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Abstract—Network alignment is an optimization problem to
find the best one-to-one map between the vertices of a pair
of graphs that overlaps as many edges as possible. It is a
relaxation of the graph isomorphism problem and is closely
related to the subgraph isomorphism problem. The best current
approaches are entirely heuristic and iterative in nature. They
generate real-valued heuristic weights that must be rounded to
find integer solutions. This rounding requires solving a bipartite
maximum weight matching problem at each iteration in order to
avoid missing high quality solutions. We investigate substituting
a parallel, half-approximation for maximum weight matching
instead of an exact computation. Our experiments show that
the resulting difference in solution quality is negligible. We
demonstrate almost a 20-fold speedup using 40 threads on an
8 processor Intel Xeon E7-8870 system and now solve real-world
problems in 36 seconds instead of 10 minutes.

I. INTRODUCTION

The network alignment problem addresses the question:
given two graphs, what’s the best way of matching their
vertices in order to make the graphs overlap in as many edges
as possible? See Figure 1 for a guiding figure that illustrates
the problem setup – we’ll formally define the problem in
Section II. This problem is not new. It’s a generalization of
the edge-subgraph isomorphism problem. However, with the
growth of network and graph datasets, applications of network
alignment have exploded over the past decade.

One of the first uses of network alignment was in pattern
recognition and computer vision. See Conte et al. for a
comprehensive survey of applications in that domain [1].
Network alignment methods have also been used extensively
in ontology matching [2] and database schema matching
applications [3]. The largest problems tend to come from
ontology alignment applications.

An important new application is in bioinformatics where the
problem is how to identify similarities between protein-protein
interaction networks from different species [4], [5]. Indeed,
this applications has sparked a range of novel methods and
software for the problem [6]–[11]. These contributions were
recently profiled by Atias and Sharan [12]. Because network
alignment solutions usually need to be interpreted, verified,
and refined by a human, algorithms for the problem need to
be run, ideally, within a few seconds.

The underlying network alignment problem is NP-hard, and
there is no known approximation algorithm. Current methods

are entirely heuristic, albeit principled heuristics. They have
been experimentally tested and shown to perform well. Some
methods, such as Klau’s [7] (see Section III for more details),
do come with an a posteriori approximation bound. In a
recent study by one of the authors [13], the best two methods
were a belief-propagation method [14] and Klau’s method [7].
Both of these methods are iterative in nature. Some of the
work in an iteration has the flavor of a parallel matrix
computation, while the remaining work involves solving a
maximum-weight bipartite matching problem. (All matching
problems in this paper are maximum edge-weight match-
ings.) This combination makes network alignment procedures
a fascinating mixture of matrix methods and combinatorial
algorithms and provides a unique performance challenge. In
particular, solving the matching problem usually dominates
the runtime of the methods. Given the lack of good parallel
algorithms for the problem, this aspect has limited the ability
of network alignment methods to capitalize on modern multi-
core processors.

In this paper, we investigate using an approximate
maximum-weight bipartite matching procedure to develop
parallel methods for network alignment on multicore NUMA
architectures. As we shall see, these methods scale to roughly
40 cores with only a small change in solution quality. The
remainder of the paper proceeds as follows. First, in Section II,
we formally introduce the network alignment problem as
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Fig. 1. From [14]. In the network alignment problem, we want to find a
subset of edges from L that form a matching between A and B with as many
overlaps as possible.
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an integer quadratic program. We next describe the belief-
propagation method and the Klau’s Lagrangian relaxation
method in Section III. For both methods, we discuss imple-
mentation and parallelization strategies for everything except
the bipartite matching in Section IV. In Section V, we explain
the multi-core parallel approximation algorithm for bipartite
maximum-weight matching from [15].

In the next portion of the paper, we experimentally inves-
tigate the resulting procedures. The issue we address in Sec-
tion VII is how much of the solution quality is lost when using
the approximation algorithms. We find only a marginal change
in the solution quality using the approximation algorithms. The
second issue we address in Section VIII is how well resulting
algorithms scale on multi-core processors. We find that these
procedures have good scaling up to 40-cores on an Intel Xeon
E7-8870.

In the spirit of reproducible research, we make our codes
and most of the data available:

http://www.cs.purdue.edu/∼dgleich/codes/netalignmc/

II. THE NETWORK ALIGNMENT PROBLEM

The formal statement of the network alignment problem is:

Network Alignment. Let A = (VA, EA) and B =
(VB , EB) be two undirected graphs and their vertex
and edge sets, respectively. Let L be a weighted
bipartite graph between the vertex sets: L = (VA ∪
VB , EL, w). Let α and β be two positive constants.
All of A,B,L and α, β are problem inputs, which
we assume are given. A matching M in L is a subset
of EL with at most one edge incident on each vertex.
We say that an edge (i, j) in EA is overlapped with
an edge (i′, j′) in EB if both (i, i′) and (j, j′) are
in a matching M . The network alignment problem
is to find a matching M in L that maximizes:

α · weight of matching subset M +

β · number of overlapped edges in A and B.

