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Abstract

Graph matching is a prototypical combinatorial problem with many applications in high performance scientific computing.
Optimal algorithms for computing matchings are challenging to parallelize. Approximation algorithms are amenable to paral-
lelization and are therefore important to compute matchings for large scale problems. Approximation algorithms also generate
nearly optimal solutions that are sufficient for many applications. In this paper we present multithreaded algorithms for computing
half-approximate weighted matching on state-of-the-art multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia
Tesla and Nvidia Fermi), and massively multithreaded (Cray XMT) platforms. We provide two implementations, the first uses
shared work queues and is suited for all platforms and the second implementation, based on dataflow principles, exploits special
features available on the Cray XMT.

Using a carefully chosen dataset that exhibits characteristics from a wide range of applications, we show scalable performance
across different platforms. In particular, for one instance of the input, an R-MAT graph (RMAT-G), we show speedups of about 32
on 48 cores of an AMD Magny-Cours, 7 on 8 cores of Intel Nehalem, 3 on Nvidia Tesla and 10 on Nvidia Fermi relative to one
core of Intel Nehalem, and 60 on 128 processors of Cray XMT. We demonstrate strong as well as weak scaling for graphs with
up to a billion edges using up to 12, 800 threads. We avoid excessive fine-tuning for each platform and retain the basic structure
of algorithm uniformly across platforms. An exception is the dataflow algorithm designed specifically for the Cray XMT. To the
best of our knowledge, this is the first such large-scale study of the half-approximate weighted matching problem on multithreaded
platforms.

Driven by the critical enabling role of combinatorial algorithms such as matching in scientific computing and the emergence of
informatics applications, there is a growing demand to support irregular computations on current and future computing platforms. In
this context, we evaluate the capability of emerging multithreaded platforms to tolerate latency induced by irregular memory access
patterns, and to support fine-grained parallelism via light-weight synchronization mechanisms. By contrasting the architectural
features of these platforms against the Cray XMT, which is specifically designed to support irregular memory-intensive applications,
we delineate the impact of these choices on performance.

I. INTRODUCTION

A matching M in a graph G = (V,E) is a subset of edges such that no two edges in M are incident on the same vertex. In
other words, a matching is a pairing of vertices between the two endpoints of matched edges. Based on its objective function,
there are several variants of the matching problem. For example: a maximum (cardinality) matching maximizes the number of
matched edges in M ; a maximum weighted matching maximizes the sum or product of the weights of matched edges; and
a bottleneck matching has an objective function to maximize the minimum weight of a matched edge in M . The algorithms
can be further classified as optimal or approximate. In this paper, we are interested in the weighted matching problem with
an objective function to maximize the sum of weights of matched edges. In particular, we focus on the 1/2-approximate
weighted matching problem that guarantees a solution that is at least half the weight of a solution computed by an optimal
algorithm. Formally, given a graph G = (V,E) with a weight function w : E → R+, where V is a set of vertices, E is a
set of edges, and each edge has a positive real number as its weight, and a matching M ⊆ E, the weight of the matching
is given by w(M) =

∑
e∈M w(e), where e ∈ E is an edge. We present a serial 1/2-approx algorithm [1], referred to as the

Locally-Dominant Algorithm, in Section III-A. Parallel implementations of this algorithm are presented in Section IV. A novel
implementation based on the dataflow principles is presented in Section IV-B. The dataflow algorithm addresses some of the
limitations of the algorithm based on shared work queues.

Matching is a fundamental combinatorial problem with many applications in scientific computing. For instance: weighted as
well as unweighted matchings are used in the solution of sparse linear systems to place large matrix elements on or close to
the diagonal [2], [3], [4]; weighted matchings are used in the computation of sparse basis for the null space or column space
of under-determined matrices [5]; maximum matching is used in the computation of block-triangular form a matrix (BTF) [6];
approximate weighted matchings are used in multi-level graph algorithms for partitioning and clustering during the coarsening
phase [7]; weighted matchings are used in image processing using shape contexts [8]. In addition to scientific computing,
matching also plays a key enabling role in bioinformatics, network switch design, web technologies, etc. These applications
drive the need for efficient parallel implementations of matching algorithms. The need is justified not only by the emergence of
large-scale problems where time-to-solution is important, but also by the stagnation in the performance of serial processing [9].

While desirable, there are considerable challenges in implementing graph algorithms on traditional distributed-memory
parallel processors and has been well documented in scientific literature [10], [11]. Some of the key challenges are: (i) efficient
distribution of work among processors is determined by the structural and numerical properties of the input. Load balanced
partitioning of work is particularly challenging in emerging applications in informatics [12]; (ii) a lack of coarse-grained
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parallelism in many graph algorithms leads to fine-grained synchronization resulting in poor utilization of resources; and (iii)
a small amount of computation per communicated word makes amortization of the communication cost difficult. Fine-grained
synchronization can also lead to low computation per communicated word. As a consequence of these performance limiting
challenges, shared-memory platforms provide an attractive alternative for implementing and executing graph algorithms [13],
[14]. However, efficient implementation of graph algorithms on shared-memory platforms is also challenging. Some of the
challenges are similar to those encountered on distributed-memory platforms: irregular memory-access patterns that result in
poor utilization of system resources; low amounts of work per accessed word of memory that make amortization of memory
access cost difficult; and the need for fine-grained synchronization between threads that lead to poor utilization of system
resources.

In order to address these challenges, we focus on three key hardware-software co-design features: (i) hardware multithreading
to tolerate latencies arising not only from memory operations but also from synchronization between threads, (ii) dynamic, rather
than static, load-balancing through scheduling and shared work queues, and (iii) extended memory semantics using tag bits to
enable fine-grained synchronization. While we focus on these three features, we note that there are several other components
that are needed to deliver scalable performance such as: runtime support, programming models, and efficient atomic memory
operations. In order to evaluate these features effectively we provide results on five shared-memory platforms are are chosen to
cover a broad spectrum of features – traditional multicore platforms with deep cache hierarchies, emerging manycore platforms
(GPUs), and a non-traditional massively multithreaded cache-less architecture. These platforms are discussed in Section III-B,
and the experimental results are provided in Section V.

Coinciding with the manycore revolution in computer architecture is a revolution in informatics applications that is being
enabled by the emergence of large-scale real-world data from scientific experiments as well as Internet phenomena such as
social networks and connectivity of web pages. While the graphs arising in scientific computing tend to be fairly regular in
structure, those arising in emerging applications such as social network analysis tend to be characterized by power law degree
distribution and small world phenomenon of short average distance between any two vertices in a graph as well as dense
clustering within groups of vertices. In order to represent the characteristics of these graphs we experiment with a carefully
chosen set of synthetic graphs generated using the R-MAT algorithm and a few instances from real-world data. The details
are provided in Section III-C.

The key contributions of this paper are:
1) A detailed discussion of multithreaded implementations of the 1/2-approx weighted matching algorithm including a novel

dataflow-based implementation on the Cray XMT.
2) Presentation of scalable experimental results on emerging multicore (AMD Magny-Cours, Intel Nehalem), manycore

(Nvidia Tesla and Nvidia Fermi), and massively multithreaded (Cray XMT) platforms.
3) Presentation of insight from considering algorithm design, input characteristics, and hardware features in tandem.

