� Fortunately� in all these algo�
rithms the only nodes whose priorities change are the ones adjacent to
the most recently eliminated node� The QuotientGraph keeps track of this
information�

For the Engine to work� a class must be derived from the Strategy

abstract base class� and this class must override the pure virtual member
function computePriority� The Engine is responsible for maintaining the
graph and a priority queue of vertices� It selects a vertex of minimum
priority� removes it from the queue� and eliminates it from the graph� The
priority of all the neighbors of the most recently eliminated node is changed�
so they too are removed from the priority queue for the time being� When
there is no longer any vertex in the priority queue with the same priority
as the �rst vertex eliminated at this stage� a maximal independent set of
minimum priority nodes have been eliminated� The Engine updates the
graph and gives a list of all vertices adjacent to newly eliminated ones to
the MMDStrategy class� This class� in turn� computes the new priorities of
these vertices and inserts them into the priority queue�

To make this setup e�cient� we use a BucketSorter class to implement
the priority queue and a QuotientGraph class to implement the series of
graphs during elimination� The interaction of these four major objects is
shown in Fig� ����� We hide the details of how single elimination and mul�
tiple elimination are handled� This too is determined by a simple query to
the Strategy class� When the QuotientGraph is updated� it performs var�
ious types of compressions which may remove additional vertices or modify
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the list of vertices that need their priority recomputed� When it calls the
Strategy to compute the priorities� it provides a const reference to the
QuotientGraph for it to explore the datastructure without fear of side�
e	ects� and the BucketSorter to insert the vertices in�

To implement all of the ordering algorithms in Table ��� e�ciently� we
had to augment the Strategy Pattern� The QuotientGraph is required to
behave in slightly di	erent ways when updating for single elimination al�
gorithms �e�g�� AMD� and multiple elimination algorithms �e�g�� MMD��
Thus the Engine must query the Strategy what type is required and set
the QuotientGraph to behave accordingly� This is handled in the �rst phase
of the run�� function that is overridden from its parent Algorithm class�

��� Factorization Speci�cs

currently focuses on the factorization and triangular solve steps� and
imports orderings from other libraries such as � Here we restrict our
discussion to the factorization algorithms� which are the most complex�
All abstractions associated with the factorization are built incrementally�
beginning from the base classes described in Sect� ����

����� The First Structural and Algorithmic Classes

The initial abstractions result naturally from the high level formulation
of the factorization� illustrated in Fig� ���� We need to describe coe�cient
matrix objects� permutation objects and factor objects� and for these
provides the following three classes� SparseSymmMatrix� Permutation� and
SparseLwTrMatrix�

A coe�cient matrix is described by the SparseSymmMatrix class� Inter�
nally� the matrix data is stored using the compressed column format� for
each column there is a set of numerical values and a set of row indices
that correspond to these values� In addition� an index array contains the
location of the �rst element in each column in the value and row index ar�
rays� The Permutation class describes permutations by storing two maps�
a map from old to new indices and another from new to old indices� The
SparseLwTrMatrix class describes both the triangular and diagonal fac�
tors� While this abstraction may look awkward� it is done with a speci�c
intent� Note that the diagonal elements of L do not have to be stored explic�
itly� which allows the elements of D to replace them� Since the factors are
usually manipulated together� this uni�ed implementation is more e�cient�
The storage of the data is similar to the one used in the SparseSymmMatrix
class� with the di	erence that row indices are compressed according to the
supernodal structure of the factors�

provides a separate abstraction for each factorization algorithm�
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class PosDefMultFrtFactor� public Algorithm

f
private�

const class SparseSymmMatrix �a�

class Permutation �p�

class SparseLwTrMatrix �l�

�� ���

public�

PosDefMultFrtFactor�const class SparseSymmMatrix


class Permutation


class SparseLwTrMatrix��

�� ���

g�

FIGURE 
�
�� An algorithm connects to its inputs and outputs by means of
pointers to the corresponding data structures�

Currently� it supports only multifrontal factorizations� for both symmetric
positive de�nite and inde�nite problems� In the inde�nite case we make
use of the Du	�Reid 
DR��� pivoting strategy now� but we plan to ex�
tend the library with other strategies too� for example Aschcraft�Grimes�
Lewis 
AGL���� Pivoting strategies are discussed in detail in the latter
paper� Also� the library can be easily extended with other factorization
algorithms� such as the left�looking algorithm� The current factorization
classes are PosDefMultFrtFactor� and IndefMultFrtFactor�

