Oblio: A Sparse Direct Solver Library for Serial
and Parallel Computations

Florin Dobrian', and Alex Pothen'-2

! Department of Computer Science, Old Dominion University
2 ICASE, NASA Langley Research Center

Abstract. We present Oblio, a sparse direct solver library running in
both serial an parallel environments. The code is written in C++ using
object-oriented techniques, with the exception of few computationally
intensive kernels that are written in Fortran 77. In this paper we explain
what motivated the project, discuss design issues and report recent re-
sults.

1 Introduction

As shown in [1], computing the solution of sparse linear systems of equations
represents the key computation in several critical industry and national-security
applications. Among the problems identified are the optimization of aircraft
turbines, the design of public-key cryptosystems, and a broad range of other
applications in computational fluid dynamics, linear programming, finite-element
methods and process engineering.

We currently investigate sparse direct solvers, which are more robust than
their iterative counterparts. The drawback is that they require more computa-
tional resources and they are more difficult to program. In terms of resources,
decomposing a sparse matrix requires more work and storage than performing
few steps of sparse matrix-vector multiply. In terms of programming, sparse
direct solvers use sophisticated data structures and algorithms, including irreg-
ular and dynamic computations. However, while resource requirements are well
understood, there is significant room for improvements from the programming
perspective.

The major objective of this research is to build a modern software package
that uses state-of-the-art sparse direct solver algorithms. The motivation for
this work is twofold. First, research needs better tools for experimentation. It
should be easy to combine algorithms in various ways as well as to prototype
new ones. Second, real world applications need software that is easier to adapt
to various architectural and application requirements. In terms of architectures,
memory hierarchies determine cache-aware and out-of-core computations and
parallelism leads to the consideration of proper mapping and communication
models. From the application perspective, the systems to be solved may be
unsymmetric, structurally symmetric or fully symmetric, real-valued or complex-
valued, and pivoting may or may not be required for numerical stability.

We have implemented Oblio, a sparse direct solver library that runs in
both serial and parallel environments. The software is designed using object-
oriented techniques and it is written in C++. Performance reasons required
certain tradeoffs and writing few low level computationally intensive kernels in
Fortran 77. Currently, Oblio handles fully symmetric systems, both real-valued
and complex-valued, and both positive definite and indefinite. In our opinion, the
code is fairly easy to understand, modify and extend. As a result, it is potentially
suited for experimentation and to match different architectural and application
requirements.

Our work is part of the current efforts to introduce advanced software design
to the scientific computing community. Most of the time advanced translates to
object-orientedness, but other paradigms, such as generic programming, are also
used. Currently, iterative solvers are the main targets for the new software tech-
niques, PETSc (written in C) ([10]) and Diffpack (written in C++) ([4]) being
well known examples. Less has been done to improve the design of direct solvers.
Oblio ’s sister, Spindle ([5]), handles ordering algorithms (Oblio has only fac-
torization and solve algorithms). We are aware of only one other sparse direct
solver package that uses object-oriented design: SPOOLES ([2]). The major dif-
ference comes from the fact that SPOOLES is written in C. While additional
programming effort and discipline are required in C, there is no doubt that C++
has portability problems, as a standard was only recently established and it is
not rigorously followed. Such problems will likely dissapear in the future.

We have presented an earlier, serial only, version of Oblio in [5]. In this
paper we discuss the current version, highlighting modifications and extentions
required by parallelism. In Section 2 we provide an overview of the problem,
we address design issues in Section 3 and in Section 4 we report recent results
obtained with the parallel code.

2 Problem Overview

Direct methods use a simple idea to compute the solution of a general linear
system of equations Ax = b: decompose it into a sequence of systems which are
easier to solve. This is achieved by splitting the coefficient matrix into a product
of simpler matrices. The procedure is called factorization and the matrices com-
puted by it are called factors. Factorization algorithms are commonly variations
of the Gaussian elimination, the factors having triangular and diagonal shapes.
The task of solving triangular and diagonal systems is obvious.

