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Abstract. We present new multithreaded vertex ordering and distance-k graph
coloring algorithms that are well-suited for multicore platforms. The vertex or-
dering techniques rely on various notions of “degree”, are known to be effective
in reducing the number of colors used by a greedy coloring algorithm, and are
generic enough to be applicable to contexts other than coloring. We employ ap-
proximate degree computation in the ordering algorithms and speculation and it-
eration in the coloring algorithms as our primary tools for breaking sequentiality
and achieving effective parallelization. The algorithms have been implemented
using OpenMP, and experiments conducted on Intel Nehalem and other multi-
core machines using various types of graphs attest that the algorithms provide
scalable runtime performance. The number of colors the algorithms use is often
close to optimal. The techniques used for computing the ordering and coloring in
parallel are applicable to other problems where there is an inherent ordering to
the computations that needs to be relaxed for increasing concurrency.

1 Introduction
Multicore platforms with support for multithreading have become commonplace and
have reinvigorated the development of shared-memory parallel algorithms. We present
new multithreaded algorithms well-suited for such platforms for two inter-related col-
lection of graph problems: vertex ordering and distance-k coloring. Distance-1 coloring
is used (among many others) in parallel scientific computing to discover tasks that can
be carried out or data elements that can be updated concurrently [7, 8]. Distance-2 col-
oring is an archetypal model used in the efficient computation of sparse Jacobian and
Hessian matrices [5]. We rely on greedy algorithms that incorporate a vertex ordering
stage to solve the coloring problems. The vertex ordering techniques we consider are
formulated in a manner independent of a coloring algorithm. They are known to be ef-
fective in reducing the number of colors used by a greedy coloring algorithm, but are of
interest in their own right with applications in areas outside coloring.

The ordering and coloring algorithms we consider are challenging to parallelize as
the computation involved is inherently sequential. We overcome this fundamental chal-
lenge using approaches that potentially are useful for other problems as well. For the
ordering algorithms, we employ approximate degree computation as a mechanism for
increasing concurrency. We show that such an approach leads to a scalable performance,
whereas an approach that is faithful to the serial behavior of the ordering does not. The
approximation-based method does not only lead to scalable performance, but is also far
simpler. For the coloring algorithms, we use speculation and iteration as our primary
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ingredients for achieving scalable performance. We focus in this work on distance-2
coloring, although the techniques are equally applicable to distance-1 coloring. The al-
gorithms we have developed are implemented using OpenMP. Experiments conducted
on an Intel Nehalem machine using a set of graphs designed to cover a wide spectrum
of input types show scalable runtime performance. The number of colors the algorithms
use is nearly the same as in the serial case, which in turn is often close to optimal.

Like many other graph algorithms, the algorithms we have considered are plagued
by several performance impediments besides low concurrency: poor data locality, ir-
regular memory access pattern, and high data access to computation ratio. Our primary
focus in this work is on algorithmic techniques and we pay almost no attention to opti-
mization techniques that could further enhance performance.

Preliminaries, Related Work, and Organization A distance-k coloring of a graph
G = (V,E) is an assignment of positive integers, called colors, to vertices such that
any two vertices connected by a path consisting of at most k edges receive different
colors. The objective in the distance-k coloring problem is to minimize the number of
colors used, and the problem is known to be NP-hard for every fixed integer k ≥ 1
(see [5] for pointers to references). Previous work has shown that a greedy coloring
algorithm—an algorithm that visits vertices sequentially in some order in each step
assigning a vertex the smallest permissible color—is quite effective in practice.

The order in which vertices are processed determines the number of colors used
by the algorithm. In an earlier work [6], we identified three ordering techniques, called
Smallest Last (SL), Dynamic Largest First (DLF), and Incidence Degree (ID) that are
particularly effective in reducing the number of colors used by a greedy coloring al-
gorithm and are generic enough to be useful in other contexts. In particular, the three
ordering techniques are characterized (in [6]) purely in terms of relative vertex degrees,
in a manner decoupled from the coloring algorithm that could use them. Such a char-
acterization makes the orderings of interest in their own right and helps to more easily
see their connections with other graph problems. For example, an SL ordering has in-
teresting relationship with such graph concepts as degeneracy, core and arboricity (see
[5] for some pointers). In this paper, we present algorithms—which are the first to the
best of our knowledge—for parallelizing the aforementioned ordering techniques on
multithreaded, shared-memory architectures. The algorithms are discussed in Sect. 2.