This problem generalizes the maximum common edge sub-
graph problem, which corresponds to setting L to the full
bipartite graph and α = 0, β = 1.

The computational methods we utilize are based on an
integer quadratic program for this problem. Related integer
programs often arise in assignment or matching problems [16].
Let w be a weight vector for an arbitrary ordering of the edges
in L. Note that w has length |EL|. We use wi,i′ to indicate an
element of the vector, which is a weight on the edge matching
i ∈ VA to i′ ∈ VB . Let x be a length |EL| indicator vector
over the edges of L in that same ordering: xi,i′ = 1 if the
edge is in the matching and 0 otherwise. The weight of the
matching subset is then given by the inner-product:

xTw =
∑

(i,i′)∈EL

xi,i′wi,i′ .

To enforce that x corresponds to a matching, we use the
following linear matching constraints:∑

i′∈VB where (i,i′)∈EL

xi,i′ ≤ 1 for all i ∈ VA and

∑
i∈VA where (i,i′)∈EL

xi,i′ ≤ 1 for all i′ ∈ VB .

In the rest of the paper, we write these linear constraints as
Cx ≤ e, where C is the (|VA| + |VB |)-by-|EL| node-edge
incidence matrix of the graph L and e is the vector of all
ones. The integer program for a max-weight bipartite matching
problem is then:

maximize xTw

subject to Cx ≤ e, xi,i′ ∈ {0, 1}.

In order to compute the number of overlapped edges in A
and B, we introduce the matrix S. The rows and columns of
S correspond to edges in EL, thus S is |EL|-by-|EL|, and
S(i,i′),(j,j′) denotes a particular entry in the matrix. If we set
S(i,i′),(j,j′) = 1 if (i, j) and (i′, j′) are both edges in graphs
A and B respectively, and otherwise set S(i,i′),(j,j′) = 0, then
the number of overlapped edges in A and B is xTSx/2. And
hence, a quadratic integer program for network alignment is:

maximize αxTw + β
2x

TSx

subject to Cx ≤ e, xi,i′ ∈ {0, 1}.
(NAQP)

In general, the matrix S is indefinite. Thus, the complexity
of the problem does not change if we relax the integrality
constraint to a bounded real-valued variable because solving
a nonconvex quadratic program is still NP-hard. However,
an equivalent mixed-integer linear program exists. Let Y
be a matrix with the same sparsity pattern as S such that
Y(i,i′),(j,j′) ≤ xi,i′ and Y(i,i′),(j,j′) ≤ xj,j′ . The mixed integer
program:

maximize αxTw + β
2 e

TYe

subject to Cx ≤ e, xi,i′ ∈ {0, 1}
Y(i,i′),(j,j′) ≤ xi,i′ , Y(i,i′),(j,j′) ≤ xj,j′

for all (i, i′), (j, j′) where S is non-zero
(MILP)

encodes the same objective. This type of modification was first
used for quadratic assignment problems by Lawler [17], and
it is the basis of Klau’s method described next.

III. NETWORK ALIGNMENT METHODS

In the previous section, we formally defined the network
alignment problem and then stated it as both an integer
quadratic program and a mixed integer linear program (MILP).
Both of these are just as hard to solve. In this paper, we
study two fast heuristics from a recent study by one of the
authors [13].

A straightforward heuristic to generate a solution is to relax
the integrality constraint in the MILP form. Then, solving the
resulting linear program will compute a real-valued score for
each edge in L, but won’t necessarily result in a matching. We



TABLE I
NOTATION FOR THE ALGORITHMS

boundl,u(x) =


l x ≤ l
x l < x < u

u x ≥ u

tril(M), triu(M) : the lower
and upper triangular portions
of M

bipartite match(w) returns the matching indicator vector x for a max-
weight bipartite matching problem on graph L with
weight w; in the experiments, we utilize the scal-
able, parallel approximation algorithm described in
Section V instead of an exact routine

round heuristic(g) for a real-valued heuristic approximation to the
solution of a network alignment problem, compute
x = bipartite match(g), and then evaluate the
objective function αwTx + β

2
xTSx; also keep

track of which g produced the largest objective

can explicitly round the solution to a matching by using these
scores as weights for a max-weight bipartite matching prob-
lem. Both of the algorithms below outperform this procedure,
and have relatively good parallelization potential in contrast
to solving large, sparse linear programs.

In the following pseudocodes, we’ll utilize the notation from
Table I for convenience.