While conceptually simple, this strategy involves sophisticated computations
when the system is large and sparse, a common case in a large number of ap-
plications. Solving a large system of equations requires a significant amount
of computational resources and clever algorithms must be used to reduce this
amount by taking advantage of sparsity. Storage and work are needed only for
the nonzero entries in the coefficient matrix and factors and the sparsity of the
factors depends on the row and column order in the coefficient matrix.

When the coefficient matrix is symmetric, it is usually decomposed as fol-
lowing:

PAPT = LDILT.

Here P is a permutation matrix that reorders A to preserve sparsity, and L
and D are triangular and diagonal shaped factors. Note that, in order to save
half of the storage and work, symmetry is also preserved by reordering rows
and columns in the same way. Figure 1 shows a black box representation of the
computation. The system’s solution and right hand side are denoted by = and b

respectively. A good place to start looking at sparse symmetric direct solvers is
(7).

A L D L b
! '
Order Factor Solve
P P

Fig. 1. A black box representation of a sparse direct solver.

In this paper we focus on factorization, a representative computational step
and a good candidate for parallelization. In the remaining of this section we
review major aspects concerning factorization algorithms. To simplify the dis-
cussion we assume that the coefficient matrix is already ordered to preserve
sparsity.

As it turns out, sparse matrix computations can be illustrated in terms of
graphs. An undirected graph G(A) can be naturally associated with a symmetric
matrix A: for each diagonal entry add a node; the node corresponds to the row
and column in which the diagonal entry lies; for each pair of nonzero off-diagonal
entries add an edge between the nodes corresponding to the rows and columns
in which the nonzero entry pair lies. Figure 2 shows a sparse symmetric matrix
and its associated undirected graph.

The factorization of A can be equivalently formulated as the procedure of
eliminating its columns from left to right. Each time a column is eliminated it also
updates the remaining ones. New nonzero entries, called fill entries are usually
created by the update operations. Using G(A), the factorization can be described
as following: when a column is eliminated, delete its corresponding node and all
its incident edges; also, add new edges between its remaining neighbors, if they

123456789

1o @) 5 6

2e e o0

3 o0 °

4)) 1 8 7

5 oo o

6 XXX 3
7 ° oo o

S5e® eee® @

Jee e e o 2 9 4

Fig. 2. A sparse symmetric matrix and its associated graph.

are not already connected. The new edges correspond to the fill entries and,
consequently, they are called fill edges.

The graph GT(A) obtained from G(A) by adding all the fill edges is called
the fill graph and it corresponds to the fill matrix F' = L + D + L7 in the same
way G(A) corresponds to A. Thus, the amount of storage and work required to
compute the factors is determined by G*(A). Figure 3 shows the fill matrix and
the fill graph that correspond to the coefficient matrix from Fig. 2.

34567

12 8 9
o0 o0
o0 o0

©0O~NO D WN P
[N]

ceoeeeo

®
O
o

Fig. 3. The fill matrix and the fill graph.

Clearly, the factorization needs to be performed in the order in which the
columns appear in the coefficient matrix, but there are reasons to organize it
in a clever way. First, sparsity leads to irregular computations, which are not
efficient. A significant increase in performance can be obtained by clustering
columns to perform regular computations. Second, there is no total order among
the factor columns, as if would be the case if A were dense. This represents a
good oportunity for parallel computations.

Given GT(A), it is difficult to visualize how to organize the work to achieve
better performance and to exploit parallelism. The key lies with a data structure
that represents the backbone of the fill graph: the elimination forest.

Simply stated, the elimination forest EF(A) is nothing but the transitive
reduction of the fill graph. Such a definition is not correct though since the
fill graph is not directed. This detail can be easily overcome by temporarily
assigning an orientation to each edge. The direction is from its lower numbered
to its higher numbered endpoint. The transitive reduction is computed for the
resulting directed graph, edges in the elimination forest pointing from children
to parent nodes. Edge orientation can then be dropped, from both G*(4) and
EF(A). For details about elimination forests see [8].

Here is how a factorization algorithm can use the elimination forest: it tra-
verses it in topological order, usually in postorder; at each node it performs
column elimination and update operations. The forest is very useful to define
criteria for increasing performance and exploiting parallelism. The former is
achieved by clustering columns along forest branches, where they have the iden-
tic or similar sparsity patterns. For the latter, independent branches must be
processed in parallel.