����� Connecting Data Structures and Algorithms

Data structures are inputs to and outputs for algorithms� We associate
data structures with algorithms by using pointers to structural objects
inside algorithmic classes� The inputs to a factorization algorithm are the
coe�cient matrix and the sparsity preserving permutation� The outputs are
the factors and the permutation that provides stability� We make the choice
of composing the two permutations� so the output permutation replaces
the input permutation after the factorization algorithm is run� Fig� ����
describes the connection between a factorization algorithm and its input
and output data structures�

Inputs and outputs can be associated with an algorithm through the con�
structor of the algorithm class� or at a later stage �not shown in Fig� ������
This provides the �exibility to change them at any time�

����� The Factorization in More Depth

More abstractions are needed deeper inside the factorization algorithms�
First� there is the elimination forest� which guides both the symbolic and
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class PosDefMultFrtFactor� public Algorithm

f
private�

�� ���

ElimForest f�

CompElimForest elm�

SymFactor sym�

PosDefMultFrtNumFactor num�

public�

�� ���

g�

FIGURE 
�
�� Composition within a multifrontal factorization algorithm�

the numerical phases of the factorization� The forest stores parent� child and
sibling pointers for every node� This way it can be traversed both bottom�up
and top�down� The symbolic and numerical factorization proceed bottom�
up �postorder� but require child and sibling information� The parent� child
and sibling pointers are stored for both nodal and supernodal versions of
the forest� There are also three major algorithms inside the factorization�
algorithms to compute the elimination forest� the symbolic factorization�
and the numerical factorization� Positive de�nite and inde�nite solvers dif�
fer only in the numerical part� so separate numerical factorization abstrac�
tions are needed� Thus we have the classes� ElimForest� CompElimForest�
PosDefMultFrtNumFactor� IndefMultFrtNumFactor and SymFactor�

A factorization class is based on these new classes� To de�ne it we use
composition� as shown in Fig� �����

By splitting the factorization algorithm into its three algorithmic com�
ponents� we give the user the possibility of running these components indi�
vidually� This �exibility is needed in many situations� When some types of
nonlinear equations are solved by successive linearization� the zero�nonzero
structures remain constant while the numerical values change from one it�
eration to the next� In this case� only the numerical factorization algorithm
needs to be run at each iteration� This splitting also aids code reuse since
the algorithms for computing the elimination forest and the symbolic fac�
torization are implemented only once but are used by both positive de�nite
and inde�nite factorizations�

Three more abstractions are required within the numerical factorization�
They correspond to the frontal and update matrices and to the update
stack� Since both frontal and update matrices are dense we �rst provide a
general abstraction for dense matrices� In addition to the numerical values�
frontal and update matrices must also store two types of maps� the map
from local to global indices and vice versa� The corresponding classes are
DenseSymmMatrix� FrontalMatrix� UpdateMatrix� and UpdateStack�

Composition is used again within the numerical factorization algorithms�
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class PosDefMultFrtNumFactor� public Algorithm

f
private�

�� ���

FrontalMatrix fm�

UpdateMatrix um�

UpdateStack u�

public�

�� ���

g�

FIGURE 
�
�� Composition within a multifrontal numerical factorization algo�
rithm�

as shown in Fig� ����� Also� the update stack is composed of update ma�
trices�

Figs� ���� and ���� summarize our discussion above� They provide a high
level description of the classes associated with the factorization from
two perspectives� showing inheritance and composition relationships�

����� The Interaction between Data Structures and
Algorithms

Because of the con�ict between high level abstractions and e�ciency� the
interaction between data structures and algorithms is a major concern in

� We have made several tradeo	s here rather than adopt a uniform so�
lution in all such situations� There are cases when e�cient interfaces make
algorithmic classes aware of the internal representation of structural classes�
In other situations we were able to achieve more abstraction� The code in
Fig� ����� which is the kernel of a numerical factorization algorithm� is rep�
resentative from this perspective� The loop traverses the supernodal elim�
ination forest in postorder using iterators� For each supernode the frontal
matrix assembles original numerical values from the coe�cient matrix� for
a non�leaf supernode� update matrices from the update stack are also as�
sembled into the frontal matrix� Partial factorization is then performed on
the frontal matrix� eliminated columns are saved in the factors� and the
update matrix is pushed onto the stack�

Note that most of the execution time is spent inside the partial fac�
torization of the frontal matrices� Accordingly� we had to make sure that
this operation is performed e�ciently� The factorization is a triply nested
loop which needs to be carefully written� To make sure that we get the
best performance� we have written it in Fortran �� in addition to C�
since Fortran �� compilers tend to generate more e�cient code than C
compilers�

In terms of e�ciency� note also that we perform storage allocation for
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DataStructure

PermutationSparseSymmMatrix

ElimForest DenseSymmMatrix

SparseLwTrMatrix

UpdateStack

FrontalMatrix UpdateMatrix

Algorithm

PosDefMultFrtFactor

PosDefMultFrtNumFactor IndefMultFrtNumFactor

SymFactorCompElimForest

IndefMultFrtFactor

Object

FIGURE 
�
�� Inheritance relationships�

PosDefMultFrtFactor

IndefMultFrtNumFactor

PosDefMultFrtNumFactorElimForest

UpdateMatrixFrontalMatrixCompElimForest

SymFactor

IndefMultFrtFactor

UpdateStack

FIGURE 
�	�� Composition relationships�
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for �ElimForest��constSupPostIter it � f��supPostBegin���

it �� f��supPostEnd��� it���

f
fm�init��l
 u
 �it�� �� Initialize the frontal matrix�

fm�clear��� �� Zero out all its values�

fm�assembleOrg��a
 �p�� �� Assemble original values�

for �int childCnt � it�getSupChildCnt���

childCnt � �� childCnt���

f
u�pop�um�� �� Pop the update matrix out of the stack�

fm�assembleUpd�um�� �� Assemble update values�

g

fm�factor��� �� Perform partial factorization�

fm�saveElm��l�� �� Save eliminated values�

um�init�fm
 u
 �it�� �� Initialize the update matrix�

fm�saveUpd�um�� �� Save update values�

u�push�um�� �� Push the update matrix into the stack�

g

FIGURE 
�	
� The core of the multifrontal numerical factorization�

the update matrices only once� We actually allocate a big chunk of memory
for the update stack and the update matrices use that storage� Of course�
in the inde�nite case we have to increase the size of the stack when needed�

��	 Results

We report results obtained on a Sun Ultra I ���� MHz� workstation with
��� MB of main memory and ��� KB of cache� running Solaris ���� We
compiled the C source �les with g ����� ��O� and the Fortran ��
source �les with f�� ��� ��fast��

We use the two sets of problems listed in Tbl� ���� We read only the spar�
sity pattern for the �rst set and generate numerical values for the nonzero
elements �both real and complex� that make the coe�cient matrices posi�
tive de�nite� The problems in the second set are inde�nite and we read the
original numerical values also� To compare ordering algorithms we use the
�rst set of problems� Tbl� ��� shows ordering and numerical factorization
times for several ordering algorithms available in � for real�valued
coe�cient matrices�
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problem
order nonzeros in A description

�subdiag��

commanche ���	� 

���� helicopter mesh
barth� ���
� 
����� computational �uid dynamics
ford
 
���	� �
��	� structural analysis
barth� 
����� ������ computational �uid dynamics
shuttle eddy 
���	� ������ model of space shuttle
ford	 
���
�� 			�	�� structural analysis
tandem vtx 
����� 

����� helicopter mesh �tetrahedal�
pds
� 
����� ������ multicommodity �ow
copter
 
��			 ����	
 helicopter mesh
ken
� 	����	 ������ multicommodity �ow
tandem dual ������ 
���	
	 dual of helicopter mesh
onera dual ������ 
����
� dual of ONERA�M� wing mesh
copter	 ������ ��	�	�� helicopter mesh

shell ���
� 
�����
 model of venous stent
rev�a ��
�� 
������ ��
nok 
����� �����	� ��
e	�r���� ��	�
 ���
�� Driven cavity �Stokes �ow�
e��r���� ����
 
����
� ��
e��r���� 
��	�
 	������ ��
helmholtz� ��		� 
����� Helmholtz problem �acoustics�
helmholtz
 