A. Klau’s Matching Relaxation

Klau’s method for network alignment builds on a different
type of relaxation of the linear program. We refer readers to
Klau’s paper [7] and [13] for the precise details. We present
the pseudo-code in Listing 1. The essence of the method is
as follows. A simple way to compute an upper bound on
the objective of the network alignment problem is to ignore
the matching constraints and compute αeTw + β

2 e
TSe. This

bound, predictably, is terrible. The problem is that e is rather
far from a matching. Klau improves it by decomposing the
objective as xT (αw + β

2Sx) where x is a matching. To get
an upper bound on β

2Sx, we treat the elements of each row
of S as weights on the edges of the bipartite graph L and
we pick an optimal matching in L for each row (Step 1). We
store the weight in the corresponding element of the vector
d. We then choose a heaviest matching of αw + d (Step 3),
which is an upper bound on xT (αw+ β

2Sx). The problem with
this approach is that the matchings picked for each row of S
(whose indicators are stored in the matrix SL) and the final
matching of all rows x(k) may not agree. The fix for this makes
the algorithm iterative. Klau’s method uses a sub-gradient type
approach to update a weight matrix U(k) (actually, a matrix of
Lagrange multipliers) in order to force the matchings picked in
each row to agree (Step 5). The parameter γ is like a step-size
parameter on these updates. At each step of this method, we
generate an upper-bound on objective function, and a lower-
bound from the current best objective (Step 4). Thus, this
method can actually detect when it has reached the optimal
point, although that will not always occur. In the subgradient
method, we check to see if we have found a better upper-
bound recently (within mstep iterations), and if not, decrease
the step-size γ by a factor of 2.

Listing 1. Klau’s iterative procedure for network alignment.

1 U(0) = 0, γ is given, mstep is given
2 for k = 1 to niter
3 for each row i in S, Step 1: row match
4 set row i of SL

5 = bipartite match(eTi (β2S+U(k)−U(k)T ))
6 and set di to be the value of the matching
7 w̄(k) = αw + d Step 2: daxpy
8 x(k) = bipartite match(w̄(k)) Step 3: match
9 obj(k) = αx(k)Tw + β

2x
(k)TSx(k) Step 4: objective

10 upper(k) = w̄(k)T x(k)

11 X(k) = diag(x(k)) Step 5: update U
12 F = U(k−1) − γX(k)triu(SL) + γtril(SL)TX(k)

13 U(k) = bound
−0.5,0.5

F

14 if upper(k) has not changed in mstep iterations,
15 set γ = γ/2
16 end
17 end
18 return x(k) with the largest value of obj(k)

B. Belief Propagation for Network Alignment

Another heuristic approach for network alignment is to use a
message passing procedure known as belief propagation [13],
[14], [18]. In order to do so, we treat maximizing the network
alignment quadratic program (NAQP) as finding a maximum
a posteriori estimate of the following probability distribution:

P(x) = 1
Z exp(αxTw + β

2x
TSx) Ind[Cx ≤ e],

where Z is an unknown normalization constant. Belief prop-
agation is a standard approximation for this task when the
probability distribution can be written as a product of expo-
nentials (as it can in this case). This requires introducing a
factor graph form of the problem and we omit that in the
interest of space. Its use here was also inspired by the success
of a belief propagation method for solving a maximum weight
matching problem in a distributed setting [19].

A full derivation of the algorithm, along with many sim-
plifications to the classical belief propagation procedure, is
presented by Bayati, Gleich et al. [13], [14]. We only provide
a short, intuitive description here. The algorithm works by
iteratively updating two weight vectors y(k), z(k) and a weight
matrix S(k). The first represents the log-likelihood of each
edge in L occurring in the final matching given that we want
each vertex in graph A matched to at most one vertex in graph
B. The second represents the same thing, but given that we
want each vertex in graph B to match to at most one vertex
in graph A. The final vector represents the log-likelihood
of overlapped edges appearing in the solution. These weight
vectors correspond to edges in L (1st and 2nd) and non-zeros
in S (3rd). The update rules encode the logic of a local,
greedy agent that attempts to determine its own likelihood,
given the likelihoods in its neighborhood. Because of this



Listing 2. A belief-propagation message passing procedure for network
alignment. See the text for a description of othermax and round heuristic.

1 y(0) = 0, z(0) = 0,d(0) = 0,S(k) = 0
2 for k = 1 to niter

3 F = bound0,β [βS + S(k)T ] Step 1: compute F
4 d = αw + Fe Step 2: compute d
5 y(k) = d− othermaxcol(z(k−1)) Step 3: othermax
6 z(k) = d− othermaxrow(y(k−1))

7 S(k) = diag(y(k) + z(k) − d)S− F Step 4: update S
8 (y(k), z(k),S(k))← γk(y(k), z(k),S(k))+

9 (1− γk)(y(k−1), z(k−1),S(k−1)) Step 5: damping
10 round heuristic (y(k)) Step 6: matching
11 round heuristic (z(k))
12 end
13 return y(k) or z(k) with the largest objective value

interpretation, the weight vectors are usually called messages
as they communicate the “beliefs” of each “agent.” In this
particular problem, the neighborhood of an agent represents
all of the other edges in graph L incident on the same vertex
in graph A (1st vector), all edges in L incident on the same
vertex in graph B (2nd vector), or the edges in L that are
part of an overlap. The message vectors do not generally
converge, and thus, the iteration is artificially damped to
enforce convergence. We only describe one type of damping.
See [13] for other variations.