By clustering columns the corresponding nodes are merged and the elimi-
nation forest is compressed. Nodes in the compressed forest correspond now to
clusters of columns, also called fronts. The factorization proceeds in the same
way, traversing the forest in postorder and performing some basic processing
at each node. However, there is less overhead for fewer nodes, and the nodes
are processed more efficiently, front computations being actually dense matrix
computations.

Within this framework, choices can be made to organize the work. In partic-
ular, we use the multifrontal strategy, first mentioned in [6]. A good tutorial on
multifrontal factorization in given in [9]. The procedure is easy to understand.
The processing of a node begins by forming a dense matrix called the frontal ma-
triz. Two types of columns are included in the frontal matrix: frontal columns,
which belong to the current front, and update columns, which are columns that
are updated by the frontal ones and which belong to a front that corresponds to
an ancestor of the current node. Note the following key observation: the frontal
columns are fully assembled (no other columns will update them) and so they
can be eliminated; on the other hand, update columns are only partially assem-
bled and their elimination must be postponed. Consequently, we only need to
perform partial factorization on a frontal matrix and to propagate the updates
upper in the forest.

To simplify the discussion we consider positive definite systems only. Conse-
quently, there is no need to pivot for numerical stability and the processing of a
frontal matrix is simply a partial Cholesky factorization.

Until now, the scheme we described it actually not particular to the multi-
frontal strategy. What makes the multifrontal factorization different is the way
in which updates are propagated upper in the forest. Clearly, update opera-
tions can be performed between the current node and all its ancestors whose
corresponding fronts include current update columns. The multifrontal strategy
follows a different approach: updates are propagated from child to parent nodes.
While not all the current update columns belong to the front corresponding to

the parent, they form a subset of all the columns of the parent’s frontal matrix
(frontal and update). This way updates are carried and aggregated along forest
paths until they reach their final destination.

A second dense matrix, called the update matriz, is used to propagate updates
between child and parent nodes. The update matrix is formed by extracting the
update columns from the frontal matrix after performing the partial factoriza-
tion. Since a parent node is processed only after all its children, a mechanism is
needed to temporarily store update matrices. The natural solution imposed by
the postorder traversal of the forest is an update stack, a stack of update ma-
trices. Figure 4 shows the elimination forest that corresponds to the coefficient
matrix from Figure 2 and the frontal and update matrices associated with the
top nodes. Note how several nodes are clustered.

8 9

9 g® o

9o e

8 .
2 7 e ejee 7eCe
/ 2ee000 §o|® O
1 4 6 geeeo| 9eoe
geece 789
3 5 1289

Fig. 4. The elimination forest, and the frontal and update matrices.

This is the basic mechanism of the multifrontal factorization. The rest is
just details. For example, what if we solve more general indefinite systems? In
this case a frontal matrix must be processed in a slightly different way. Pivoting
needs to be performed within fronts and pivot selection criteria may actually
delay the elimination of certain columns from one front to another one. In this
situation update matrices must carry fully assembled columns in addition to
partially assembled ones, as they migrate between fronts to increase their chance
of becoming suitable pivots. Details on pivoting can be found in [3].

We conclude this overview by discussing parallelism. We have already noticed
that independent branches can be processed in parallel. This is usually referred
to as branch level parallelism. There is also front level parallelism: within each
frontal matrix, as soon as a column is eliminated, all the frontal matrix columns
to its right (both frontal and update columns) can be updated in parallel. Ex-
ploiting front level parallelism too is important because the higher layers of an
elimination forest tend to have fewer independent branches and larger fronts.

The commom strategy used by a parallel solver during the factorization is
based on a recursive mapping of the computation to processors. The processors
are first split among the forest trees. This exploits branch level parallelism. A

proportional partition, which takes the work associated to each tree into account,
is desirable. The front associated with the root of each tree is processed by the
processors that tree is mapped on. This exploits front level parallelism. The
procedure is then repeated recursively starting with the subtrees rooted at the
children of each tree. Whenever only one processor is left, the whole subtree is
mapped on it.

3 Software Design

Oblio was initially designed as a serial library. Recent modifications and exten-
sions support parallel computations as well. Several components of the earlier
version had to be adapted to the new requirements as parallel code must dis-
tribute both computation and storage.

