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Abstract We discuss the design, implementation and performance of algorithms
suitable for the efficient computation ofsparse Jacobian and Hessian matrices us-
ing Automatic Differentiation via operator overloading onmulticore architectures.
The procedure for exploiting sparsity (for runtime and memory efficiency) in serial
computation involves a number of steps. Using nonlinear optimization problems as
test cases, we show that the algorithms involved in the various steps can be adapted
to multithreaded computations.
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1 Introduction

Research and development around Automatic Differentiation (AD) over the last sev-
eral decades has enabled much progress in algorithms and software tools, but it has
largely focused on differentiating functions implementedas serial codes. With the
increasing ubiquity of parallel computing platforms, especially desktop multicore
machines, there is a greater need than ever before for developing AD capabilities
for parallel codes. The subject of this work is on AD capabilities for multithreaded
functions, and the focus is on techniques for exploiting thesparsity available in
large-scale Jacobian and Hessian matrices.

Derivative calculation via AD for parallel codes has been considered in several
previous studies, but the focus has largely been on the source transformation ap-
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Fig. 1 Function evaluation of an OpenMP parallel code.

proach [1, 2, 3, 4, 11]. This is mainly because having a compiler at hand during the
source transformation makes it relatively easy to detect parallelization function calls
(as in MPI) or parallelization directives (as in OpenMP). Detecting parallel sections
of code for an operator overloading tool is much harder sincethe corresponding
parallelization function calls or directives are difficultor even impossible to detect
at runtime. For that reason, the operator overloading tool ADOL-C [13] uses its
own wrapper functions for handling functions that are parallelized with MPI. For
parallel function evaluations using OpenMP, ADOL-C uses the concept of nested
taping [8, 9] to take advantage of the parallelization provided by the simulation for
the derivative calculation as well. In this paper we extend this approach to exploit
sparsity in parallel.

By exploiting sparsity is meant avoiding computing with zeros in order to re-
duce (often drastically) runtime and memory costs. We aim atexploiting sparsity
in both Jacobian and Hessian computations. In the serial setting, there exists an es-
tablished scheme for efficient computation of sparse Jacobians and Hessians. The
scheme involves four major steps: automatic sparsity pattern detection, seed matrix
determination via graph coloring, compressed-matrix computation, and recovery.
We extend this scheme to the case of multithreaded computations, where both the
function evaluation and the derivative computation are done in parallel. The AD-
specific algorithms we use are implemented in ADOL-C. The coloring and recovery
algorithms are independently developed and implemented via ColPack [6], which in
turn is coupled with ADOL-C. We show the performance of the various algorithms
on a multicore machine using PDE-constrained optimizationproblems as test cases.

2 Parallel derivative computation in ADOL-C

Throughout this paper we assume that the user provides an OpenMP parallel pro-
gram as sketched in Fig. 1. That is, after an initialization phase, calculations are
performed on several threads, with a possible finalization phase performed by a
dedicated single thread (say thread 1). The current “mode” of operation of ADOL-
C when differentiating such OpenMP parallel codes is illustrated in Fig. 2. Here,
the tracing part represents essentially the parallel function evaluation provided by
the user. For computing the derivatives also in parallel, the user has to change in the
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Fig. 2 Derivative calculation with ADOL-C for an OpenMP parallel code.
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Fig. 3 Derivative calculation with ADOL-C for an OpenMP parallel code when exploiting sparsity.

function evaluation alldouble-variables toadouble-variables, include the head-
ers adolc.h and adolc openmp.h, and insert the pragmaomp parallel firstpri-
vate(ADOLC OpenMP Handler) before the trace generation in the initialization
phase. Then, ADOL-C performs a parallel derivative calculation using the OpenMP
strategy provided by the user as sketched in Fig. 2. Hence, once the variables are
declared in each thread, the traces are written on each thread separately during the
tracing phase. Subsequently, each thread has its own internal function representa-
tion. This allows for the computation of the required derivative information on each
threadseparately as described in [8].

3 Parallel sparse derivative computation

In this work, we extend this functionality of ADOL-C such that sparse Jacobians
and Hessians can be computed efficiently in a parallel setting. Figure 3 illustrates
the approach we take for parallel, sparsity-exploiting derivative computation. As in
Fig. 2 derivatives on each thread are computed separately, but this time, the per-
thread computation is comprised of several steps: automatic sparsity pattern detec-
tion, seed matrix generation and derivative calculation.
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3.1 Sparsity pattern detection

In the case of a Jacobian matrix, we propagate in parallel on each thread the so-
called index domains

Xk ≡ { j ≤ n : j−n ≺∗ k} for 1−n ≤ k ≤ l

determining the sparsity pattern corresponding to the partof the function on that
thread. Here,n denotes the number of independent variables,l denotes the number
of intermediate variables, and≺∗ denotes precedence relation in the decomposition
of function evaluation into elementary components. Since it is not possible to ex-
change data between the various threads when using OpenMP for parallelization,
the layout of the data structure storing these partial sparsity patterns has to allow a
possibly required reunion of the sparsity pattern, for example during the finalization
phase performed by thread 1. However, since the user provides the parallelization
strategy, this reunion can not be provided in a general way.