To the best of our knowledge, for the 1/2-approx weighted matching problem: this is the first large-scale study on diverse
shared-memory parallel platforms, first implementation on GPUs, and the first work to consider the interplay of algorithm design
and hardware features using large-scale graphs of up to a billion edges carefully generated and selected from real-world data.
In the past, only a limited set of results have only been presented on distributed-memory platforms [15] and shared-memory
platforms [1]. The input in these experiments has been limited to a few classes of graphs.

II. RELATED WORK

Matching is an important combinatorial problem and has been extensively studied by researchers. Detailed discussions on
matching can be found in [16], [17], [18]. Approximation algorithms for matching have also been studied extensively. Avis
proposed a greedy 1/2-approx algorithm for weighted matching based on sorting. Edges are sorted in a non-increasing order
of their weights. A maximal (an approximation guarantee of half for cardinality) matching is then computed by repeatedly
adding the current heaviest edge to the matching and removing all its neighbors from the graph [19]. A strict global order
for processing edges renders this approach unsuitable for parallel implementation. Preis proposed a 1/2-approx algorithm for
weighted matching based on searching instead of sorting [20]. Preis’ algorithm starts from an arbitrary edge and processes
its neighbors. If one of its neighbors is heavier, then it progresses along that edge. The search stops when a locally-dominant
edge, an edge heavier than all its neighbors, is reached. Preis’ algorithm computes a 1/2-approx matching in linear time. Preis’
algorithm, as proposed, relies on graph searches and complex book-keeping and is unsuitable for parallel implementation.
However, Preis’ work was seminal and laid the foundation for subsequent research by others. In particular, the work of Drake
and Hougardy that followed the work of Preis is noteworthy for its simplicity. Their 1/2-approx algorithm for weighted matching
is based on the simple idea of growing paths. Two temporary sets of matched edges are maintained. The algorithm starts the
search from an arbitrary vertex and selects the heaviest neighbor. This neighbor is added to the first set of matching and the
vertex (and all edges incident on it) is deleted from the graph. The search continues from other endpoint of the matched edge,
but this time the heaviest edge is added to the second set of matched edges. The search continues until all the vertices in the
graph have been visited. The heavier of the two sets is returned as the final solution. Although simple, this algorithm is also
unsuitable for parallel implementation [21].
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Hoepman developed a distributed variant of Preis’ algorithm assuming one vertex per processor [22]. Manne and Bisseling
adapted this algorithm for a practical distributed-memory implementation with multiple vertices (subgraph) per processor [1].
Building on Manne and Bisseling’s work, efficient distributed-memory parallel algorithm and scalable implementation was
described by Halappanavar [15] and Catalyurek et al. [23]. In this paper, we provide multithreaded implementations of the
same algorithm that we refer to as the locally-dominant algorithm in the paper.

A class of optimal algorithms for computing matchings are based on the technique of augmentation, in which a matching
computed at an intermediate step is augmented by using special paths known as augmenting paths [16]. Matching algorithms
based on the technique of augmentation perform searches in a graph either in a breadth-first or a depth-first manner. In this
context, we cite related work on breadth-first search, st-connectivity, and all-pairs shortest-path computations. Several shared-
memory, as well as distributed-memory, implementations exist for these graph kernels. Some of the important references include
the seminal work of Bader and Madduri on Cray MTA-2 (a predecessor of XMT) [24], Nieplocha et al. on XMT [14], Cong
and Bader on shared-memory platforms [13], Agarwal et al. on emerging multicore platforms [25], Yoo et al. on BlueGene/L
platform [26], and Hendrickson and Berry [11] on cross-architecture comparisons and computational challenges.

Several papers on implementation of graph algorithms on general purpose graphics processing units (GPUs) exist. Foremost
among them is the work of Harish and Narayanan [27]. Subsequent work is presented by Katz and Kider [28], Luo et al. [29],
and most recently by Hong et al. [30]. In the work of Harish and Narayanan we observe that the cost of breadth-first search
is O(|V | · L + |E|), where L represents the number of levels (the longest distance from the source to any vertex), and |V |
and |E| are the number of vertices and edges respectively. While an efficient implementation of breadth-first search has a
cost of Θ(|V |+ |E|), the implementation of Harish and Narayanan is negatively impacted by architectural limitations of older
generation of GPUs. The implementation of Harish and Narayanan, and a similar approach of others, is therefore suitable only
for instances with small values of L. In contrast, our GPU implementation of approximate matching uses an efficient approach
that is similar to implementation on other multithreaded platforms.

III. PRELIMINARIES

We provide relevant background information in this section. The information is organized into three subsections on: serial
algorithm for the 1/2-approx weighted matching problem, hardware platforms, and the dataset used for experiments.

A. Locally-Dominant Algorithm for 1/2-approx Weighted Matching

We now describe a generic queue-based implementation of the 1/2-approx algorithm for weighted matching. The algorithm
was proposed by Manne and Bisseling [1] as a serial variant of Hoepman’s algorithm [22]. We provide the details in Algorithm 1,
which takes as input a graph G = (V,E) and returns as output a matching M . In order to simplify the description of parallel
algorithms, we divide the execution into two phases: Phase-1 and Phase-2.

Algorithm 1 Serial Queue-based Implementation. Input: graph G = (V,E). Output: A matching M represented in vector
mate. Data structures: a queue, Q, that consists of unprocessed matched vertices; a vector candidate of size |V | that contains
the id of the current-heaviest neighbor of each vertex.

1: procedure SERIAL-QUEUE(G(V, E), mate)
2: for each u ∈ V do . Initialization
3: mate[u] ← ∅
4: candidate[u] ← ∅
5: Q← ∅
6: for each u ∈ V do . Phase-1
7: PROCESSVERTEX(u, Q)
8: while Q 6= ∅ do . Phase-2
9: u← FRONT(Q)

10: Q← Q \ {u}
11: for each v ∈ adj (u) do
12: if candidate[v] = u then . Process v only if u is it’s candidate mate
13: PROCESSVERTEX(v, Q)

In Phase-1, each vertex v ∈ V is processed by making a call to Procedure PROCESSVERTEX, which is given in Algorithm 2.
In Procedure PROCESSVERTEX, for a given vertex s, all its neighbors are scanned to find the current-heaviest neighbor that
has not already been matched. When duplicate weights exist, it is important to break ties consistently to prevent deadlocks. We
use vertex indices, which are guaranteed to be unique, to break ties consistently. The identity of the heaviest neighbor for each
vertex is stored in vector candidate (Line 8 in Algorithm 2). After setting the candidate mate for vertex s, say to vertex t,
we check if the candidate mate for t is also set to s: candidate[candidate[s]] = s. If true, we have found a locally-dominant
edge in es,t. We add this edge to M (Lines 10 and 11), and the two vertices s and t to the queue (Line 12). Some of the
vertices might end up not having any candidates available to match.
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Algorithm 2 ProcessVertex
1: procedure PROCESSVERTEX(s, Q)
2: max wt ← −∞
3: max wt id ← ∅
4: for each t ∈ adj (s) do
5: if (mate[t] = ∅) AND (max wt < w(es,t)) then . Use vertex id to break ties
6: max wt ← w(es,t)
7: max wt id ← t
8: candidate[s] ← max wt id
9: if candidate[candidate[s]] = s then . Found a locally-dominant edge

10: mate[s] ← candidate[s]
11: mate[candidate[s]] ← s
12: Q← Q ∪ {s, candidate[s]} . Only need to process vertices in the queue.