����� �����	 ��
helmholtz	 ������ 	������ ��

TABLE 
�	� Test problems�
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problem MMD MMMD AMD AMIND AMMF

commanche
o ��	� ���� ���� ���� ����
f ��	� ��		 ��	� ��	� ��	�

barth�
o ��	� ��	� ���� ���� ����
f ��	� ��	� ��	� ��	� ��	�

ford

o ���� 
��� 
��
 
��� 
���
f ���� ���� ���
 ���� ����

ken
�
o 	�	� 	��	 ���
 ���� ���	
f 
��
 
��� 
��
 
��� 
���

barth�
o ���� 
��� 
�
� 
�	
 
�	�
f ���� ���� ���� ���� ����

shuttle eddy
o ���� ���
 ���	 ���� ����
f ���� ���� ���� ���� ����

ford	
o ���� ���� ���� ���� ���

f 
	�
� ���
 

��
 ��
� ����

tandem vtx
o 	�	� 	��� 
��	 	�

 	�
�
f �
��� 	���� ����	 
���� 
����

pds
�
o ����	 
����� ���� ���� ����
f �
��� �
��� ����� ����� �	��


copter

o 	��� 	��	 	��
 	��� 	���
f �	�
� ����� ����� �
��
 �
�
�

tandem dual
o 

��� 
	��	 ���� 

�	� 

�
�
f 	����� 	����	 		��	� 
����� 
	
�	�

onera dual
o 
���� 

��� ���� 
���� 
����
f ������ 	
���� 	�
��� 
�
��
 
�����

copter	
o 

��� 
	�	� ���� ���	 ����
f �
���	 	����� ������ 	����� 	
����

TABLE 
��� Time �seconds� needed to compute some �ll�reducing orderings from
the MMD family �o�� and to factor the reordered matrices �f�� for positive de�nite
real�valued problems�
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problem
nonzeros in L real�valued complex�valued
�subdiagonal� perf� error perf� error

�M��s� �M��s�

commanche ������ 
	�
 �e�
� ���� 
e�
�
barth� 

����� 	
�� �e�
� ���� �e�
�
ford
 �
����� 	��� 	e�
� �	�� �e�
�
barth� ������
 	��� �e�
� ���	 
e�
�
shuttle eddy �����	� ���	 �e�
� ���� �e�
�
ford	 	�������� �	�	 	e�
� ���� 	e�
�
tandem vtx 	�������� ���	 �e�
� ���� 
e�
�
pds
� 
�����
�� 	��	 	e�
� ���� �e�
�
copter
 	�����
�� �	�� 	e�
� ���� 	e�
�
ken
� ������� 
��� 
e�
� �	�� �e�
�
tandem dual 

�������� ���� 
e�
� ���� 	e�
�
onera dual 
	��	����	 ���� 
e�
� ���� 	e�
�
copter	 
��������
 ���� �e�
� ���
 
e�
�

TABLE 
��� Factorization results obtained with the positive de�nite code�

We focus next on one particular ordering� MMD� and look at several other
properties� Tbl� ��� lists� for the �rst set of problems� the number of o	�
diagonal nonzero entries in the factors� the numerical factorization perfor�
mance and the backward error for both real and complex�valued problems�
Note that performance results must be interpreted with care for sparse ma�
trix computations� since an ordering that increases arithmetic work tends
to increase performance as well� Thus one can achieve a higher performance
by not preordering the coe�cient matrix by a �ll�reducing ordering� Perfor�
mance reports are useful when the same ordering is used on di	erent archi�
tectures� or as in this case� when looking at both real and complex valued
problems� Note that while the arithmetic work of complex�valued problems
is roughly four times the work in real�valued problems� performance im�
proves only by a factor of two� The relative residual �k�b�Ax�k��kAk kxk��
is computed to report backward error�

We switch now to the second set of problems� The �rst two groups
contain real�valued structural analysis and computational �uid dynamics
�Stokes� problems� The third group contains Helmholtz problems� which
are complex�valued� We order the coe�cient matrices with MMD� Tbl� ���
reports the number of o	�diagonal nonzero entries in the factors� numeri�
cal factorization time� performance during numerical factorization� and the
relative residual� Performance is still meaningful because we are interested
in how it changes for problems within the same category� It is expected to
increase with increasing number of nonzeros in the factor� and that is what
we see for structures and the Stokes problem� Yet� performance decreases
with increasing size for the Helmholtz problems� This is likely caused by
increased paging due to the larger storage requirements of these problems
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problem
nonzeros in L time perf� error
�subdiagonal� �s� �M��s�

shell 
������ ���� 
��� 
e�
�
rev�a ������� 	��� 	��� �e�
�
nok 	�������	 
���� ���� 
e�
�
e	�r���� ������� 	��� 		�
 	e�
�
e��r���� 
�
������ 
���� 	��� 
e�
�
e��r���� 	���
���� 	��

 	��� 
e�
�
helmholtz� 
	���	� ���� ���� �e�
�
helmholtz
 �
��	�	 ���� ���� �e�
�
helmholtz	 ��
���
�� ����� ���� �e�
�

TABLE 
��� Factorization results obtained with the inde�nite code�

relative to the available memory� We have observed a performance increase
with size for these problems on machines with more memory �such as a
Sun Ultra �� workstation with ��� MB of memory and an IBM RS����
workstation with ��� MB of memory�� These results show that for large
problems an out�of�core solver is needed to obtain high performance�

There is a detail that needs to be explained here� The inde�nite nu�
merical factorization is based on a sparsity�stability threshold which can
take values between � and �� A large threshold enhances stability but also
generates more swapping among the columns within each supernode� and
more delaying of columns from child to parent supernodes� which leads to
reduced sparsity and performance� Sparsity can be preserved and perfor�
mance increased by lowering the threshold� but that decreases stability� The
optimal choice depends on the problem and on what tradeo	s are made�
Stability can usually be reinstated from an unstable factorization by few
steps of iterative re�nement� The results in Tbl� ��� are obtained with a
threshold value of ���� and no iterative re�nement�

��
 Comparisons with Existing Work

While we were completing this article� we learned about another object�
oriented library called SPOOLES that contains direct solvers� SPOOLES
�SParse Object�oriented Linear Equations Solver� is a recent package de�
veloped by Cleve Ashcraft and colleagues at the Boeing Company 
SPO��
The code is publicly available without any licensing restrictions�

SPOOLES contains solvers for symmetric and unsymmetric systems of
equations� and for least squares problems� It supports pivoting for numer�
ical stability� it has three ordering algorithms �minimum degree� nested
dissection� and multisection�� Implementations on serial� shared parallel
�threads�� and distributed memory parallel �message�passing using MPI�
environments are included� It is a robust� well documented package that is
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written in C using object�oriented techniques� We have learned much from
its design and from our continuing interactions with Cleve Ashcraft�

SPOOLES distinguishes between data classes� which can have some triv�
ial functionality� and algorithm classes� which handle the more sophisticated
functionality� However� it does not enforce this paradigm strictly� as it has
ordering classes but only factorization and solve methods�

SPOOLES employs a left�looking factorization algorithm instead of the
multifrontal algorithm that we have implemented� However� with the func�
tionality provided in SPOOLES� a multifrontal method can be quickly im�
plemented� It employs a one�dimensional mapping of the matrix onto pro�
cessors during parallel factorization� and a two�dimensional ���D� mapping
during the parallel triangular solves� It would be harder to support pivot�
ing with a mapping of the matrix� The factorization algorithms are not as
scalable as parallel algorithms that employ the ��D mapping�

SPOOLES covers more ground than we have done� as it has solvers
for symmetric and unsymmetric systems of equations� as well as over�
determined systems� It does not have all of the minimum priority orderings
in �

SPOOLES is implemented in C� which is generally more portable than
C� The C programming language is a procedural language and not de�
signed to support object�oriented semantics of inheritance� automatic con�
struction and destruction of objects� polymorphism� template containers�
etc� These can be emulated in C� but it falls upon the library developer
and the user to adhere to certain programming styles with no help or en�
forcement from the compiler�

��� Lessons Learned

��
�� General Comments

It is di�cult to create general solutions to software design problems� Often
a solution that seems good in a particular context becomes unsatisfactory
when the context is extended� For example� the initial design of did
not decouple algorithms from data structures� It was initially implemented
in C instead of C� When was ported to C� the structs were
converted to classes and algorithms were made methods of these classes�
This introduced several di�culties� First� the association was not natural�
Is an ordering algorithm supposed to be associated with a matrix or with
a permutation Second� this solution was neither �exible nor extensible�
These problems led us later to the natural and general solution in which
we introduced algorithmic classes�

One area where we continue to struggle for the �right� solution is with
shared objects� This happens� for example� with an ordering algorithm and
a coe�cient matrix since the matrix exists outside the algorithm but it
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also has a copy inside the algorithm� as the algorithm�s input� Since the
matrix is built before the ordering algorithm is run� the input may just be
a pointer to the matrix� an external object� What happens with the output
of the ordering algorithm �the Permutation object� is trickier to manage�

Currently� we have a limited approach for the ownership of dynami�
cally allocated data inside structural objects� It is not desirable to allocate
separate copies for di	erent copies of the same entity� We have used two
approaches until now� In the �rst� the output object also exists before the
algorithm is run �it can be empty� and the algorithm packs the empty class
with information� The second approach lets algorithm classes construct the
output classes internally and spawn ownership �and cleanup responsibili�
ties� of only the outputs that the user requests�

The preallocation scheme is simple and makes responsibility of instance
reclamation obvious� The downside of this is that an algorithm�s output
has to be allocated and assigned to it before the algorithm is run� It is less
intuitive than running the algorithm and querying the results� �s �ll�
reducing orderings construct the parent pointers for the elimination forest
in the normal course of computing the ordering� One user may indeed want
a permutation� but others may want the elimination forest� It is inelegant to
force users to pre�initialize output classes that they are not even interested
in�

The approach of having shared objects and explicitly transferring own�
ership can be complicated to use and is more prone to programmer error�
This is� however� much easier to implement than another method for shar�
ing large data structures� reference counting�

Full reference counting requires an interface class for each class that can
be shared� An additional layer is needed to provide a counter that counts
the number of interfaces that access the current instance� This gives more
�exibility in assigning inputs and outputs �outputs can actually be built
before or later�� Changes are then seen by all interfaces and memory deallo�
cation occurs correctly when the last interface is destroyed� The problem of
unwanted changes by another interface is eliminated by performing �deep�
copy� on write�

��
�� Judicious Application of Iterators

One disappointing endeavor was to provide an iterator class to traverse the
reachable set of the QuotientGraph class� The idea was to provide an adja�
cency iterator for an EliminationGraph class� a reachable set iterator for
the QuotientGraph class� and a collection of minimum priority algorithms
that were totally unaware of whether it was operating on an elimination
graph or a quotient graph� Although we were successful in implementing
the ReachableSetIter class� its performance was so poor� that its general
use was abandoned� This required the minimum priority algorithms to be
speci�c to the QuotientGraph class and iterate directly over the enode and
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void MinimumDegree��prioritize� const QGraph	 g
 List	 l


PriorityQueue	 pq �

f
for� List��iterator it � l�begin��� it �� l�end��� ��it � f

int i � �it�

int degree � ��

for� QGraph��reach iterator j � g�reach begin�i��

j �� g�reach end�i�� ��j � f
degree �� g�getNodeWeight� �j �

g
pq�insert� degree
 i ��

g
g

FIGURE 
�		� Computing the degree of all the nodes in List the elegant �but
ine�cient� way using reachable set iterators� The innocuous looking ��it hides
a cascade of if�then�else tests that must be performed at each call�

supernode adjacency lists� This increased the complexity of the interface
and the coupling between data�structure and algorithm� but also signi��
cantly improved the performance� Here we explain why this idea looked
good on paper� why it did not work well in practice� and why this problem
is unavoidable�

Ideally� one would like to provide a class that iterates over the reach�
able set so that the priority computation can be implemented cleanly�
In Fig� ���� this class is typedef�ed inside the QuotientGraph class as
reach iterator� We add the additional detail that a weight might be as�
sociated with each supernode� so the degree computation sums the weights
of the nodes in the reachable set�

Internally� we expected the reachable set iterator to have much in com�
mon with the C standard deque��iterator� A deque is a doubly ended
queue that is commonly implemented as a vector of pointers to pages of
items� The deque can easily add or remove items from each end by check�
ing the �rst or last pages� and adding or deleting pages as necessary� The
iterator of a deque need only advance to the end of a page� then jump to
the next page� In the context of a quotient graph� an enode is much like a
page with each having a list of items� namely supernodes�

There are� unfortunately� some critical di	erences� In a deque� the size of
each page is known a priori� which is not true for the supernodes adjacent to
an enode� Furthermore� the same supernode may be reachable through two
di	erent enodes� The reachable set need not be traversed in sorted order
�as presented in Fig� ������ but it cannot allow the same supernode to be
counted twice through two di	erent enodes� Furthermore� the reachable set
does not include the node itself�
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We were able to implement such an iterator� but there is a hidden over�
head that causes the code fragment in Fig� ���� to be too expensive� A
reachable set is the union of several non�disjoint sets� and therefore the it�
erator must test at each iteration if there are any more items in the current
set� if there are any more sets� and use some internal mechanism to prevent
double visiting the same node in di	erent sets�

Most of the details for the ReachableSetIter are not di�cult� but the
increment operator is excessively tedious� The problem is that the incre�
ment operator must redetermine its state at each call� Is it already at the
end of the adjacency list Are there more nodes or enodes in the current
list Once a next node has been located� has it been marked The alterna�
tive is to evaluate the reachable set by iterating over sets of adjacent nodes
and enodes of the quotient graph manually� This is shown in Figure ����
which is functionally equivalent to the code in Figure ����� In this case� the
state information is implicit in the loop and not con�ned to the increment
operator� which allows for the entire process to execute more e�ciently�

The lesson learned here is to be judicious in the use of fancy techniques�
The coding bene�ts of using a reachable set iterator are far outweighed
by the increase in performance in manually running through the adjacency
lists� The latter scheme makes the critical assumption that every node
has a �self�edge� to itself in the list of adjacent enodes� This convenient
assumption also increases coupling between the QuotientGraph class and
the descendants of the MinimumPriorityStrategy class�

��
�� Conclusions

There is no inherent con�ict between object�oriented design and e�cient di�
rect solvers in scienti�c computing� Some features of C such as function
inlining� templates� encapsulation� and inheritance su	er no performance
penalties and can be used aggressively� Other features such as virtual func�
tions� excessive temporary objects that can result from operator overload�
ing� and hidden copy construction can signi�cantly degrade performance
if left unchecked� The target of object�oriented design must be the higher
layers of the software� With direct solvers they are the most sophisticated�
taking most of the code� but just a small fraction of the execution time�
There is not much room for abstraction in low level loops� so the focus
there must be on performance�

We have learned that good design requires tradeo	s� There is no per�
fect solution� unless we are talking about arti�cial problems typically con�
structed for pedagogical use� Real�life applications have many constraints�
many that con�ict with each other� and it is di�cult to satisfy all of them�
The solution is to prioritize the constraints and to satisfy those with high
priorities� An example is decoupling� which introduces an overhead since
objects have to communicate through well de�ned interfaces� By decoupling
we can localize potential changes in the code� and this is one of the proper�
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void MinimumDegree��prioritize� const QGraph	 g
 List	 l


PriorityQueue	 pq �

f
for� List��iterator it � l�begin��� it �� l�end��� ��it � f

int i � �it�

int degree � ��

int my stamp � nextStamp����� get new timestamp
g�visited� i  � my stamp� �� Mark myself visited
for� QGraph��enode iterator e � g�enode begin�i��

e �� g�enode end�i�� ��e � f
int enode � �e� �� for all adjacent enodes
for� QGraph��node iterator j � g�node begin�e��

j �� g�enode end�e�� ��j � f
int adj � �j� �� for all adjacent nodes
if � visited� adj  � my stamp � f

�� if not already visited� mark it and add to degree
visited� adj  � my stamp�

degree �� g�getNodeWeight� adj ��

g
g

g
pq�insert� degree
 i ��

g
g

FIGURE 
�	�� Computing degree without using the reachable set iterators� This
piece of code is not as elegant as the equivalent fragment in Figure 
�		� but in
terms of e�ciency � this method is the clear winner� In this case� the visited array
is part of the MinimumPriorityStrategy base class along with the nextStamp��

member function that always returns a number larger than any previous number�
If the next stamp is the maximum integer� then the visited array is reinitialized
to all zeros�
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ties that make object�oriented software appealing� To avoid overheads� we
have weakened the encapsulation in performance�critical parts of the code�

Well�designed object�oriented software that is implemented in C leads
to libraries that are easier to use� more �exible� more extensible� safer� and
just as e�cient as libraries implemented in C or Fortran� Designing and im�
plementing a �good� object�oriented library is also signi�cantly harder� Im�
plementing sparse direct solvers cleanly and e�ciently using object�oriented
techniques is an area where challenging research issues remain�
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