Using speculation and iteration as basic ingredients, a framework for effective par-
allelization of greedy distance-1 coloring on distributed-memory architectures was de-
veloped in [2]. The framework was extended to distance-2 coloring and related prob-
lems in [1]. Recently, a multithreaded algorithm derived from the framework in [2] and
tailored for shared-memory architectures has been developed for the distance-1 color-
ing problem in [3]. We present in this paper a similar algorithm for distance-2 coloring
on shared memory platforms. The algorithm is described in Sect. 3. We present experi-
mental results in Sect. 4 and conclude in Sect. 5.

2 Vertex Ordering
2.1 The Serial Framework
We give in Algorithm 1 a succinct summary of a template for the ordering techniques
SL, DLF and ID in the serial setting. Table 1 shows how the template is specialized in
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Algorithm 1 Template for serial ordering (SL, DLF, ID). Input: graph G = (V,E). Output: An
ordered listW of the vertices in V .B is a two-dimensional array used for maintaining unordered
vertices binned according to their “degrees”.
1: procedure ORDERINGTEMPLATE(G = (V,E))
2: for each vertex v ∈ V do
3: init d(v)
4: B [d (v)]← B [d (v)] ∪ {v}
5: init i . i is position in W where next vertex in the order is placed
6: while check i do . there remain vertices to order
7: locate j∗, an appropriate extreme index j where B [j] is non-empty
8: Let v be a vertex drawn from B [j∗]
9: W [i]← v

10: B [j∗]← B [j∗] \{v}
11: for each vertex w ∈ adj (v) such that w is in B do
12: B [d (w)]← B [d (w)] \{w}
13: update d (w)
14: B [d (w)]← B [d (w)] ∪ {w}
15: update i

Table 1. Table accompanying the ordering template in Algorithm 1

SL DLF ID
L 3: init d(v) d(v)← d(v,G) d(v)← d(v,G) d(v)← 0
L 5: init i i← |V | − 1 i← 0 i← 0
L 6 check i i ≥ 0 i ≤ |V | − 1 i ≤ |V | − 1
L 7: locate j∗ j∗ = minj{B[j] 6= ∅} j∗ = maxj{B[j] 6= ∅} j∗ = maxj{B[j] 6= ∅}
L 13: update d(w) d(w)← d(w)− 1 d(w)← d(w)− 1 d(w)← d(w) + 1
L 15: update i i← i− 1 i← i+ 1 i← i+ 1

the three cases. The key idea in the definition (and computation) of these orderings is
the use of a dynamically changing quantity, the back or forward degree of vertices. The
back degree of a vertex v is the number of vertices that are adjacent to v inG and appear
before v in the ordering, and the forward degree of v is the number of vertices that are
adjacent to v in G and appear after v in the ordering. In Algorithm 1 and elsewhere in
this paper, the dynamic degree (back or forward) of a vertex v is denoted by d(v), and
the static degree of the vertex in the input graph G is denoted by d(v,G).

To arrive at an efficient implementation, a two-dimensional arrayB is used in Algo-
rithm 1 to maintain vertices that are not yet ordered in bins according to their dynamic
degrees. Specifically B [j] stores a set of unordered vertices where each member vertex
u has a current dynamic degree d(u) equal to j. The output of Algorithm 1 is given by
the ordered list W of the vertices where W [i] stores the ith vertex in the ordering. In
SL, the ordering W is computed right-to-left (i = |V | − 1 down to i = 0), whereas
the ordering in DLF and ID is computed left-to-right (i = 0 up to i = |V | − 1). The
ith vertex in SL ordering is a vertex with the smallest back degree among the vertices
not yet ordered, in a DLF ordering it is a vertex with the largest forward degree among
the vertices not yet ordered, and in an ID ordering it is a vertex with the largest back
degree among the vertices not yet ordered. The rationale behind each of these ordering
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techniques in the context of a coloring algorithm is to bring vertices that are likely to be
highly constrained in choice of colors early in the ordering.