After each update to the messages, we round the messages
to a matching using a bipartite maximum weight matching
procedure, and then evaluate the objective function.

We present a pseudo-code for the method in Figure 2. This
code uses the mildly curious function othermaxrow. Suppose
that g is a weight vector on the edges of a bipartite graph L.
This means we can index g with the edges of L such that
gi,i′ is the weight on the edge (i, i′) ∈ EL. The othermaxrow
function then computes a new weight for each edge in L:

[othermaxrow(g)]i,i′ = bound
0,∞

[ max
(i,k′)∈EL,k′ 6=i′

gi,k′ ].

This function computes something rather simple. Given a row,
replace all non-zeros in that row with the maximum value for
the row; except, for the element that is the maximum value,
replace it with the second largest value. The othermaxcol
function works on columns instead of rows.

C. Stopping Criteria

Both algorithms generate a sequence of heuristic weight
vectors whose solution quality varies continually. There is no
monotonicity in the solution quality, which can vary greatly
between iterations. Thus, no simple stopping criteria is pos-
sible. Due to the shrinking step length in Klau’s method and
the artificial damping in BP, there is also no point in running
for more than 500-1000 iterations with reasonable choices of
these two parameters.

D. Complexity

The complexity of each iteration of Klau’s method and
the BP method is O(nnz(S) + |EL| + matching), where
O(matching) is the complexity of the bipartite matching in
step 5. Let N = (|VA| + |VB |). Currently, the best known
algorithm for computing an optimal edge-weighted match-
ing has complexity O(|EL|N + N2 logN) [20]. Practical
implementations have complexity O(|EL|N logN) [21]. The
half-approximate matching discussed below has complexity
O(|EL|). Thus, when we replace the exact matching step with
approximate matching for our experiments, the complexity of
each iteration will be O(nnz(S) + |EL|).

IV. PARALLEL NETWORK ALIGNMENT IMPLEMENTATIONS

We now consider a shared-memory multi-core implementa-
tion of these procedure with OpenMP. All required memory is
pre-allocated before the first iteration and there are no dynamic
memory allocations. We avoid computing intermediate results
whenever possible, see the online codes for details.

A. Matrix computations in both methods

All matrices are sparse and are stored as compressed
sparse row arrays. All non-zero patterns and structures remain
fixed throughout iterations. We found using simple OpenMP
“parallel for” loops faster than using a matrix library such
as Intel’s Math Kernel Library. This result is due to the
simplicity of the matrix computations. For instance, because
S and U are structurally symmetric with the same structure,
the transposes have the same row pointer and the column
index arrays. But the value array is permuted. So we compute
the permutation and whenever we need to transpose one of
these matrices, we just permute the values array according to
the permutation. Since these matrices do not change structure
during the algorithm, we can compute the permutation once.
Sometimes – such as line 5 of Klau’s method or line 3 of BP
– we simply use the permutation array to pull elements from
appropriate memory locations without any intermediate write.

The matrix S can be highly imbalanced (some rows are
empty and others have many non-zeros) and so we found
that using a dynamic schedule in OpenMP’s “parallel for”
construction yielded better performance than a static schedule.
After some experimentation, we found that a chunk-size of
1000 seemed to produce the best performance for these
operations. Indeed, we found this observation to be the case
for all operations involving the matrix S. Synchronization only
occurs at the end of each “parallel for” loop.

B. Specifics about Klau’s method

In the first step of the iteration, we need to solve a bipartite
matching problem for each row of the matrix S with weights
that change based on U(k). We compute β

2S+U(k)−U(k)T

using the permutation trick, and then we parallelize the op-
eration over rows. Each of these matching problems is small
because there are only a few non-zeros in each row of S and
so we do not consider using the parallel approximation here.
We precompute the maximum memory required for p threads



to run matching problems on the rows of S and preallocate this
memory outside of the iteration. The output of this procedure
is a sparse matrix SL, which is conceptually an indicator
vector for the non-zeros in S – we store this as an integer
valued array for the compressed sparse row order of S.

The remaining steps of the algorithm – except for the
bipartite matching – can all be parallelized using standard par-
allel matrix constructs. In step 5, the functions X(k)triu(SL)
and tril(SL)TX(k) involve rescaling rows and columns of
a portion of S and there is no need to form the diagonal
matrix X(k). Again, we use the same permutation trick for
the transpose.

C. Specifics about the BP method

The othermax computations in Step 3 are parallelized over
columns and rows, respectively. We again found that using
a dynamic schedule with a chunk-size of 1000 produced the
best performance here. The update to the non-zeros in S(k)

in step 4 corresponds to rescaling the matrix S by rows, and
then subtracting the values from F.