We distribute cost dominant data structures but replicate few others. The
arithmetic work is fully distributed. Basically, the same elimination forest guides
both serial and parallel computations. In a parallel environment the forest is
replicated and each processor traverses it in postorder. Additional mapping in-
formation helps processors skip nodes whose processing they are not responsible
for (branch level parallelism) or partially process nodes (front level parallelism).
Permutation objects are replicated too. We distribute coefficient matrix, factor,
frontal and update matrix, and update stack objects.

This section is organized along six topics. We begin with a recent improve-
ment: a class for array objects. We continue with classes that describe the ob-
jects visible at the highest level (coefficient matrix, permutations and factors),
the elimination forest, and the factorization specific objects (frontal and update
matrices, and the update stack). We pay special attention to the class that han-
dles the factorization algorithm. In the end we compare the design of Oblio and
SPOOLES.

3.1 Array Handling

Most Oblio objects store data in arrays. In the past we have used C++ arrays
for this purpose but we recently introduced a new class to manage array objects.
With C++ arrays certain statements are unnecessarily replicated throughout
the code. More lines need to be typed and mistakes can be easily made. The
Array template class (we store items of various data types), shown in Fig. 5,
describes array objects in Oblio. The private data are placed in the top part
and the public interface in the bottom part. We use similar figures throughout
this section but be provide more details here in order to explain the principles
we followed in the design.

For each class we usually have a regular constructor that builds non-empty
objects, given object dimensions. We also provide default constructors because
we sometimes need to build empty objects. The resize method can be used to
change object dimensions.

Array<T>

int size;

T* value;

bool owned;

Array (const Arrayé&);

Array& operator=(const Array&);

Array () ;

virtual ~Array():;

Array (int size);

int getSize() const;

void setSize(int size);

T* getValue (void) ;

const T* getValue(void) const;
void setValue(T* value);

bool getOwned(void) const;
void setOwned (bool owned) ;

T getValue(int i) const;

void setValue(T value, int i);

void resize(int size);

Fig. 5. A template class for arrays.

We currently avoid assignment operations between any of our objects as well
as passing them by value. At present we do not find such operations necessary
and, to prevent performance problems, we declare the copy constructor and the
assignment, operator private and we never define them.

We only allow reading object data fields, through get-like functions, except
for Array, where set-like functions permit writing data fields. We also allow
reading and writing array items.

A major difference between Array and other classes comes from the own-
ership flag. This flag is useful when we need to use externally allocated C++
arrays inside Array objects. In such situations we must have more control over
the Array class: read and write any field. Note that this comes at a higher risk,
so more attention needs to be paid to avoid potential mistakes when full control
is exercised.

We do not allow the same degree of control for other classes since we do not
find such an option useful. The fundamental operations allowed for instances of
classes other than Array are: construction, destruction, resizing and querrying.
Of course, their internal Array objects can be accessed according to the definition
of the Array class.

We believe is is sometimes appropriate to have shared Array objects. This
approach may bring significant storage savings when two different objects store
identical data. While we do not provide such functionality yet, it would not be
difficult to include it in a future version of the code. Clearly, a shared Array
object must use reference counting to keep track of all the objects that use it.

3.2 Coefficient Matrices, Permutations and Factors

The objects visible at the highest level are coefficient matrices, permutations and
factors. Mathematically they all represent matrices but the are certain differences
between them that determine separate implementations. Currently, the corre-
sponding Oblio classes are: SparseMatrix, Permutation and SparseFactors.

SparseMatrix is shown in Fig. 6. Because we solve both real-valued and
complex-valued systems, SparseMatrix is a template class. The same is true for
any other class that stores numerical data.

SparseMatrix<T> Array<int> | Array<int> | Array<T>
int order; int size; int size; int size; ’
int numberOfEntries; int* value; int* value; T* value;

Array<int>* columnPointer;

Array<int>* rowIndex;

Array<T>* entry;

Fig. 6. The template class that describes coefficient matrices.