In Line 7 in Algorithm 1, we determine the ith vertex in the ordering in constant time
by maintaing a pointer to the last element in the smallest (or largest) index j such that
B[j] is non-empty. Once the ith vertex v in the ordering is determined (and removed
from B), each unordered vertex w adjacent to v is moved from its current bin in B
to an appropriate new bin. With suitable pointer techniques the relocation can also be
performed in constant time [6]. Thus the work involved in the ith step of Algorithm 1
is proportional to d(v,G), and the overall complexity of the algorithm is O(|E|).

We point out another interesting connection between the template in Algorithm 1
and an ordering used for an entirely different purpose: an ID ordering obtained by Al-
gorithm 1, when reversed, corresponds to an ordering obtained by the maximum cardi-
nality search algorithm [9], which arises in the context of solving sparse linear systems.

2.2 Parallel Ordering
We parallelized the three ordering techniques SL, DLF, and ID employing a common
paradigm, but we restrict the presentation in this paper to only SL ordering.

We developed two different approaches for the parallelization. The first approach
aims at parallelizing the ordering closely maintaining the serial behavior, while the
second approach settles for an approximate solution in favor of increased concurrency.
In both approaches, we assume p threads are available and utilized, and we denote by
t (v) the thread with which the vertex v is initially associated.

The First Approach—Regular Algorithm 2 outlines the first approach. The first task
Algorithm 2 parallelizes is the population of the global bin array B. To achieve this,
with each thread Tk, 1 ≤ k ≤ p, a local two-dimensional array Bk is associated. The p
local arrays are first populated in parallel (the for-loop in Lines 2–4). Then, the contents
are gathered into the global array B, where the parallelization is now switched to run
over bins, as shown in the for-loop in Lines 5–8. There and elsewhere in this paper,
δ(G) and ∆(G) denote the minimum and maximum degree in G, respectively.

The remainder of Algorithm 2 mimics the serial algorithm (Algorithm 1). In the se-
rial algorithm, in each step of the while loop, a single vertex—a vertex with the smallest
current dynamic degree j∗—is ordered and its neighbors’ locations updated inB. How-
ever, the bin B[j∗] could contain multiple vertices. Algorithm 2 takes advantage of this
opportunity and strives to order such vertices and update their neighborhoods in paral-
lel. There are a few potential problems that need to be attended while doing so.
– Problem: A pair of vertices u and v in B[j∗] are adjacent to each other. In such a
case, a thread processing one of the vertices, say u, could try to move the vertex v to
another bin while another thread at the same time attempts to order v, making the result
inconsistent. Solution: While ordering the vertex u, we avoid updating the location of
the vertex v in B, and instead order v as well in the current step (see Lines 12–17).
– Problem: Removal of multiple vertices from the same bin, say B[j]. Suppose two
vertices u and v from B[j∗] have a common neighbor w in B[j]. In the serial case, u
and v would be ordered one after another, d(w) would be reduced by 2, and w would
be relocated twice. In the parallel case, two threads might try to remove w from B[j]
at the same time and the removal of w in constant time will make B[j] inconsistent.
Similarly, suppose two vertices u and v in B[j∗] have respective neighbors w and x
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Algorithm 2 A parallel SL ordering algorithm using p threads (the REGULAR variant). Input:
graph G = (V,E). Output: An ordered list W of the vertices in V . The array B is as in Algo-
rithm 1, and the arraysBt,Rt, andAt are thread-private arrays; the latter two are used to remove
or add vertices from or into the global array B.
1: procedure SMALLESTLASTORDERING-REGULAR(G = (V,E))
2: for each vertex v ∈ V in parallel do
3: d(v)← d(v,G)
4: Bt(v) [d (v)]← Bt(v) [d (v)] ∪ {v}
5: for each bin j ∈ {δ (G) , . . . ,∆ (G)} in parallel do
6: for k = 1 to p do
7: for each vertex v ∈ Bk [j] do
8: B [j]← B [j] ∪ {v} . note that j = d (v)