There is an additional parallelization opportunity for this
procedure. Unlike Klau’s method, moving from the kth to (k+
1)th iteration does not depend on solving a bipartite matching
problem. Instead, we need to solve the matching problem be-
cause the quality of the iterates y and z changes as the iteration
progresses. Solutions at the final iterations are often inferior to
those at intermediate iterations. This flexibility enables us to
store the last few iterates y(k), z(k), . . . ,y(k−r+1), z(k−r+1),
and then evaluate their quality simultaneously. We found
that this batched rounding procedure markedly improved the
scalability of the code. We refer to the parameter r as the
batch size, which refers to the number of iterates we store
before rounding. We call the resulting method BP(batch=r),
e.g. BP(batch=1) is the method where we immediately round.
The use of r for the batch size is slightly different from storing
the history for r iterations as previously described, although
they only differ by a factor of two. Given a batch size of r, we
store r sets of weights. After r/2 iterations, we run r matching
routines each as OpenMP “tasks”. We then use OpenMP’s
nested parallelism within each task based on available threads.
If the batch size is 4 and 4 threads are available, all matching
problems will be solved simultaneously, and each problem is
solved serially. But if 8 threads are available, each matching
problem runs in parallel with 2 threads.

V. PARALLEL APPROXIMATION ALGORITHMS FOR
MAXIMUM WEIGHT BIPARTITE MATCHING

Algorithms for computing maximum weight matchings in
bipartite and general graphs are either inherently serial, or have
limited concurrency. Hence, we consider approximation algo-
rithms to enhance concurrency while obtaining high quality
matchings. We describe one such algorithm to compute half-
approximate weight matchings. It also computes a maximal
matching, which guarantees an approximation ratio of half
for the cardinality as well. We call this algorithm the locally-

dominant algorithm, since it repeatedly finds edges which are
the heaviest in their local neighborhood in the graph.

The locally-dominant algorithm was first presented by
Preis [22], and adapted by Manne and Bisseling [23] for
parallel computers. Distributed-memory implementations of
this algorithm were presented in [23] and [24]. Implemen-
tations suitable for multicores, manycores, and massively-
multithreaded architectures were recently investigated by Ha-
lappanavar et al. [15]. We use their multicore implementation
in this paper. The locally-dominant algorithm can compute
matchings in general graphs. Therefore, we provide a bipartite
graph as a general graph to the algorithm by not making a
distinction between the two sets of vertices.

The details of the algorithm are presented in Algorithm
PARALLELMATCH. For simplicity of presentation, we divide
the algorithm into two phases.

Phase-1 of the algorithm (Lines 4 to 7) starts by calling
the procedure FINDMATE for each vertex in parallel. This
procedure scans the neighborhood of a vertex to identify the
heaviest unmatched neighbor. If the neighbor list is maintained
in a sorted order, this step can be done in constant time. Unique
vertex ids are used to break ties consistently. Subsequently,
locally-dominant edges are matched via a call to MATCHVER-
TEX. This procedure checks if two vertices point to each other,
in which case they are locally dominant. If true, the procedure
will set corresponding entries in mate, and add the two end-
points to the queue for processing their neighbors.

Updates to the queue are made using atomic memory
operations. For efficiency we use the Intel x86 hardware
intrinsic operator __sync_fetch_and_add() to increment
the number of elements in the queue. This operator atomically
increments the number and returns the original value, which
can then be used to find a unique position in the queue by
each thread to add a new element. To enable efficient reading
and writing to queues, we use two independent queues QC
and QN . While we process vertices matched in the previous
iteration from QC , we add vertices matched in the current
iteration to QN .

When every vertex has been processed once via calls to
FINDMATE and MATCHVERTEX, there will be some matched
vertices queued in QC . Phase-2 begins at the end of this step
and through a while loop (Line 9) iterates until QC becomes
empty, at which point no more edges can be matched. In each
iteration, we examine a matched vertex u, and the candidate
mate of an unmatched neighbor v is reset to the next heaviest
unmatched vertex in the adjacency list of v. Locally dominant
edges are matched again, and the newly matched vertices are
added to QN to process their neighbors at the next iteration.
The threads synchronize at the end of each iteration of this
loop, and the contents of QN are assigned to QC via a pointer
swap (Line 15). The queue QN is then cleared. Each vertex
in the queue can be processed in parallel. Thus, the size
of QC determines the amount of work that can be done in
parallel. This size varies as the algorithm progresses. Based
on the numbers presented in [15], the size decreases roughly
by half after each iteration for different synthetic graphs. The



parallel time complexity of our implementation is determined
by the number of iterations of the while loop (expected to
be O(log |V |) if the size decreases by a constant in each
iteration).

Algorithm 1 Parallel 1
2 -Approx Matching. Input: graph G =

(V,E). Output: A matching M represented in vector mate.
Data structures: a queue, QC , with vertices to be processed
in the current step, and a queue, QN , with vertices to be
processed in the next step – only matched vertices are queued;
a vector candidate that maintains the id of current heaviest
neighbor of a vertex.