The execution of Phase-2 begins when every vertex has been processed via a call to Procedure PROCESSVERTEX, which
happens at the completion of Phase-1. In Phase-2, we iterate until the queue becomes empty (Line 8 in Algorithm 1). Note
that at least one edge (the heaviest edge in G) will get matched in Phase-1, and therefore, Q is nonempty if M is nonempty.
During each iteration of the while loop on Line 10, we process vertices matched in previous iterations while adding new
vertices to the queue that become eligible as edges get matched. Note that we only need to process vertices for which the
candidate was set to one of the matched vertices (Line 12 in Algorithm 1). This is achieved by adding the newly matched
vertices to the queue and checking if any of their unmatched neighbors point to them. If so, those neighbors will have to find
new candidates for matching. The algorithm will terminate when the queue becomes empty.The matching is stored in vector
mate. An index s of this vector represents vertex s, and the vertex t = mate[s] represents the other endpoint of the matched
edge es,t.

An indication of the amount of work completed up to a certain stage in the execution of Algorithm 2, and the amount of
work at a given step of execution, is given by the size of queue (Q) with respect to time. At the end of Phase-1, we expect
several vertices (at least two) to be added to the queue. In practice, we observe a large percentage of edges being matched in
Phase-1. Let us consider the end of Phase-1 as the first iteration. The iterations of the while loop on Line 8 in Algorithm 1
will be considered as the subsequent iterations with the following modification. During each iteration of the while loop, all the
elements of Q are processed. Let newly matched vertices be added to a temporary queue. At the end of the iteration, elements
of the temporary queue are moved to Q. The size of Q provides an indication of the number of edges that get matched at each
iteration (or a step of the algorithm). The queue sizes for three different inputs are illustrated in Figure 1(c). We observe that
the queue size decreases roughly by half after each iteration, and has the largest size at for iteration 1 (at the end of Phase-1).

The cost of Algorithm 1 is given by O(|V | + |E| · ∆), where ∆ is the maximum degree in G. The worst case happens
when a vertex points to all of its neighbors unsuccessfully, and in order to determine the current heaviest neighbor needs to
check its entire list of neighbors. However, the runtime can be improved to Θ(|V |+ |E|) if the adjacency list for each vertex
is maintained in a non-increasing order of edge weights. Under such an assumption, the current heaviest neighbor of a vertex
can be computed in constant time. In practice, we observe that the benefits from ordered adjacency lists is about 2 relative to
unordered lists (Figure 5). However, the cost of sorting adjacency lists is considerably more than matching. Therefore, sorting
is not a viable optimization strategy. In this paper, we use sorted lists only to demonstrate its effectiveness and to simplify the
explanation of the dataflow algorithm (Algorithm 4) presented in Section IV-B.

Performance of approximation algorithms can be measured based on quality and runtime of the algorithms. Quality can be
measured in terms of the cardinality and weight of approximate matchings with respect to optimal matchings. Approximation
algorithms have been demonstrated to compute high quality matchings in a fraction of the time taken by optimal algorithms [15].
When compared to other approximation algorithms, the Locally-Dominant algorithm performs better in both quality and runtime.
Experimental results comparing different approximation algorithms are provided in [15]. The details of parallel implementations
of the Locally-Dominant Algorithm are provided in Section IV, and experimental results are provided in Section V.

B. Hardware Platforms

The five platforms selected in this study – Opteron, Nehalem, Tesla, Fermi, and XMT – represent a broad spectrum of
capabilities: clock speeds ranging from 0.5 GHz (XMT) to about 3.0 GHz (Nehalem); hardware multithreading ranging from
none (Opteron) to 128 threads per processor (XMT); cache hierarchies ranging from none/flat (XMT) to three levels (Nehalem);
generation of memory interconnect ranging from DDR1 (XMT) to GDDR5 (Fermi); advanced architectural features such as
branch prediction and speculative execution on modern architectures to simple features of the XMT; and control structures
ranging from fully autonomous (MIMD) processors (Opteron) to a 32-way SIMT (Fermi). Different platforms employ different
techniques for performance. For example, while XMT uses massive multithreading to tolerate latency from memory operations,
Nehalem employs deep cache hierarchies, advanced branch prediction, and two-way multithreading to tolerate latencies. While
some architectures are extremes, others are more balanced. For example, compare Nehalem with two-way HyperThreading and
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three levels of caches to the XMT that has 128-way threading and a cache-less memory structure. These contrasting hardware
features therefore offer a rich environment to compare performance impact of different features with respect to each other.
Key architectural features of these five platforms are summarized in Table I. Considering the scope and length of this paper
we provide brief descriptions as applicable to irregular applications in general and graph algorithms in particular. References
for further details are also provided in the table.

Platform: Opteron 6176 SE Xeon E5540 Tesla C1060 Tesla C2050 ThreadStorm-2
(Magny-Cours) (Nehalem) (Tesla) (Fermi) (XMT)

Processing Units
Clock (GHz) 2.30 2.53(base) 1.3 1.15 0.5
Sockets 4 2 30 SMs 14 SMs 128
Cores/socket 12 4 8 SPs/SM 32 SPs/SM 1
Threads/core 1 2 – – 128
Total threads 48 16 240 SPs 448 SPs 16,384
Interconnect HyperTransport-3 QPI PCIe2 PCIe2 Seastar2
Interconnect (GB/s) 25.6 25.6 8 8 4.8

Memory System
Cache structure L1/L2/L3† L1/L2/L3† – L1/L2† cache-less
L1 (KB)/core:Inst/Data 64/64 32/32 – 48/SM∗ –
L2 (KB)/core 512 256 – 768/SM –
L3 (MB)/socket 12 8 – – –
Memory/socket (GB) 64 12 4 3 8
Total memory (GB) 256 24 3 3 1,024
Peak Bandwidth (GB/s) 42.7 (DDR3) 25.6 (DDR3) 102 (GDDR3) 144 (GDDR5) 86.4 (DDR1)

Software
C Compiler GCC 4.1.2 Intel 11.1 NVCC (CUDA 4.0) NVCC (CUDA 4.0) Cray C 6.5.0
Flags -O3 -fast -O3 -O3 -par
Thread scheduling static static dynamic dynamic block-dynamic
Reference [31] [32] [33] [34] [35]

TABLE I
Key Architectural Features: A SUMMARY OF KEY FEATURES OF THE PLATFORMS USED IN THIS PAPER.† SHARED CACHE. ∗ 64 KB OF MEMORY IS

CONFIGURED AS 48 KB OF L1 CACHE AND 16 KB AS SHARED MEMORY.

The AMD Opteron platform (Magny-Cours) is a 4-socket 12-core system with 256 GB of system memory. Each 12-core
socket consists of two 6-core dies on a single package (multi-chip module) with separate memory controllers. The sockets are
interconnected using HyperTransport-3 technology. Given the large size and non-uniform memory access (NUMA) costs it is
important to consider allocation of memory and how software threads get pinned to physical cores.

The Intel Xeon platform (Nehalem) is a 2-socket 4-core system with 24 GB of system memory. Each core supports
Simultaneous MultiThreading (SMT), allowing 2 threads to share the instruction pipeline. This feature is commercially known
as HyperThreading. In order to assess the benefits of HyperThreading, we pin two threads to the same core using the capabilities
provided by the Intel compiler. In addition to hyper-threading, Nehalem provides several advanced architectural features such
as a new cache coherency protocol (MESIF), out-of-order execution, sophisticated branch prediction, and high bandwidth
interconnect (QPI). Accordingly, we observe superior single-thread (serial) performance on this platform.