9: i← |V |
10: while i ≥ 0 do
11: Let j∗ denote the smallest index j such that B [j] is non-empty
12: for each vertex v ∈ B [j∗] in parallel do
13: for each vertex w ∈ adj (v) such that w is in B do
14: if w /∈ Rt(v) then
15: Rt(v) [d (w)]← Rt(v) [d (w)] ∪ {w}
16: r (w)← r (w) + 1 . atomic operation
17: W [i]← v; i← i− 1 . critical statements
18: for each bin j ∈ {j∗, . . . ,∆ (G)} in parallel do
19: for k = 1 to p do
20: for each vertex v ∈ Rk [j] do
21: if r (v) > 0 then
22: B [j]← B [j] \{v} . note that j = d (v)
23: d (v)← d (v)− r (v); r (v)← 0
24: At(v) [d (v)]← At(v) [d (v)] ∪ {v}
25: for each bin j ∈ {j∗, . . . ,∆ (G)} in parallel do
26: for k = 1 to p do
27: for each vertex v ∈ Ak [j] do
28: B [j]← B [j] ∪ {v} . note that j = d (v)

such that d(w) = d(x) = j. In the parallel case, two threads might try to remove w and
x from B[j] at the same time while processing u and v in parallel and the removals of
w and x in constant time will also make B[j] inconsistent. Solution: We let each thread
Tk, 1 ≤ k ≤ p, maintain its own two-dimensional removal array Rk, where it stores
vertices to be removed from B while the parallel ordering of B[j∗] happens (see the
for loop in Lines 13–16). The removal from B takes place once the ordering of vertices
in B[j∗] is completed. Since for any two bins B[j] and B[j′] the removal from B[j]
is independent of the removal from B[j′], these could be done in parallel, as shown in
Lines 18–24.
– Problem: Addition of multiple vertices to the same bin, sayB[j]. Solution: We address
this concern by using a similar technique as in the second bullet item. We let each thread
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Algorithm 3 A parallel SL ordering algorithm on p threads (the RELAXED variant). Input:
graph G = (V,E). Output: An ordered list W of the vertices in V .
1: procedure SMALLESTLASTORDERING-RELAXED(G = (V,E))
2: for each vertex v ∈ V in parallel do
3: d(v)← d(v,G)
4: Bt(v) [d (v)]← Bt(v) [d (v)] ∪ {v}
5: i← |V |
6: for k = 1 to p in parallel do
7: while i ≥ 0 do
8: Let j∗ be the smallest index j such that Bk [j] is non-empty
9: Let v be a vertex drawn from Bk [j∗]

10: Bk [j∗]← Bk [j∗] \{v}
11: for each vertex w ∈ adj (v) do
12: if w ∈ Bk then
13: Bk [d (w)]← Bk [d (w)] \{w}
14: d (w)← d (w)− 1
15: Bk [d (w)]← Bk [d (w)] ∪ {w}
16: W [i]← v; i← i− 1 . critical statements

maintain its own two-dimensional addition array Ak. Again, the addition of vertices to
different bins in B can be done in parallel, as shown in Lines 25–28.

The Second Approach—Relaxed Our second approach for parallelizing the SL order-
ing algorithm abandons the use of the global array B altogether, and works only with
the local arrays Bk associated with each thread Tk. In updating locations of neighbors
of a vertex, a thread Tk checks whether or not the vertex w desired to be relocated is
in the thread’s local array Bk. If w is indeed in Bk it is relocated by the same thread,
if not, it is simply ignored. In this manner, only approximate dynamic degrees are used
while computing the ordering. The approach is formalized in Algorithm 3.