The dimensions of a SparseMatrix object are the order and the number
of nonzero entries. In addition, three Array objects store column pointers, row
indices and entries (compressed column format). While Oblio currently handles
only symmetric systems, we prefer to store the whole coefficient matrix instead
of saving half of the storage because this speeds up certain computations. This
in one of several situations in which we trade storage for execution time. Note
that instead of storing actual Array objects inside other objects we prefer to
store pointers to them. This way it would be easier to add shared functionality
later.

We omitted the SparseMatrix public interface to avoid too many details. An
observation is necessary though. It applies to all classes described using Array
objects. In the previous subsection we mentioned that except for the Array
class we allow only reading private data fields. However, we do allow reading
and writing items of the internal Array objects. This can be done in two ways.
Naturally, one can retrieve the pointer to the Array object we are interested
in and then use the methods of the Array class to access particular items. We
also provide methods that access the items directly. The mechanism is basically
the same but the querried pointer is not visible this time. There is a difference
in performance between the two alternatives. The former is more efficient when
a large number of items belonging to the same Array object must be accessed
because a pointer to that object needs to be retrieved only once. Yet, the latter
tends to make the code more readable.

SparseFactors is very similar to SparseMatrix. In fact we could have used
the same class for both the coefficient matrix and the combined factors (the
fill matrix). Yet, there are reasons to use a separate class: a slightly different

storage scheme increases performance and symmetry can be effectively exploited
this time by saving half of the storage. Note that combining the factors in a
single object determines some coupling, but the factors are always manipulated
together.

Figure 7 shows the Permutation class. The order is the single dimmension of
Permutation objects. In addition, they store both direct and the inverse maps.

| Permutation Array<int>] Array<int>

int order; int size;

int size; J

Array<int>* oldToNew; int* value; int* wvalue;

Array<int>* newToOld;

Fig. 7. A class for permutations.

Note that the inverse map can be easily computed from the direct one. Yet,
we prefer again to trade storage for execution time. One potential problem with
this approach is that, if we make the unlikely decision to discard the inverse map
in a future version of Oblio, code that accesses the inverse map directly may
break.

As we mentioned, SparseMatrix and SparseFactors objects are distributed
when Oblio runs in a parallel environment, while Permutation objects are repli-
cated. The distribution can be easily done with additional maps. For example
a SparseMatrix object stored on a particular processor would then represent a
fragment of a coefficient matrix.

3.3 The Elimination Forest

An elimination forest is described by the EliminationForest class. This spe-
cializes a the more general Forest class, from which it is derived. We use this
scheme because we may need other forest-like objects in the future. Figure 8
shows both the Forest and EliminationForestclasses. The dimension of any
Forest object is represented by the number of nodes. Three Array objects store
the parent, first child and next sibling for each node. An EliminationForest ob-
ject adds another dimension: the number of fronts. Also, three additional Array
objects store a front map, and, for each front, its size (the number of columns
in the front) and the size of its border (the number of columns updated by the
front).

We also associate iterator classes with Forest because they provide a conve-
nient mechanism to traverse Forest objects. At the end of the section we show
how they are used by the multifrontal factorization.

Remember that an EliminationForest object is replicated by each processor
when Oblio runs in a parallel environment.

Forest Array<int>] Array<int> Array<int>]

int numberOfNodes;

int size; int size;
int root;

int size; J

int *value;

int *value; int *value;

Array<int>* parent;

Array<int>* firstChild;

Array<int>* nextSibling;

EliminationForest Array<int>] Array<int> Array<int>]

int numberOfFronts;
Array<int>* frontMap;

int size; J

int size; ’ ‘int size; J

int *value; int *value; int *value;

Array<int>* frontSize;

Array<int>* borderSize;

Fig. 8. The classes that handle forests and elimination forests.

3.4 Factorization Specifics

The postorder traversal of the forest represents the outer loop of the factorization
and the place to exploit branch level parallelism by skipping unowned nodes. The
core of the factorization is the processing performed at each node. This is the
place were one must focus on performance and exploit front level parallelism.
Frontal and update matrices are the key elements during the processing of a
front.

Both frontal and update matrices are dense. To capture their common de-
scription we first implemented a DenseMatrix class. From this we specialized
FrontalMatrix and UpdateMatrix. Since this is the place where most of the
difference between a serial and a parallel code come from, we discuss both the
initial approach and the current solution.