Tesla is the codename for the graphics processing unit (GPU) used in Tesla C1060 boards targeted for general computational
purposes. The basic unit of computation on Tesla is a Streaming Multiprocessor (SM) that consists of: an Instruction Unit,
8 Streaming Processors (SPs), 2 Special Function Units (SFUs), a Double Precision Unit and a scratchpad memory (local
memory) of 16 KB. Streaming Processors are the Arithmetic-Logic units (ALUs) that perform basic single precision and
integer computations. The Instruction Unit fetches an instruction for a group of 32 threads, called a warp, which is then
executed in a Single Instruction Multiple Thread (SIMT) fashion for multiple clock cycles using various resources of an SM.
An instruction executes for a minimum of 4 clock cycles when simple single precision operations are used. Each SM maintains
up to 32 warps (1024 threads) that are simultaneously active. Multiple SMs are integrated in a single GPU and connected,
through a set of 64-bit wide GDDR3 memory controllers, to an external random access memory (named global memory)
located on the board. In Tesla C1060, 30 SMs (for a total of 240 SPs) are interconnected through 8 memory controllers to 4
GB of global memory at a speed of 800 MHz. Thus, obtaining an overall memory bus width of 512 bits and reaching a peak
bandwidth of 102 GB/s. When a warp issues a long latency operation to the global memory, another active warp is switched
on the execution resources of the SM to cover this latency.

A GPU is programmed as an accelerator with its own memory pool, so the data needs to be moved to its global memory
before and after the computation. This procedure is performed through a PCI-Express 2.0 bus that allows a peak bandwidth of
8 GB/s in both the directions. This bus may present a significant bottleneck for the overall performance of a GPU-accelerated
algorithm. For obtaining high performance on Tesla, it is important to coalesce memory accesses (i.e., performing multiple
operations with a single transaction). In Tesla, the maximum size of a transaction is 64 bytes. To coalesce memory operations,
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memory accesses by threads in a half-warp (memory operations are issued for a group of 16 threads) should be sequential and
aligned. If these rules are not respected, multiple memory transactions get issued that reduce the effective bandwidth available.
Thus, irregular applications are challenging to implement on Tesla.

Fermi is the latest generation of NVIDIA GPUs. In comparison to previous generation of GPUs, Fermi retains general
architectural principles and programming model. However, there are several significant changes compared to Tesla. Principal
differences are in the organization of SMs and memory hierarchy. The SMs in Fermi are composed by 32 SPs, 4 SFUs and 2
Instruction Units. The Instruction Units fetch instructions from two different warps (still composed of 32 threads) which are
then simultaneously issued on a group of 16 SPs for a minimum of 2 clock cycles. However, when double precision operations
are issued, only one warp can be active at a given point of time. The number of warps-in-flight for each SM has been increased
to 48. Each SM includes 64 KB of on-chip memory which can be configured as 48 KB of shared memory (scratchpad) and
16 KB of L1 cache, or as 16 KB of shared memory and 48 KB of L1 cache. The L1 caches of different SMs are not cache
coherent. The SMs in Fermi are connected to a 768 KB L2 cache. The line size for L1 and L2 caches is 128 bytes. While
the rules for memory accesses remain similar to Tesla, the size of each memory transaction has been increased to 128 bytes
to match the line size of L1 and L2 caches. Caches have the potential to improve the performance of uncoalesced accesses
to memory. Subsequent accesses to unaligned data already loaded in one of the caches are serviced at the throughput of the
respective caches. In addition, L2 plays an important role when atomic memory operations are issued. In this paper, we use a
Tesla C2050 board equipped with a Fermi processor comprising of 14 SMs (for a total of 448 SPs). The 14 SMs are connected
to six 64-bit memory controllers for a total bus-width of 384 bits. The C2050 hosts 3 GB of GDDR5 memory at 1.5 GHz,
which allows a peak bandwidth of 144 GB/s. While Fermi supports Error Correcting Code (ECC) for all levels of the memory
hierarchy, it also provides the ability to disable ECC through a software switch. The software infrastructure on Fermi allows
setting the sizes of L1 caches and local memories. It also allows the user to bypass L1 caches altogether. However, L2 caches
cannot be bypassed since all memory transactions pass through them. We show performance differences arising from disabling
ECC and L1 caches in Figure 4. In summary, Fermi is a superior alternative to Tesla for irregular algorithms such as the
matching algorithm. Accordingly, we observe considerable improvements in performance.

The Cray XMT platform used in this paper consists of 128 Threadstorm (MTA2) processors interconnected using a high
bandwidth 3D torus network (Cray SeaStar2). Each MTA2 processor consists of 128 thread streams (hardware threads) and a
very long instruction pipeline (VLIW) with 21 stages. In contrast to SMT on the Nehalem, MTA2 uses interleaved scheduling
of threads – at each cycle, an instruction is chosen from a different thread that is ready. MTA2 uses massive multithreading as a
means to tolerate latency from memory operations as well as latencies generated from synchronization of threads. In contrast to
a multilevel cache hierarchy on traditional platforms, the memory system on XMT is a flat cacheless system. The virtual global
address space is built from physically distributed memory modules of 8 GB of DDR-1 memory on each processor, resulting
in a total memory of 1 TB from 128 processors. Memory accesses are made uniform by using a hardware hashing mechanism
that maps data randomly to memory modules in block sizes of 64 bytes. Each word (64 bits) of memory has special tag bits
that are used to provide light-weight synchronization among threads. Details of extended memory semantics using these bits
are presented in Section IV-B. The average latency of a memory access is 600 cycles with a worst-case latency of 1000 cycles.
A 128 processor system has a sustained bandwidth of 86.4 GB/s. Unlike Nehalem, XMT lacks advanced architectural features
such as branch prediction. It relies on multithreading to tolerate latencies from different sources including branches. A slow
clock speed coupled with a long instruction pipeline results in a considerably slow serial performance. However, relatively better
performance of XMT for irregular problems demonstrates the effectiveness of multithreading and large memory bandwidth
over faster clock speeds and deeper cache hierarchies.

C. Datasets

Our dataset comprises of three instances of synthetic graphs and three instances of real-world data. Synthetic graphs are
generated using the recursive matrix multiplication (R-MAT) algorithm proposed by Chakrabarti and Faloutsos [36]. Different
classes of graphs can be generated by varying the four input parameters for probability in the R-MAT algorithm. While a large
number of combinations are possible, we find that the following three input parameters cover a broad range of characteristics: (i)
RMAT-ER: (0.25, 0.25, 0.25, 0.25), (ii) RMAT-G: (0.45, 0.15, 0.15, 0.25), and (iii) RMAT-B: (0.55, 0.15, 0.15, 0.15).
RMAT-ER stands for a class of Erdős-Rényi random graphs. The other two classes of graphs (RMAT-G and RMAT-B) have
properties similar to real-world graphs with skewed normal distributions for vertex degrees and small world phenomenon of
short average distance between pairs of vertices. The size of the graph generated by R-MAT algorithm is specified as a power of
two, where the number of vertices is given by 2SCALE and the number of edges is some multiple of the number of vertices (we
use 8× for our experiments). For the input parameter SCALE, we use a range of values from 23 to 27 on different platforms.
The different sizes and key properties of the graphs used for experiments are summarized in Table II. The table represents
the numbers for graphs generated on the Cray XMT using our own implementation of the R-MAT algorithm. However, for
experiments on the Magny-Cours platform, we generate the graphs in memory using SNAP (Small-world Network Analysis
and Partitioning) toolkit version 0.3 [37]. While the number of vertices remain the same, there are minor differences in the
number of edges and connectivity due to differences in the pseudo-random numbers used. When cross comparisons between
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Graph Scale No. Vertices No. Edges Max. Variance % Isolated
Deg. vertices