3 Parallel Distance-2 Coloring
The sequential greedy distance-2 coloring algorithm we seek to parallelize iterates over
the vertex set V of the graph G, in each step assigning a vertex v the smallest color not
used by any of its distance-2 neighbors. It can be implemented such that its complexity
is O(|V | · d2), where d2 denotes the average number of distinct paths of length at most
two edges leaving a vertex [5]. Algorithm 4 shows how we have parallelized the greedy
algorithm in this work. The algorithm has two phases, both of which are performed in
parallel, and runs in an iterative fashion. In the first phase of each round of the iteration,
threads concurrently color their respective vertices in a speculative manner (paying
attention to already available color information). In this phase, two vertices that are
distance-2 neighbors with each other and are handled by two different threads may be
colored concurrently and receive the same color, causing a conflict. In the second phase,
threads concurrently check the validity of colors assigned to their respective vertices in
the current round and identify a set of vertices that needs to be re-colored in the next
round to resolve any detected conflicts. The algorithm terminates when every vertex has
been colored correctly. In the event of a conflict, it suffices to re-color one of the two
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Algorithm 4 An iterative parallel algorithm for distance-2 coloring using p threads. Input: graph
G = (V,E). Output: a vertex-indexed array color [] indicating colors of vertices. The vertex set
V is assumed to be ordered.
1: procedure ITERATIVED2COLORING(G = (V,E))
2: U ← V
3: while U 6= ∅ do
4: for each vertex v ∈ U in parallel do . Phase 1: tentative coloring
5: for each vertex w ∈ adj (v) do
6: mark color [w] as forbidden to vertex v
7: for each vertex x ∈ adj (w) and x 6= v do
8: mark color [x] as forbidden to vertex v
9: Pick the smallest permissible color c for vertex v

10: R← ∅ . R denotes the set of vertices to be recolored
11: for each vertex v ∈ U in parallel do . Phase 2: conflict detection
12: cont← true
13: for each vertex w ∈ adj (v) and cont = true do
14: if color [v] = color [w] and v > w then
15: R← R ∪ {v}; break
16: for each vertex x ∈ adj (w) and v 6= x do
17: if color [v] = color [x] and v > x then
18: R← R ∪ {v}; cont← false; break
19: U ← R

involved vertices to resolve the conflict. In Algorithm 4 (see Lines 14 and 17), we used
the value (id) of vertices to decide the vertex to re-color. Other strategies, such as the
use of random numbers associated with vertices, are also possible [2].

Although the tentative coloring and conflict detection phases in each round iter-
ate over the same set U of vertices performing similar operations per vertex visit, the
runtime of the conflict detection phase can be significantly reduced by terminating the
search for a conflict in the distance-2 neighborhood of a vertex v as soon as the first
conflict impacting v is discovered. This is achieved using the break statements in Lines
15 and 18. Note that the cont boolean variable in Line 12 is used to break out of the
for-loop in Line 13 due to a condition in the for-loop in Line 16. Thanks to the use of
the early breaks, we observed that the conflict detection phase typically takes roughly
around 25% of the overall runtime of the algorithm; without the breaks the conflict
detection phase would have taken the same time as the tentative coloring phase.

Scheduling. In the parallel coloring algorithm we just described as well as the par-
allel ordering algorithms discussed in Sect. 2.2, the runtime performance of the algo-
rithms depends on the manner in which vertices are scheduled on threads. In the results
we report in the next section, we used the dynamic scheduling option of OpenMP.

4 Experimental Results

In this section we present results on experiments performed on an Intel Nehalem ma-
chine equipped with Intel(R) Core(TM) i7 CPU 860 processors running at 2.8GHz. The
system has 4 cores with 2 threads on each. The total memory size is 16 GB, with 4×32
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Table 2. Structural properties of the various graphs in the testbed: scientific computing (sc), rmat-
random (er), rmat-good (g), and rmat-bad (b). ∆ denotes maximum degree in G.