The first solution we came up with in our serial code is shown in Fig. 9. The
only dimension of a DenseMatrix object is the order. The entries are stored by
an Array object. There are two additional Array objects. The first stores column
pointers. While this information can always be computed from the order of the
matrix and the column indices, we trade storage for execution time again. The
second additional Array object stores a map from local indices (respective to
the DenseMatrix object) to global indices (respective to the factors).

FrontalMatrix and UpdateMatrix specialize DenseMatrix by adding di-
mensions and functionality. FrontalMatrix objects add three dimensions. The
original front size, computed during the symbolic factorization, represents the
actual size of the front if no pivoting is performed. The original front may be
modified by pivoting. It increases if columns migrate between fronts. The mod-
ified front size includes these migrations and the final front size indicates the
actual number of columns that were processed at a front. As for functionality,
FrontalMatrix objects load and save entries and perform partial factorization.

DenseMatrix<T> Array<int> | Array<int>] Array<T> |

int order; tint size;

int size; ’

Array<int>* columnPointer; int* value; int* value;

int size;
T* value;

Array<int>* localToGlobal;

t

Array<T>* entry;

FrontalMatrix<T> | | UpdateMatrix<T> |

int modifiedFrontSize;

int originalFrontSize; | lint delayedFrontSize;

int finalFrontSize;

Fig. 9. Initial approach for frontal and update matrices.

UpdateMatrix objects are much simpler, adding only one dimension, the size of
the delayed front, and no functionality.

While this solution may be satisfactory in a serial solver, it is not useful in
a parallel one. In addition there are some drawbacks if used in a serial code
too. In a parallel code the goal is to distribute both work and storage. With the
solution explained above we would be able to distribute only work. For a front
mapped on more than one processor, each participating processor would allocate
allocates space for the full frontal and update matrices. Using an ownership map,
a processor can skip unowned columns, but storage is wasted anyway.

The right thing to do in the parallel case is to split dense matrices into
panels, each panel storing a certain number of columns. This way a processor
allocates storage only for the columns it owns. Note that there are advantages
in using this solution in the serial case too. As fronts become bigger at higher
levels in the elimination forest, cache use becomes important and panels can
make a big difference. Also, if there is a clear boundary between frontal panels
and update panels, there is no need to copy entries from a frontal matrix to an
update matrix. Only pointers to panels need to be be copied.

Panels have one disadvantage though: they restrict the pivot search space for
indefinite systems. But there is no choice with parallel factorization. The only
requirement is to determine the right panel size, which must be small enough
to obtain good load balance and large enough to increase pivot search space as
well as to reduce communication overhead.

Our current solution is shown in Fig. 10. Note that this is more general than
the first one because we can quickly switch to our initial approach by choosing
panels as wide as the order of the dense matrix they correspond to.

Finally, UpdateStack, shown Fig. 11, describes the stack that stores update
matrices during the factorization. The dimensions of an UpdateStack object
are its maximum and its current size. One Array object stores pointers to the
stacked update matrices. The basic functionality allows pushing and popping

DenseMatrix<T>

Array<int>

Array<int> Array<T> |

int order; int size;

l

Array<Panel<T#*>>* panel;

int* wvalue;

int size; int size;

1
J |

int* value; T* value;

1_‘1_

FrontalMatrix<T>

Array<Panel<T>*>]

int originalFrontSize; int size

int modifiedFrontSize;

Panel<T>** value;

i

int finalFrontSize;

Panel<T>

UpdateMatrix<T>

|]

lint delayedFrontSize; J

Array<int>* columnPointer;

Array<int>* localToGlobal;

Array<T>* entry;

Fig. 10. Current solution for frontal and update matrices.

UpdateMatrix objects. In a parallel environment the distribution of the update
stack is determined by the distribution of the update matrices.

UpdateStack<T>

Array<UpdateMatrix<T>*>

int maximumSize;

int currentSize;

int size;

UpdateMatrix<T>** value;

Array<UpdateMatrix<T>*>* entry;

|int delayedFrontSize;

UpdateMatrix<T>

Fig. 11. The class that manages update stacks.