RMAT-ER

23 8,388,608 67,108,782 39 16.00 0
24 16,777,216 134,217,654 42 16.00 0
25 33,554,432 268,435,385 41 16.00 0
26 67,108,864 536,870,837 48 16.00 0
27 134,217,728 1,073,741,753 43 16.00 0

RMAT-G

23 8,388,608 67,081,539 999 390.25 2.11
24 16,777,216 134,181,095 1,278 415.72 2.33
25 33,554,432 268,385,483 1,489 441.99 2.56
26 67,108,864 536,803,101 1,800 469.43 2.81
27 134,217,728 1,073,650,024 2,160 497.88 3.06

RMAT-B

23 8,388,608 66,738,577 26,949 6,834.34 29.22
24 16,777,216 133,658,229 38,143 8,085.64 30.81
25 33,554,432 267,592,474 54,974 9,539.17 32.34
26 67,108,864 535,599,280 77,844 11,213.79 33.87
27 134,217,728 1,071,833,624 111,702 13,165.52 35.37

TABLE II
Synthetic Graphs: DETAILS OF THE GRAPHS USED FOR EXPERIMENTS. GRAPHS WITH SCALE ≤ 24 WERE GENERATED ON THE XMT,
STORED IN A TEXT FILE, AND USED ON ALL THE PLATFORMS. LARGER GRAPHS WITH SCALE ≥ 25 WERE GENERATED SEPARATELY ON
MAGNY-COURS AND XMT. THE DETAILS SHOWN HERE ARE FOR THOSE GENERATED ON THE XMT. THEY VARY BY A SMALL MARGIN

FROM THOSE GENERATED ON MAGNY-COURS.
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Fig. 1. Characteristics of Data (SCALE = 24): (a) Degree distribution of the three RMAT graphs. The last datapoint for RMAT-B with degree=38143
and frequency=1 is not shown. The plot is on a log-log scale. (b) Distribution of local clustering coefficients of the three RMAT graphs. (c) Queue sizes
during the execution of the algorithm. Iterations are as defined in Section III-A. The black dashed trend line (exponential) indicates that the amount of work
roughly decreases by half after each iteration.

architectures are made, the graphs are generated on the XMT, saved to disk in plain text format, and reused on the other
platforms. A positive integer weight is associated with each edge. For our experiments we assigned random weights ranging
from zero to number of vertices.

The overall sizes of the three graph variants are similar, but they vary widely with respect to degree distribution and
clustering coefficient. The local clustering coefficient of a vertex is given by the ratio of the actual number of edges between
its neighbors to the maximum number of edges possible between the neighbors. The clustering coefficient of a graph is the
average of local clustering coefficients over all the vertices. Degree distribution and local clustering coefficient for the three
variants at SCALE = 24 are shown in Figure 1. As expected, RMAT-ER has a mean value of 16 and small variance resembling
normal distribution. The other two variants have a large distribution with RMAT-B having a maximum degree of 38, 143. The
average clustering coefficient for ER, G, and B are 10−7, 12−6, 34−5 respectively. We also observe that the number of isolated
vertices (with zero degree) is high for RMAT-B, over 30% of vertices are isolated. In our experiments, we remove duplicate
edges and self-loops (this is what leads to a variation in the number of edges between different classes of graphs), but retain
isolated vertices. Given the large variation in graph properties, we expect significant impact not only on the parallel performance
of algorithms, but also on the behavior of the sequential algorithm (in terms of the number of edges that get matched). In
particular, we expect a large variation in the degree distribution in RMAT-B to have an adverse effect on the performance
of GPUs caused by load imbalances. We also note that in our experiments we randomly shuffle the vertex indices in the
graphs as generated by by R-MAT algorithm. The motivation for this shuffling is to prevent vertices with larger degrees getting
concentrated towards vertices with smaller indices (the top-left quadrant of the R-MAT algorithm). This shuffling also makes
the synthetic graphs realistic since we do not expect correlation between vertex identities to its degree.

A small set of graphs from real-world data are chosen to enable comparative study of our implementations on the GPUs
with existing literature. The properties of real-world dataset are summarized in Table III.



8

Graph No. Vertices No. Edges Maximum Average Variance % Isolated
Degree Degree vertices

cit-patent 3,774,768 33,037,894 793 8.75 110.06 0
soc-live 4,847,571 42,851,237 20,333 17.68 2704.35 0.02
Usa-Roadmap 23,947,347 28,854,312 9 2.41 0.86 0

TABLE III
Real-World Graphs: WERE OBTAINED FROM THE STANFORD LARGE NETWORK DATASET COLLECTION MAINTAINED BY JURE

LESKOVEC AND THE COLLECTION FROM DIMACS CHALLENGE-9. DUPLICATE ENTRIES ARE REMOVED AND RANDOM WEIGHTS ARE
ASSIGNED TO THE FIRST TWO INSTANCES.

IV. PARALLEL IMPLEMENTATION

In this section we provide details of parallel implementations of the Locally-Dominant Algorithm for 1/2-approx weighted
matching that was introduced in Section III-A. We first describe a generic queue-based implementation suitable for all the
platforms, and then present a novel dataflow algorithm targeted specifically for the Cray XMT. The dataflow algorithm is
motivated by general weaknesses of the shared work-queue approach such as the need for synchronization and variation in the
amount of work that can be done in parallel leading to loss of performance.

A. Parallel Queue-based Implementation

The parallel queue-based implementation, illustrated in Algorithm 3, is a parallel implementation of the Locally-Dominant
Algorithm introduced in Section III-A. Similar to the serial version, we divide the parallel algorithm into two phases. Phase-1
of the algorithm (Lines 5 – 18 in Algorithm 3) consists of two parallel sections. Each section iterates once over all the vertices
in a graph. While the first section (Line 5) finds a candidate mate for each vertex, the second section (Line 15) checks for
locally-dominant edges and adds them to the matching. Endpoints of matched edges (matched vertices) are added to a queue
(QC). Phase-2 of the algorithm (Lines 21 – 27 in Algorithm 3) is executed several times by iterating over all the vertices in
the queue until no new edges get matched (the queue becomes empty).

Algorithm 3 Parallel Queue-based Implementation. Input: graph G = (V,E). Output: A matching M represented in vector
mate. Data structures: a queue QC of vertices for processing in the current step, and a queue QN of vertices that will be
processed in the next step. Both the queues contain matched vertices; a vector candidate of size |V | that contains the id of
the current heaviest neighbor of each vertex.