1: procedure PARALLELMATCH(G(V, E), mate)
2: QC ← ∅; QN ← ∅
3: mate← ∅
4: for each v ∈ V in parallel do . Phase-1
5: candidate[v] ← FINDMATE(v)

6: for each v ∈ V in parallel do
7: MATCHVERTEX(v, QC)

8:
9: while QC 6= ∅ do . Phase-2

10: for each u ∈ QC in parallel do
11: for each v ∈ adj (u) do
12: if candidate[v] = u then
13: candidate[v] ← FINDMATE(v, QN )
14: MATCHVERTEX(v, QN )

15: QC ← QN

16: QN ← ∅

Algorithm 2 Find and return the current-heaviest candidate
for a vertex.

1: procedure FINDMATE(s)
2: max wt ← −∞
3: max wt id ← ∅
4: for each t ∈ adj (s) do
5: if (mate[t] = ∅) AND (max wt < w(es,t)) then
6: . Use vertex id to break ties
7: max wt ← w(es,t)
8: max wt id ← t
9: return (max wt id)

Algorithm 3 Match an edge if locally dominant. Add the two
end-points to Q.

1: procedure MATCHVERTEX(s, Q)
2: if candidate[candidate[s]] = s then
3: . Found a locally-dominant edge
4: mate[s] ← candidate[s]
5: mate[candidate[s]] ← s
6: Q← Q ∪ {s, candidate[s]}
7: . Add both of the end-points; atomic updates to Q

The performance of matching algorithms critically depends
on the initialization [25], [26]. The approximate weighted
matching algorithm we are using was developed for non-
bipartite graphs, and we have not adapted it to exploit the
bipartiteness of the graph L. Hence the approximate matching
algorithm spawns threads from both vertex sets VA and VB in

TABLE II
FOR EACH PROBLEM IN OUR BIOINFORMATICS AND ONTOLOGY SETS, WE
REPORT THE NUMBER OF VERTICES IN GRAPH A AND B, THE NUMBER OF

EDGES IN THE GRAPH L, AND THE NUMBER OF NONZEROS IN S.

Problem |VA| |VB | |EL| |S|

dmela-scere 9,459 5,696 34,582 6,860
homo-musm 3,247 9,695 15,810 12,180

lcsh-wiki 297,266 205,948 4,971,629 1,785,310
lcsh-rameau 154,974 342,684 20,883,500 4,929,272

order to match vertices. We experimented with an initialization
algorithm tailored for bipartite graphs by spawning threads
only from one of the vertex sets VA or VB to identify locally
dominant edges. If the thread is responsible for matching a
vertex in VA, then it has to check the adjacency sets of the
vertices in VB that are adjacent to it in order to determine if the
edge is locally dominant. The vertices in VA (or VB) can be
matched in parallel by using __sync_fetch_and_add()
operations to avoid conflicts. We found that this initialization
noticably improved the speed of the algorithm. In future work,
we will investigate approximation algorithms for weighted
matching in bipartite graphs.

VI. SAMPLE PROBLEMS

In order to evaluate the solution quality and parallel perfor-
mance of network alignment with approximate matching, we
consider three types of problems: synthetic, protein-protein
network alignment, and ontology alignment. See Table II
for summary statistics about the bioinformatics and ontology
alignment problems. For all problems, the degree distribution
in L is fairly regular, whereas the non-zero distribution in S
is highly irregular and imbalanced.

A. Synthetic power-law problems

We use synthetic problems similar to those described
in [13]. Each problem instance is small, and it is primarily
used to evaluate the solution quality of the network alignment
heuristics. We first generate an initial graph G and then
randomly add edges with probability 0.02 to form the graphs
A and B. We let G be a 400 node random power-law graph
to approximate the structure of most modern information
networks [27]. To produce G, we first sampled a power-
law degree distribution and then generated a random graph
with that prescribed degree distribution. Because we started
with the same underlying graph G, we known the identity
matching between the graphs and utilize this matching as
a reference point. To generate L, we start with the identity
matching and then randomly sample all possible edges in L
with probability p in order to globally diversify the matches.
We find it more meaningful to describe the probability p in
terms of the expected degree in the graph: d̄ = p · |VA|.

B. Bioinformatics

Aligning between protein-protein interaction networks from
different species is an important problem in bioinformatics [5].
We use a problem from Singh et al. [5] (dmela-scere) and a



problem from Klau [7] (homo-musm). The first is an alignment
between protein interactions in a fly (D. melanogaster) and
yeast (S. cerevisiae). The second is an alignment between
humans (H. sapiens) and mice (M. musculus). We utilize
these problems solely for the instances of a network alignment
problem and do not focus on the biological insights suggested.
The graph L and associated weights are from the original
papers.

C. Ontology alignment

We consider two problems in ontology alignment from [13].
The first is an alignment between the Library of Congress
subject headings and Wikipedia categories (lcsh-wiki). While
both ontologies have a core hierarchical tree, they also have
many cross edges for other types of relationships. Thus we
can think of them as general graphs. The second problem is an
alignment between the Library of Congress subject headings
and its counterpart in the French National Library: Rameau.
In both cases, the edges and weights in L are computed via a
text-matching of the subject heading strings (and via translated
strings in the case of Rameau). These problems are larger than
the bioinformatics ones.