Name |V | |E| ∆ Name |V | |E| ∆

sc1 (bone010) 986,703 35,339,811 80 g1 262,144 2,093,552 558
sc2 (af shell10) 1,508,065 25,582,130 34 g2 524,288 4,190,376 618
sc3 (nlpkkt120) 3,542,400 46,651,696 27 g3 1,048,576 8,382,821 802
sc4 (er1) 16,777,216 134,217,651 138 g4 2,097,152 16,767,728 1,069
sc5 (nlpkkt160) 8,345,600 110,586,256 27 g5 4,194,304 33,541,979 1,251

er1 262,144 2,097,104 98 b1 262,144 2,067,860 4,493
er2 524,288 4,194,254 94 b2 524,288 4,153,043 6,342
er3 1,048,576 8,388,540 97 b3 1,048,576 8,318,004 9,453
er4 2,097,152 16,777,139 102 b4 2,097,152 16,645,183 14,066
er5 4,194,304 33,554,349 109 b5 4,194,304 33,340,584 20,607

KB Instruction and 4 × 32 KB Data Level-1 cache, 4 × 256 KB Level-2 cache, and 8
MB shared Level-3 cache. The operating system is GNU/Linux.

Our testbed consists of 20 graphs. Five of them are real-world graphs drawn from
various scientific computing (sc) applications and are downloaded from the University
of Florida Sparse Matrix Collection. The remaining 15 are synthetically generated us-
ing the R-MAT algorithm [4]. By combining the four input parameters of the R-MAT
algorithm in various ways (the sum of the parameters needs to be equal to one), it is pos-
sible to generate graphs with varying properties. We generated three types of graphs:
(i) Erdös-Renyi random (er) graphs, using the set of parameters (0.25, 0.25, 0.25, 0.25);
(ii) small-world type 1 (g) graphs, using the set of parameters (0.45, 0.15, 0.15, 0.25);
(iii) small-world type 2 (b) graphs, using the set of parameters (0.55, 0.15, 0.15, 0.15).
These three graph types vary widely in terms of degree distribution of vertices and
density of local subgraphs and represent a wide spectrum of input types posing vary-
ing degrees of difficulty for the ordering and coloring algorithms. The er graphs have
normal degree distribution, whereas the g (for “good”) and b (“bad”) graphs contain
many dense local subgraphs (by good and bad is meant relatively “easy” and “hard”
input types). The good and bad graphs differ primarily in the magnitude of maximum
vertex degree they contain, the bad graphs have much larger maximum degree. Table 2
provides structural information on all 20 test graphs.

Figure 1 shows scalability results on the two parallel Smallest Last ordering al-
gorithms, SL-Regular (Algorithm 2) and SL-Relaxed (Algorithm 3). The plots show
runtimes for various numbers of threads normalized by the runtime when 1 thread is
used. The raw runtime numbers for the 1 thread case along with the runtime of the
pure sequential SL ordering and distance-2 coloring algorithms are provided in Ta-
ble 3. Clearly, the algorithm SL-Regular scaled poorly especially for the sc and rmat-b
graphs, whereas SL-Relaxed scaled well across all the graph types tested. We therefore
present further results using the better performing algorithm SL-Relaxed.

Figure 2 shows scalability results for the parallel distance-2 coloring algorithm (Al-
gorithm 4) while using the SL-Relaxed algorithm for parallel ordering. The left column
shows runtime results considering only the coloring stage, whereas the right column
shows results on total (ordering plus coloring) time. Since distance-2 coloring takes
substantially more time than the ordering (recall that the respective sequential com-
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Fig. 1. Scalability results on the two parallel SL ordering algorithms. Left column: Algorithm 2
(SL-Regular). Right column: Algorithm 3 (SL-Relaxed). The plots show runtimes normalized by
the runtime when 1 thread is used; the raw numbers for the case of 1 thread are listed in Table 3.
Also shown are data points corresponding to runtime of the pure sequential algorithm normalized
by the runtime of the parallel algorithm run on 1 thread.
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Table 3. Runtime in seconds of the pure sequential algorithms, and of the parallel algorithms
when run using one thread. OT shows ordering time, and CT shows distance-2 coloring time.