1: procedure PARALLEL-QUEUE(G(V, E), mate)
2: QC ← ∅
3: QN ← ∅
4: — — Phase-1 — —
5: for each u ∈ V in parallel do . OpenMP pragmas/CUDA kernels
6: mate[u] ← ∅
7: candidate[u] ← ∅
8: max wt ← −∞
9: max wt id ← ∅

10: for each v ∈ adj (u) do
11: if (mate[v] = ∅) AND (max wt < w(eu,v)) then . Use vertex ids to break ties.
12: max wt ← w(eu,v)
13: max wt id ← v
14: candidate[u] ← max wt id
15: for each u ∈ V in parallel do . OpenMP pragmas/CUDA kernels
16: if candidate[candidate[u]] = u then . Found a locally dominant edge
17: mate[u] ← candidate[u]
18: QC ← QC ∪ {u} . Use atomic memory operation
19:
20: — — Phase-2 — —
21: while QC 6= ∅ do
22: for each u ∈ QC in parallel do . OpenMP pragmas/CUDA kernels
23: for each v ∈ adj (u) do
24: if candidate[v] = u then . Process v only if u is its candidate mate
25: PROCESSVERTEX(v, QN )
26: QC ← QN . The new set of matched vertices
27: QN ← ∅

On the multicore platforms, the algorithm is parallelized using OpenMP as the programming model. We use compressed
sparse row (CSR) format (data structure) to store graphs in memory. In this format the neighborhood of each vertex is stored
contiguously in memory. Thus, the benefit from caching exists when adjacency lists are accessed on platforms with cache
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hierarchies. The shared data structures for which the threads need to synchronize accesses are the two queue data structures,
QC and QN . Different threads simultaneously add those vertices to a queue that get matched in a given iteration of the
algorithm. One way of implementing synchronous queue operations is to use critical sections. However, critical sections result
in severe loss of performance. On the x86 platforms (Magny-Cours and Nehalem) we use an intrinsic atomic operation
__sync_fetch_and_add() to find a unique position to add to the queue (the tail of the queue) for each thread. A
similar atomic operation, int_fetch_add(), is provided on the XMT. The use of two queues (QC and QN ) leads to
better performance – while from QC we efficiently process (read) the vertices matched in the previous iteration, we enqueue
(write) vertices matched in the current iteration in QN . The threads synchronize at the end of each iteration, and in serial, we
assign the contents of QN to QC (via pointer swap) and set QN to empty (Lines 26 and 27 in Algorithm 3).

The use of shared work-queues is similar to the use of queues in a level-synchronous breadth-first search to store and
process the frontier. However, given that the vertices that need to be processed in the next iteration are determined based
current matching and edge-weights, generic prefetching techniques to exploit caches are not applicable for this algorithm. The
amount of parallelism at any given iteration depends on the size of the queue and the parallel efficiency depends on the pattern
and speed of atomic operations to add new elements to the queue. The size of the queue as the algorithm progresses for
different inputs are captured in Figure 1(c).

CUDA Implementation: Parallel implementation on GPUs is similar to the OpenMP implementation on multicore platforms.
Again, we divide the algorithm into two phases and have three GPU kernel routines for Algorithm 3. The first routine assigns
the heaviest neighbor for each vertex, the second routine checks if a locally-dominant edge is found, and if so, adds that edge
to M and the two endpoints to the queue. The third kernel call combines the functionality of finding the heaviest neighbor and
a test for local dominance of an edge. Instead of processing one vertex, as shown in Algorithm 2, we process a set of vertices
stored in QC . The newly matched vertices are added to QN . We use the atomic memory operation atomicAdd() on the
GPUs. Depending on the size of a queue, the grid dimensions are determined on the host machine that places the kernel call.
Within the kernel, each thread processes a vertex based on its thread id. At the beginning, all the data structures are copied to
GPU memory and they reside there for the entire duration of the algorithm. After each iteration, only the size of QN is sent
back to the host machine that decides if a kernel call needs to be made and the sizes of grid dimensions of such a call. Due
to a lack of spatial and temporal locality of memory accesses in graphs, achieving high performance on GPUs is challenging.

Three factors affect the performance of our implementation on GPUs: (i) Load balancing within a warp: The same instruction
is issued for all the 32 threads in a warp, and therefore, the performance of a warp is limited by the slowest thread even when
other threads finish their work ahead of time. For example, the thread processing the vertex with the largest degree might be
the slowest. An approach to solve this imbalance is to block the work into groups and use independent threads for different
blocks. We observed about 20 percent improvement for breadth-first search in RMAT-B with this approach. Since there is
a small overhead for blocking, there was no performance penalty for well balanced inputs like RMAT-ER. While such an
approach is well suited for straightforward algorithms like breadth-first search, it is not suitable for algorithms like matching
that need synchronization between threads that process the adjacency list of a vertex. (ii) Coalescing memory accesses: On
Tesla, memory accesses by threads of the same half-warp should be aligned and to contiguous blocks in memory. On Fermi,
caches reduce overheads of non-sequential accesses only if threads of the same warp access data from the same cache line.
However, in our implementation the vertices get added to the queue in a random order, and thus, each thread in a warp
will access random memory locations. An approach to address this problem would be maintain the work queues in an order.
However, the potential benefits may not be worth the effort to reorder the queues. (iii) Branch divergence: Since all the threads
in a warp share the same instruction, if any one of these threads in a warp takes a different branch of an if condition, all
the other threads are forced to wait for its completion. In other words, both the branches of an if condition get executed
serially. The GPU kernel call to process a vertex has several if conditions that check if a neighbor has already been matched
or not, and if it is the current-heaviest neighbor or not. Restructuring of an algorithm and implementation might alleviate this
problem to a certain extent. Future architectural improvements like branch prediction will also have a pronounced impact on
performance.

To summarize, solving each of these problems is a significantly hard challenge by itself, and in concert, they determine the
overall performance of a GPU implementation. In our experimental results, presented in Figure 4, we observe the adverse impact
of load imbalances in RMAT-B relative to RMAT-ER, and Cit-Patent relative to Soc-Live. The compressed data structures used
in our implementation alleviate irregular accesses by storing adjacency lists of a vertex in a contiguous block. In particular,
the benefits are evident in Phase-1 when vertices are processed in an order, but in Phase-2 vertices are processed in a random
order and therefore lead to poor performance. Optimization for branch divergence is challenging.

B. Parallel Dataflow-based Implementation
In this section we provide a novel dataflow-based implementation of the Locally-Dominant Algorithm. The XMT supports

light-weight synchronization by associating every word of memory (8 Bytes) with the following additional bits: a full/empty
bit, a pointer forwarding bit, and two trap bits. Of particular interest to this study is the full/empty bit. XMT provides several
extended memory semantic operations to manipulate the full/empty bit. The four key operations that are sufficient to implement
the matching algorithm (and several other graph algorithms) are:
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• purge: sets the full/empty bit to empty and the value to zero.
• readff: reads a memory location only when the full/empty bit is full and leaves the bit full when read finishes.
• readfe: reads a memory location only when the full/empty bit is full and leaves the bit empty when read finishes.
• writeef: writes to a memory location only if the full/empty bit is empty, and flips the bit to full when the write finishes.

While a “single-producer single-consumer” model can be efficiently implemented using writeef and readfe, a “single-
producer multiple-consumer” model can be implemented using writeef and readff. A dataflow implementation using
the “single-producer multiple-consumer” model is presented in Algorithm 4. The general structure and behavior of the
dataflow-based algorithm is similar to the queue-based algorithm, except that threads do not have a shared work-queue to
synchronize their operations. Instead, each thread will work on a block of vertices (Line 8 in Algorithm 4) by making a call to
Procedure PROCESSVERTEXDF (presented in Algorithm 5) for each vertex that has not been processed before. For simplicity
of description, we assume that the adjacency lists are maintained in a non-increasing order (vertex-ids are used to break ties
consistently).