3.5 The Multifrontal Factorization

We end our discussion about design with a closer look at the factorization. There
are several algorithms that we have not made methods inside classes. Instead,
we designed separate classes for these algorithms. As a consequence, there are
two types of classes in Oblio: data classes and algorithm classes. The distinction
may be a little fuzzy because data classes have methods and algorithm classes
have state information. MultifrontalFactor, which describes multifrontal fac-
torization objects, is an example of an algorithm class.

One reason for this approach is the fact that it does not seem natural to
associate a factorization algorithm with any other class. Should it be associated
with SparseMatrix or with SparseFactors? Another reason is that each time a
new type of factorization would be added (left-looking, right-looking), the class
the algorithm is associated with would need to be modified.

Algorithm classes are described by state information and by methods that
perform various tasks. The most representative method is run, which executes
the particular algorithm. Figure 12 describes the core of the run method asso-
ciated with MultifrontalFactor. We use a reduced version of the code here to
keep the discussion simple. The actual code is more general because it handles
pivoting too.

The computation represents the outer loop of the factorization, which tra-
verses the elimination forest in postorder, using an iterator. At each step (node)
a frontal matrix is created and initialized. Frontal matrix entries come from the
coefficient matrix or from the update matrices corresponding to the children of
the current node. Partial factorization is then performed on the frontal matrix
and its entries are moved to the factors and to the update stack.

Several objects used in this piece of code are parts of the state information
stored by each MultifrontalFactor object: a coefficient matrix (a-), a permu-
tation (p-), a set of factors (1d1_), an elimination forest (£-) and an update stack
(u-). In addition, globalToLocal is an Array object that translates from factor
to frontal matrix indices.

3.6 Comparison with SPOOLES

SPOOLES builds many of its classes based on data structures for arrays similar
to those used in Oblio. However, because it is written in C, the same code needs
to be replicated for each particular data type used for array items. This approach
increases programming effort and it is subject to errors.

The data structures for the coefficient matrices, the permutations, the fac-
tors and the elimination forest are also similar. The decision of designing a
forest data strucure first proves to be right, SPOOLES also using a special-
ized domain/separator forest (in addition to the elimination forest) for ordering
purposes.

Significant differences between Oblio and SPOOLES appear during the fac-
torization. First, SPOOLES performs a left-looking factorization instead of a
multifrontal one. Thus, only frontal matrix data structures are required. Sec-
ond, fronts are not decomposed into panels. Instead, larger fronts are split into
smaller ones. Although conceptually the same, few details make these two app-
rocahes slightly different. It is not clear to us which one is superior. Third, the
factorization algorithm is associated with the data structure that describes the
factor. In C++ this would be equivalent with making the factorization algorithm
a method within class. As we already explained, we believe our approach has
certain advantages.

// For every node in the elimination forest

for (EliminationForest::postorderIt it = f_->postorderBegin();
it != f_->postorderEnd();
it++)

// Create frontal matrix.

FrontalMatrix *fm = new FrontalMatrix(f_->frontSize(*it) +
f_->borderSize(*it),
f_->frontSize (*it),
f_->frontSize(*it));

fm->loadIndices (*f_, #*it); // Load original indices.

fm->computeGlobalToLocal (globalToLocal); // Compute translation map.
fm->£fi11(0.0); // Zero out entries.

fm->loadEntries(*a_, *p_, globalToLocal); // Load original entries.

// For every child of the current node

for (int k = f_->getNumber0fChildren(*it); k > 0; k--)

{
UpdateMatrix *um = u_->pop(); // Pop update matrix.
fm->loadEntries (*um, globalToLocal); // Load update entries.
delete um; // Destroy update matrix.

}
fm->factor(); // Perform partial factorization.

fm->saveIndices(*¥1dl_); // Save eliminated indices.

fm->saveEntries(*¥1dl_); // Save eliminated entries.

// Create update matrix.

UpdateMatrix *um = new UpdateMatrix(fm->getOrder() -
fm->getFinalFrontSize (),
fm->getModifiedFrontSize() -
fm->getFinalFrontSize()) ;

fm->saveIndices(*um); // Save update indices.

fm->saveEntries (*um); // Save update entries.

delete fm; // Destroy frontal matrix.

u_->push(um); // Push update matrix.