VII. NETWORK ALIGNMENT WITH APPROXIMATE
MATCHING

In this section we address the question: how does the be-
havior of Klau’s method and the BP method change when we
substitute the approximate matching procedure from Section V
for the bipartite matching step in each algorithm? Note that
we always use exact matching in the first step of Klau’s
method (Step 1: row match) because the problems in each
row tend to be small and we parallelize over rows. Note also
that the bipartite matching is much more integral to Klau’s
method than the BP procedure. For the BP procedure, we
only solve a bipartite matching problem to evaluate the quality
of an iterate, whereas in Klau’s method, the results of the
matching determine the update to the Lagrange multipliers U.
Put another way, the set of iterates from the BP method is
independent of the choice of matching algorithm. At the end
of the iteration, each of the methods returns the best heuristic
it computed, and we perform one final step of exact maximum
weight matching to convert this into the returned matching.

We begin by evaluating the solution quality on synthetic
power-law problems. We use α = 1, β = 2 and 1000 iterations
of each method. We evaluate each solution by comparison
with the identity alignment. Note that the identity alignment
– which assigns each vertex in graph A to its mirror image
in graph B based on the original graph G – may not be the
optimal alignment because the perturbations to the graph could
introduce a better solution. This seems to occur because we
compute objective values larger than the identity alignment for
d̄ > 10. We also study how many of the correct matches each
method generates with respect to the identity matching. The
results are shown in Figure 2. In the top plot, we show the
fraction of the objective from the identity matching achieved
(y-axis) as the expected degree d̄ of random edges in L
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Fig. 2. Alignment with a power-law graph shows the large effect that
approximate rounding can have on solutions from Klau’s method (MR). With
that method, using exact rounding will yield the identity matching for all
problems (bottom figure), whereas using the approximation results in over a
50% error rate. The results from the BP method with and without approximate
matching are indistinguishable. Small differences were randomly added to
show both lines in the figure.

varies from 2 to 20 (x-axis). In the bottom plot, we show
the fraction of correct matches (y-axis), again as the expected
degree d̄ varies. Problems with more random edges are more
challenging. The figures demonstrate that Klau’s method is
sensitive to using an approximate matching routine, whereas
the BP method with exact and approximate matching are
nearly indistinguishable.

We also evaluate the how the matching weight (wTx,
plotted on the x-axis) and overlap (xTSx/2, plotted on the
y-axis) change for a bioinformatics problem (dmela-scere)
and an ontology problem (lcsh-wiki) in the upper and lower
plots in Figure 3. Again, the BP results with and without
approximate matching are virtually indistinguishable. Klau’s
method, however, produces results that are considerably worse.
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Fig. 3. (top) Results from the dmela-scere problem; (bottom) results from
the lcsh-wiki problem. Each point represents the matching weight and overlap
scores of a solution method for a wide variety of objective functions α, β,
damping parameters and other input parameters (see [13] for the details).
The goal is to evaluate the range of solutions produced by the methods with
and without approximate matching. These show a relatively small change in
solution quality for Klau’s MR method and almost no change in the solution
quality for the BP method.

VIII. PARALLEL SCALING

In the previous section, we saw that the result quality using
approximate matching in the BP method was almost indistin-
guishable from the results using an exact bipartite matching.
This property suggests that using the parallel approximate
matching will improve the runtime performance without al-
tering its utility. Thus, in this section we address the question:
how well does an OpenMP parallel implementation of network
alignment scale? We further refine this question as: how does
the layout of memory and computational threads impact scal-
ability of the method (Section VIII-B)? Even though Klau’s
method did not perform as well with the approximation, we
include it for comparison. We also investigate the bottleneck
steps in our implementation in Section VIII-C. Note that we

do not include the time required for the final exact bipartite
matching step in these experiments. We begin by describing
the system used to evaluate the scaling. The software was
compiled with Intel’s C++ Compiler version 12.0.4.

A. Hardware architecture

We use an 8-processor Intel Xeon 2.40 Ghz CPU E7-8870
server for our experiments. Each processor has 10 cores, and
each core can run two threads. Each processor also has 30
MB of L3 cache. The server has 128GB of memory in a non-
uniform memory access architecture with 16GB per processor.

B. Strong scaling with changes in thread and memory layout

The NUMA architecture of our test machine implies that
the layout of threads to processors and memory to processors
could have a large effect on the scalability of our parallel
OpenMP codes. We explore two possibilities for memory
layout: bound (memory is allocated to the relevant socket)
and interleaved (memory is allocated in a round robin fashion
between sockets). Specifically, we used the “numactl” library
with “–membind=all” vs. “–interleave=all” options to control
these behaviors. We also explore two possibilities for thread
layout: compact (assign threads on the same processor) vs.
scattered (distribute the threads across processors). We used
the KMP_AFFINITY flag to control this setting.