In Procedure PROCESSVERTEXDF, the thread processing vertex s sets the candidate mate of s to its current-heaviest
neighbor and attempts to read if that neighbor wants to match with s. If a positive answer is observed from this neighbor, then
the thread adds this edge to the current set of matched edges and proactively sets a negative response to its remaining neighbors
(Lines 10 and 11). If a negative answer is observed from this neighbor, then the thread proceeds to the next heaviest neighbor.
The number of vertices to be processed is generally much larger than the number of threads available on a system. Therefore,
passively waiting for another thread to complete processing the desired vertex could lead to a dead-lock due to exhaustion of
resources. While this problem can be addressed in multiple ways, we use recursion in combination with an additional data
structure state that maintains a state (processed or not) for each vertex. The recursive call is shown in Line 5 of Algorithm 5.

In the absence of a shared work-queue, the algorithm unravels efficiently on the XMT. Extended memory semantic operations
are executed efficiently on the XMT. When the tag-bits are in a desired state, memory operations complete in a single clock
cycle. Otherwise, the request is returned to the ready queue for a retry. Similar to general memory operations, XMT tolerates
the latencies arising from these operations via multithreading. Thus, in comparison to the queue-based implementation, we
observe superior performance of the dataflow algorithm in our experiments. The results are presented in Figure 5.

Algorithm 4 Parallel Dataflow-based Implementation. Input: graph G = (V,E). Output: A matching M represented in vector
mate. Data structures: a vector candidate of size 2|E|. For an edge eu,v the response from u to v, and vice-versa, is stored
in candidate; a vector state of size |V | represents if a vertex has been processed or not (zero implies an unprocessed state,
a number > 0 implies that it has been processed).

1: procedure PARALLEL-DATAFLOW(G(V, E), mate)
2: for each u ∈ V in parallel do
3: mate[u] ← ∅
4: state[u] ← 0
5: for each eu,v ∈ E in parallel do
6: writeef(candidate[u→ v], 0) . Set full/empty bit to empty and value to zero
7: writeef(candidate[v → u], 0)
8: for each u ∈ V in parallel do
9: isProcessed ← int_fetch_add(state[u], 1)

10: if isProcessed = 0 then . Process only if u has not been processed before
11: PROCESSVERTEXDF(u)

Algorithm 5 ProcessVertexDF
1: procedure PROCESSVERTEXDF(s)
2: for each t ∈ adj (s) in non-increasing order of weights do
3: writeef(candidate[s→ t], 1) . Set full/empty bit to full and value to 1
4: if int_fetch_add(state[t], 1) = 0 then
5: PROCESSVERTEXDF(t) . Proactively process the other end
6: if readff(candidate[t→ s])=1 then . Wait until full/empty bit becomes full
7: mate[s]← t . Found a locally dominant edge
8: mate[t]← s
9: break

10: for each tnp ∈ adj (s) not already processed do . Set the value to zero for remaining neighbors of s
11: candidate[s→ tnp]← 0

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results on the performance of parallel 1/2-approx algorithm on five platforms
presented in Section III-B. Three classes of synthetic graphs of various sizes are used as input for experiments across the
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platforms, and three instances of real-world data are used as input on the GPU platforms. Details on dataset are provided in
Section III-C. We provide strong and weak scaling results on the Magny-Cours and XMT platforms for R-MAT graphs up
to a billion edges (SCALE = 24 to 27). In addition, on the XMT we provide results for three variants of implementation:
queue-based, queue-based with sorted adjacency lists, and dataflow-based. We provide strong scaling results on the Nehalem
(SCALE = 24). Results from GPU platforms are normalized with the performance of one core of the host platform. In general,
we avoid excessive fine-tuning of software for any given architecture. Instead, we strive for uniformity of the algorithm and
code where possible. An exception to this goal is the dataflow algorithm specially targeted for the XMT. We now present the
results and brief discussion on different aspects of performance.

General observations: Basic insight on the performance differences for the three classes of graphs (RMAT-ER, RMAT-G,
RMAT-B) can be obtained by considering the cardinality as the algorithm progresses. The cardinality of matching (the number
of edges in matching) represents the amount of work that can be parallelized, and therefore, determines the utilization of
system resources. The cardinality, determined by the size of QC , at each iteration in the execution of the algorithm, for the
three classes of graphs (with SCALE = 24) is provided in Figure 1(c). We provide the size of QC on the Y-axis in log-scale
and the iterations are provided on the X-axis. It can be observed that an upper bound on the work roughly decreases by half
after each iteration. The final cardinality of the three matchings as a percentage of the number of vertices is as follows: 94.12%
for RMAT-ER, 81.70% (83.46% by accounting for isolated vertices) for RMAT-G, and 44.24% (63.94% by accounting for
isolated vertices) for RMAT-B. The cardinality of matching after Phase-1 as a percentage of the final cardinality is as follows:
53.14% (ER), 46.33% (G), and 36.06% (B). We observe that the cardinality of matching for RMAT-B is much smaller than
that for others. In addition, RMAT-B has more iterations with smaller amounts of work towards the end (refer Figure 1(c)).
A smaller amount of work for RMAT-B in comparison to other classes, suggest that the total runtime for RMAT-B should be
smaller than the other two classes. However, a longer tail with less work towards the end leads to inefficient use of resources
on platforms such XMT and GPUs that have a large number of threads.

Magny-Cours: Strong and weak scaling results on Magny-Cours are presented in Figure 2. In our experiments, we pin
the threads to cores using the environment variable GOMP_CPU_AFFINITY by using a round-robin scheme to place each
consecutive thread on a different socket and a different chip within a socket. For example, thread-0 would be pinned to chip-0
on socket-0, followed by thread-1 to chip-0 on socket-1, . . . , thread-4 to chip-1 on socket-0, and so on. Note that each socket
has two chips, and each chip has six cores. In addition, we use the command numactl --interleave to enable NUMA-
aware memory allocation on the system. We observe excellent scalability for all the three classes of graphs at different problem
sizes. We observe minor degradation of performance at 48 cores, particularly for smaller graph sizes. While the Magny-Cours
platform provides excellent scalability, the absolute runtime as compared to Nehalem and XMT is slower by a factor of 2.
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1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 48

Ti
m

e
 in

 s
e

co
n

d
s

Number of processors

Scale24

Scale25

Scale26

Scale27

(c) RMAT-B

Fig. 2. Scaling on Magny-Cours: Performance of queue-based implementation on AMD Magny-Cours with up to 48 cores. The threads
are pinned to the cores such that the total memory bandwidth is maximized. The black dashed lines represent linear scaling.

Nehalem: Strong scaling results on Nehalem are presented in Figure 3. In our experiments, we used the environment
variable KMP_CPU_AFFINITY to pin the threads to cores. Similar to Magny-Cours, we scatter the threads across the system
to maximize available memory bandwidth. In order to evaluate the benefits of Hyper-Threads, we pin two threads to each core
(shown with red lines in the figure). We observe a performance gain of 1.2 to 1.4 relative to the performance of one thread per
core. The black dashed lines indicate linear speedup. We observe excellent scaling on Nehalem, which is enabled by advanced
architectural features coupled with large memory bandwidth.