Fig.12. The core of the multifrontal factorization algorithm.

4 Results

In Table 1 we report recent results obtained on an SGI Origin 2000 multipro-
cessor (64 processors, 250 MHz, 16 GB RAM) running Irix 6.5. The code was
compiled with g++ 2.8.1 (-O) and {77 7.2.1.1m (-O3) and the coefficient matrix
was reordered using nested dissection.

The rather modest speedup is caused by two factors. First, we concentrated
our efforts on design issues. Better results are expected as we will spend more

Table 1. Results on an SGI Origin 2000 multiprocessor.

problem order time (s) speedup

1P (2P 4P 8P 16 P
grid9.127 16,129 0.62|1.72 2.58 2.70 2.00
grid9.255 65,025 3.97(1.81 3.01 3.85 4.67
grid9.511 261,121 27.34(1.89 3.28 4.86 5.94

glass2 17,037 30.45|1.37 3.03 5.82 7.73
grid3d 29,791 53.96|1.69 3.09 5.38 8.15
grid3dt 29,791 61.17|1.41 2.62 5.50 9.50
besstk31 35,688 14.41|1.34 2.11 3.69 5.72

besstk32 44,609 16.09|1.32 2.25 4.00 5.45
onera_dual | 85,567 31.47|1.44 2.89 4.13 6.64
tandem_dual| 94,069 29.66|1.95 2.67 4.11 5.18

time with performance tuning. Second, it is known that sparse direct solvers
do not scale well ([11]). Communication cost, shown in Table 2 for both two-
dimensional (2D) and three-dimensional (3D) problems, is a limiting factor. Basi-
cally, there are two mapping and two communication models. A one-dimensional
(1D) mapping decomposes the computation only along columns, while a two-
dimensional one decomposes the computation along both rows and columns. As
for communication it may or may not be overlapped with computation.

Table 2. Communication cost.

without overlap with overlap
‘QD problem 3D problem|2D problem 3D problem
1D mapping np n*3p n n/3
2D mapping| n,/p n*® /p n/\/p n*?/\/p

As Table 2 suggests, 2D mapping must be preffered over 1D mapping and
communication should be overlapped with computation. However, the analytical
results are obtained with an oversimplified model which ignores several issues
that are present in practice. We currently use the weaker 1D mapping because it
simplifies pivoting and we do not yet overlap communication with computation.

Our next steps will include 2D mapping and overlapped communication as
extentions to Oblio. Having both mapping and both communication models
available within the same framework will be extremely useful because we plan
to run experiments with hybrid algorithms. These algorithms switch mapping
and communication models dynamically during the elimination forest traversal,
as different fronts may have different requirements. A significant contribution to
supporting such experiments comes from the object-oriented design.

References

[1]
[2]
(3]
[4]

[5]
[6]
[7]
(8]
[9]
[10]

[11]

Anonymous. U.S. has sparse-matrix gap. HPCC Week, pages 9-10, 1998.

C. Ashcraft and R. Grimes. SPOOLES: An object-oriented sparse matrix library.
In Proceedings of the SIAM conference on parallel processing for scientific com-
puting, 1999.

C. Ashcraft, R. Grimes, and J. Lewis. Accurate symmetric indefinite linear equa-
tion solvers. To appear, 1999.

A. M. Bruaset and H. P. Langtangen. Object-oriented design of preconditioned
iterative methods in Diffpack. ACM Transactions on Mathematical Software,
pages 50-80, 1997.

F. Dobrian, G. Kumfert, and A. Pothen. The design of sparse direct solvers using
object-oriented techniques. To appear, 1999.

I. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9(3):302-325, 1983.

A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matriz Analysis and Applications, 11(1):134-172, 1990.

J. W. H. Liu. The multifrontal method for sparse matrix solution: theory and
practice. STAM Review, 34(1):82-109, 1992.

Balay S., Gropp W. D., Curfman McInnes L., and Smith B. F. PETSc home page.
http://www.mcs.anl.gov/petsc, 1999.

R. Schreiber. Scalability of sparse direct solvers. In Graph Theory and Sparse
Matriz Computation, pages 191-211. Springer-Verlag, 1993.