SL-Seq. SL-Relaxed SL-Regular SL-Seq. S L-Relaxed SL-Regular
OT CT OT CT OT CT OT CT OT CT OT CT

sc1 1.11 20.66 1.18 30.45 1.73 31.18 g1 0.18 2.68 0.18 3.82 0.32 3.84
sc2 0.83 6.83 0.87 10.13 0.91 10.25 g2 0.45 6.31 0.42 8.86 0.74 9.03
sc3 2.05 11.38 1.64 16.45 6.39 28.89 g3 1.02 16.22 1.07 23.25 1.74 23.69
sc4 30.54 306.47 31.19 452.76 51.68 479.81 g4 2.49 43.16 2.54 61.98 4.18 65.64
sc5 5.15 27.51 4.29 39.86 17.68 73.91 g5 5.86 119.20 6.01 168.64 9.59 171.84

er1 0.18 1.45 0.18 2.13 0.32 2.21 b1 0.16 9.20 0.16 12.68 0.44 12.63
er2 0.43 3.30 0.45 5.02 0.71 5.23 b2 0.37 24.10 0.37 32.11 0.95 32.36
er3 1.22 9.24 1.20 12.75 1.84 13.54 b3 0.75 70.26 0.87 94.30 2.09 95.60
er4 2.77 22.48 2.86 33.62 4.54 36.07 b4 1.74 195.60 2.00 280.00 4.48 281.39
er5 6.30 57.13 6.43 83.74 10.51 88.77 b5 4.21 565.59 4.85 785.80 9.87 797.86

plexities are O(|V | · d2 and O(|V | · d1)), the scalability behavior of just the coloring
stage is nearly identical to that of the overall execution. It can be seen that the coloring
algorithm (including the ordering stage) scaled well across all the graphs in the testbed.

Also shown in Figures 1 and 2 is the runtime of a relevant sequential algorithm
normalized by the runtime of the corresponding parallel algorithm run on 1 thread. This
shows the performance advantage (besides functionality) gained by parallelization.

Figure 3 shows the number of colors the parallel distance-2 coloring algorithm (Al-
gorithm 4) used while employing the SL-Relaxed ordering algorithm. In each subfigure,
a bar corresponding to the maximum degree (∆) in a graph, which is a lower bound on
the optimal number of colors needed to distance-2 color a graph, is included. It can be
seen that the number of colors the parallel algorithm used remained nearly constant as
the number of threads is increased for all except the sc graphs. Further, it can be seen
that the number in each case is either optimal or very close to optimal.

5 Conclusion and Future Work
We presented new parallel ordering and coloring algorithms and a small set of experi-
mental results demonstrating scalable performance on a multicore machine supporting
a modest number of threads. Some details and experimental results were omitted for
space consideration. In future work, we intend to conduct further studies and provide
more extensive results using machines supporting much larger number of threads. One
issue we will investigate at large thread count is runtime scalability while maintaing
quality of serial solution (to avoid increase in number of colors for some input types
as those observed in Figure 3 a). The color choice strategy (see Line 9 of Algorithm 4)
used in all of the results reported in this paper is First Fit, i.e., each thread searches for a
permissible color for a vertex starting from color 1. We intend to investigate the merits
of alternative color choice strategies (such as Staggered First Fit, Least Used, Random
etc [2]) that could reduce the likelihood of conflicts.
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(b) RMAT-ER (er) graphs
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(c) RMAT-G (g) graphs
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Fig. 2. Scalability results on the parallel distance-2 coloring algorithm (Algorithm 4) while em-
ploying the parallel ordering algorithm SL-Relaxed (Algorithm 3). Left column: only distance-2
coloring time. Right column: ordering plus distance-2 coloring time. The plots show runtimes
normalized by the runtime when 1 thread is used; the raw numbers for the case of 1 thread are
listed in Table 3. Also shown are data points corresponding to runtime of the pure sequential
algorithm normalized by the runtime of the parallel algorithm run on 1 thread.
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(c) RMAT-G (g) graphs
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Fig. 3. Number of colors used by the parallel distance-2 coloring algorithm (Algorithm 4) while
employing the SL-Relaxed ordering algorithm (Algorithm 3) for various thread counts. The first
bar in each subfigure shows the lower bound ∆ on the optimal number of colors.

References
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