Tesla and Fermi: We provide performance results on the two GPU platforms, Tesla and Fermi, in Figure 4. The bars
represent speedup relative to the performance of one core of the host platform. The host consists a 2-socket 6-core Intel
Nehalem with 24 GBs of system memory. Note that the host processor is a new platform relative to the quad-core Intel
Nehalem platform presented earlier. In our implementation, we transfer the graph data structures, we well as all the other
supporting data structures to the GPU memory at the beginning of the execution. The data structures remain in the GPU
memory during the entire execution. For each iteration of the while loop, the size of the queue QN is sent back to the host,
which swaps the queue headers, determines the grid sizes and invokes a GPU kernel. In order to fit larger graphs on the
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Fig. 3. Scaling on Nehalem: Performance of queue-based implementation on Nehalem for the three variants of RMAT graphs (SCALE = 24).
The two threads per core lines indicate the use of Hyper-threads. The threads are pinned to cores such that the total memory bandwidth is
maximized. The black dashed lines represent linear scaling.

GPU memory, the graph data structures are maintained in 32-bit primitive data types (integers for vertex ids and doubles for
weight). The data structures on the host machine are also maintained in 32-bit primitives. Note that while the results on GPUs
and the host machine are obtained using 32-bit primitives, the results on x86 (Opteron and Nehalem) and XMT are obtained
using 64-bit primitives. On the host, we used Intel 11.1 compilers with -fast switch, and used the environment variable
KMP_CPU_AFFINITY to pin the threads to cores such that the total memory bandwidth is maximized.

From the results presented in Figure 4 we make the following observations. (i) A significant speedup on Fermi relative to
Tesla is enabled by efficient atomic memory operations that are executed in L2 on Fermi compared to the main memory in
Tesla, and a larger number of cores although at a slightly lower clock speed; (ii) A significant performance gain on Fermi
compared to 12-core and 24-core runs on the host machine. While we observe improvements in the absolute times for single
core runs, the excellent scaling observed on Nehalem (Figure 3) is not repeated on the host machine. The relative increase in
the number of cores without a corresponding increase in memory bandwidth and small problem sizes are the reasons for this
lack of scaling on the host platform; (iii) A large variation in vertex-degree (RMAT-B) has an adverse impact on performance
for both Tesla and Fermi; and (iv) Disabling L1 caches improves performance for well balanced work loads (RMAT-ER). This
behavior can be attributed to the irregularity of memory accesses that thrash on a relatively small L1 cache.
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Fig. 4. Scaling on GPUs: (a) Relative performance of GPUs on synthetic graphs(SCALE = 23). (b) performance on real-world instances.
The runtimes are scaled with the performance of one core (thread) of the host machine (Intel Nehalem). The bars represent performance on
12-cores (CPU(12T)), 24-cores(CPU(24T)), Tesla, and Fermi respectively. The first two bars for Fermi represent results with ECC turned
off, followed by two bars with ECC turned on. The two bars with a suffix L2 represent runtimes where caching on L1 is disabled.

XMT: Strong and weak scaling results on the XMT using the three classes of graphs and three variants of implementation
are presented in Figurer̃eff:xmt-scale. Results for the queue-based implementation are provided on the left column. We observe
good scaling for up to 32 processors, and see a degradation of scaling for 64 and 128 processors. The middle column shows
results for queue-based implementation where the adjacency lists are maintained in a sorted (non-increasing) order. We observe
that sorting speeds the runtime by a factor of two with respect to the first variant (unsorted). However, sorting itself is much more
expensive than matching. We present the results here for pedagogical reasons only. Results for the dataflow implementation
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are presented in the column on right.
In our experiments, we request about 100 threads (thread-streams) on each processor and use block-dynamic scheduling of

threads. The flat cacheless memory structure, extended memory semantics, and compiler-driven optimizations make program-
ming on the XMT the easiest among the five platforms.

We observe that the dataflow implementation scales better than the queue-based implementation. Due to large amounts of
concurrency, we observe memory hot-spotting on the queue, QN , that results in a loss of performance. The autonomy induced
from the absence of shared work-queues enable the dataflow algorithm to scale better.

In order to determine the influence of the range of edge-weights on performance, we experimented with different ranges of
weights. While the queue-based implementation was sensitive to the range, the dataflow-based implementation was stable and
provided about a factor of two speedup for smaller ranges of weights over larger ranges. In summary, we observe excellent
speedups on the XMT for all three variants of the implementation on all three classes of inputs.
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(i) RMAT-B (DATAFLOW)

Fig. 5. Scaling on the XMT: Performance of three implementations of the matching algorithm – queue, queue-sorted and dataflow (left to
right resp.) on three variants of RMAT graphs at different scales detailed in Table II. Both strong and weak scaling are captured in the plots;
both axes are in logarithmic scale. We used block-dynamic scheduling and requested a maximum of 100 streams (threads) per processor.
The black dashed lines represent linear scaling.

VI. CONCLUSIONS AND FUTURE WORK

We presented multithreaded implementations for the 1/2-approx weighted matching problem on state-of-the-art multicore
and manycore platforms, and a massively multithreaded architecture. Using a carefully chosen set of synthetic and real-world
graphs we demonstrated scalable performance across the platforms. Matching is an important graph problem with numerous
applications in scientific computing. Using irregular nature of this problem, we explored several architectural features that
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enable efficient execution of irregular problems. We also presented a novel dataflow algorithms for the approximate matching
problem that is suitable for architectures like the Cray XMT.

Based on our current work and experimental results, we make the following broad conclusions:
• Structure of a graph, such as degree distributions and local clustering, as well as its numerical properties, such as the

range of edge-weights, play a dominating role in determining the performance of serial and parallel algorithms. This is
evident from our results using inputs with different characteristics. These effects are pronounced on Fermi with about
four times difference in performance between RMAT-ER and RMAT-B for a similar size of input.

• Compared to cache hierarchies, multithreading provides an efficient means to tolerate latencies resulting from irregular
memory accesses and synchronization between threads. Relatively superior performance of XMT relative to Opteron
(about five times faster clock speed) supports this conclusion.

• Architectural support for light-weight synchronization will enable efficient implementation of fine-grained parallelism
in applications that lack coarse-grained parallelism. Graph algorithms in particular will benefit from these features. As
observed in our experiments, a large improvement in the performance of Fermi over Tesla is enabled in part by efficient
atomic memory operations. Tag-bits and extended memory semantics on the XMT enable a different kind of thinking for
algorithm design as well as better performance (dataflow algorithm).

• When supported by hardware features, for example efficient atomic memory operations, CUDA provides a relatively
simple programming model with considerable performance benefits for some types of inputs (for example RMAT-ER).
However, achieving good performance for difficult inputs on these systems remains challenging.

By contrasting and comparing the performance of approximate matching on different platforms, we expect the insights from
this work to benefit the design and use of future generations of manycore architectures.

In the near future, we plan to extend this work along the following directions. We plan to implement optimal algorithms for
weighted and unweighted matching problems on shared-memory platforms. Optimal algorithms have numerous applications
but are challenging to implement. We plan to extend the work on GPUs along two directions: capability to handle load
imbalances within a warp due to variation in vertex-degrees and scalable implementations on multi-GPU systems. We plan to
explore NUMA-aware (Non-Uniform Memory Access) implementations that are relevant to current and emerging architectures.
Finally, we plan to combine the work presented in this paper with our earlier work on distributed-memory systems using a
hybrid programming approach.
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