In the following plots, we show the speedups as the thread
count varies for four methods: Klau’s MR method and the
BP algorithm with batch sizes 1, 10 and 20. Recall that we
can accumulate a small number of message vectors to round
simultaneously in the BP method. A batch size of 1 indicates
that the method will round immediately whereas a batch size of
20 means that we will round up to 20 vectors simultaneously.
All speedups were computed relative to the fastest run we
computed with one thread, which always happened using
memory bound to a single processor. The time required to
solve these problems was large enough that small fluctuations
due to non-deterministic thread scheduling do not have any
significant impact. We only show results up to 80 threads as
we saw no additional speedup beyond that point.

The scaling results for lcsh-wiki are shown in Figure 4. We
ran each code for 400 iterations using α = 1, β = 2, and
γ = 0.99. For Klau’s method, we set mstep = 10. In our
experiences, performance did not vary with these parameters.
Regardless of the method, the best scalability arises from using
interleaved memory. When using 80 threads, it tends not to
matter if the threads are compactly assigned or scattered over
processors, but scattering them shows additional speedup for
fewer threads. Klau’s MR method scales to 40 threads and
yields a speedup of about 15-fold. The BP method scales to
40 threads with a 15-fold speedup. Increasing the batch-size
does not yield any additional scaling, even though rounding
takes approximate 50% to 75% of the total iteration time, see
Figure 7. In Figure 5, we also show that we get approximately
the same scaling behavior on the larger lcsh-rameau problem.
In this case, using a batch size of 20 gave the best speedup.
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Fig. 4. Strong scaling results for the lcsh-wiki problem for the four methods:
Klau’s and BP with batch sizes 1, 10, and 20. See the text for a discussion.
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Fig. 5. Strong scaling results for the lcsh-rameau problem for Klau’s method
and BP with batch size 20. See the text for a discussion.

The scaling results for the two bioinformatics problems do
not show any scaling beyond 10 threads, which is a single
socket. This finding is expected given the small size of those
problems would fit into the level 3 cache on the processor. To
conserve space, we omit these results.

C. Scalability bottlenecks

In the last section we saw that the Klau’s MR method and
the BP method scale to roughly 40 threads with speedups
around 15-fold. In this section, we investigate why the methods
stop scaling. For each of the 5 steps identified in the pseudo-
code for Klau’s method, and for each of the 6 steps identified
in the pseudo-code for the BP method, we show the strong
scaling results. The results for lcsh-wiki using Klau’s method
and BP with a batch size of 20 are in Figure 6. The limiting
step differs in each setting. The bipartite matching step seems
to limit further scaling of the MR method. We are limited by
the iterative portion of the approximate matching procedure.
Whereas for the BP method, the damping step appears to be
the limiting point on the lcsh-wiki problem. With a batch size
of 20, we need to store and access the last 20 iterates, which
stresses the memory bandwidth. If we add additional threads,
then we use OpenMP nested parallelism. This mode does not
consider memory layout when assigning threads, which causes
many remote memory accesses and limits scalability.
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Fig. 6. Strong scaling of iteration steps for Klau’s method on lcsh-wiki. For
40 threads, the row match step took 40% of the runtime and the matching took
40% of the runtime. Consequently, the matching limits the overall scalability.
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Fig. 7. Strong scaling of iteration steps for BP(batch=20) on lcsh-wiki. For
40 threads, the othermax step took 15% of the runtime and matching took
58% of the runtime. The damping step took 12% of the runtime and seems
to be the limiting step.

IX. DISCUSSION

Let us recap. We study the shared-memory, multi-threaded
parallelization of two algorithms for the network alignment
problem: Klau’s method and a BP method. The key to the
parallelization is to substitute a parallel, approximate matching
routine for an exact bipartite matching routine. As we saw
in Section VII, this substitution preserved the quality of the
solutions generated the BP method on real world problems.

We were able to attain a 15-fold speedup using 40 cores
for the lcsh-wiki problem with the BP method, which is a
reasonably good strong scaling result for a complex blend of
matrix computations and matching procedures. Practically, this
speedup translates into finding a good solution in 36 seconds

instead of 10 minutes. Indeed, at this speed, the methods are
suitable for use in a computational steering or visual analytics
setting where we can engage a human to evaluate solutions
from the algorithm and adjust inputs accordingly. This setting
is important because the network alignment problem is only
an approximation for most users’ true goal: find a matching
that is “correct” and “useful.” In this case, given the result of
a network alignment problem, users may want to fix certain
problematic alignments by removing potential matches from
L and recompute.

We have also included an initial study of where the scalabil-
ity falters for Klau’s method and the BP method. These results
indicate we could expect better scaling with improvement
of a few steps of the method. Additionally, the structure of
the BP method offers other avenues for parallelization. First,
we could reorganize the computation of the BP messages in
terms of independent tasks, e.g. the othermax functions could
be computed independently. Some initial results we obtained
using this idea are promising. Second, the algorithms could
also be implemented in a distributed setting using primitives
from the Combinatorial BLAS library [28] for the matrix
computations and a distributed half-approximation matching
algorithm [29]. Third, we could implement the methods using
MPI and OpenMP for better control over the memory layout.
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