To determine the sparsity pattern of the Hessian of a function y = f (x) of n inde-
pendent variables, in addition to the index domains, so-called nonlinear interaction
domains

{

j ≤ n :
∂ 2y

∂xi∂x j
6≡ 0

}

⊆ Ni , for 1≤ i ≤ n

are propagated on each thread. Once more, each thread computes only the part of
the sparsity pattern originating from the internal function representation available
on the specific thread. Therefore, in the Hessian case also, the data structure storing
the partial sparsity patterns of the Hessian must allow a possibly required reunion to
compute the overall sparsity pattern. Again, this reunion relies on the parallelization
strategy chosen by the user.

3.2 Seed matrix determination

A key need in compression-based computation of anm× n Jacobian or ann× n
Hessian matrixA of known sparsity pattern is determining ann× p seed matrixS of
minimal p that would be used in computing the compressed representationB ≡ AS.
The seed matrixS in our context encodes apartitioning of then columns ofA into
p groups. It is a zero-one matrix, where entry( j,k) is one if the jth column of the
matrix A belongs to groupk in the partitioning and zero otherwise. The columns in
each group are pair-wise structurally “independent” in some sense. For example, in
the case of a Jacobian, the columns in a group are structurally orthogonal to each
other. As has been shown in several previous studies (see [5]for a survey), a seed
matrix can be obtained using acoloring of an appropriate graph representation of
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the sparsity pattern of the matrixA. In this work we rely on the coloring models and
functionalities available in (or derived from) the packageColPack [6].

In ColPack, a Jacobian (nonsymmetric) matrix is represented using abipartite
graph and a Hessian (symmetric) matrix is represented using anadjacency graph.
With such representations in place, we obtain a seed matrix suitable for computing a
JacobianJ using adistance-2 coloring of the column vertices of the bipartite graph
of J. Similarly, we obtain a seed matrix suitable for computing aHessianH using a
star coloring of the adjacency graph ofH [7]. These colorings yield seed matrices
suitable for direct recovery, as opposed to recovery via substitution, of entries of the
original matrixA from the compressed representationB.

Just as the sparsity pattern detection was done on each thread focusing on the part
of the function evaluation on that thread, the colorings arealso done on the “local”
graphs corresponding to each thread. For the results reported in this paper, we use
parallelized versions of the distance-2 and star coloring functionalities of ColPack.

3.3 Derivative calculation

Once a seed matrix per thread is determined, the compressed derivative matrix (Ja-
cobian or Hessian) is obtained using an appropriate mode of AD. The entries of the
original derivative matrix are then recovered from the compressed representation.
For recovery purposes, we rely on ColPack. In Fig. 3 the block“derivative calcu-
lation” lumps together the compressed derivative matrix computation and recovery
steps.

4 Experimental results

We discuss the test cases used in our experiments in Sect. 4.1and present the results
obtained in Sect. 4.2.

4.1 Test cases

We consider optimization problems of the form

min
x∈Rn

f (x), such that c(x) = 0, (1)

with an objective functionf : R
n 7→ R and a constraint functionc : R

n 7→R
m, ignor-

ing inequality constraints for simplicity. Many state-of-the-art optimizers, such as
Ipopt [12], require at least first derivative information, i.e., the gradient∇ f (x) ∈ R

n

of the target function and the Jacobian∇c(x)∈R
m×n. Furthermore, they benefit con-
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siderably in terms of performance from the provision of exact second order deriva-
tives, i.e., the Hessian∇2L of the Lagrangian function

L : R
n+m 7→ R, L (x,λ ) = f (x)+ λ T c(x).

Optimization tasks where the equality constraints represent a state description
as discretization of a partial differential equation (PDE)form an important class
of optimization problems having the structure shown in (1).Here, sparsity in the
derivative matrices occurs inherently and the structure ofthe sparsity pattern is not
obvious when a nontrivial discretization strategy is used.

In [10] several scalable test cases for optimization tasks with constraints given
as PDEs are introduced. The state in these test cases is always described by an el-
liptic PDE, but there are different ways in which the state can be modified, i.e.,
controlled. For four of the test problems, serial implementations in C++ are pro-
vided in the example directory of the Ipopt package. From those, we chose the
MittelmannDistCntrlDiri and theMittelmannDistCntrlNeumA test
cases for our experiments. These represent optimization tasks for a distributed con-
trol with different boundary conditions for the underlyingelliptic PDE. Inspecting
the implementation of these test problems, one finds that theevaluation of the con-
straints does not exploit the computation of common subexpressions. Therefore,
when taking the structure of the optimization problem (1) into account, a straight-
forward parallelization based on OpenMP distributes the single target function and
the evaluation of them constraints equally on the available threads. The numerical
results presented in Sect. 4.2 rely on this parallelizationstrategy.

Problem sizes. The results we obtained for theMittelmannDistCntrlDiri
andMittelmannDistCntrlNeumA showed similar general trends. Therefore,
we present results here only for the former. We consider three problem sizes
ñ ∈ {600,800,1000}, where ˜n denotes the number of inner grid nodes per dimen-
sion. The number of constraints (number of rows in the Jacobian∇c) is thusm = ñ2.
Due to the distributed control on the inner grid nodes and theDirichlet conditions
at the boundary nodes, the number of variables in the corresponding target function
(number of columns in the Jacobian∇c) is n = ñ2 +(ñ + 2)2. Further, the Hessian
∇2L of the Lagrangian function is of dimension(n + m)× (n + m). The number
of nonzeros in eachm× n Jacobian is 6· ñ2. Here, five of the nonzero entries per
row stem from the discretization of the Laplacian operator occurring in the elliptic
PDE, and the sixth entry comes from the distributed control.Similarly, the number
of nonzeros in each(n+m)× (n+m) Hessian is 8· ñ2. The two additional nonzeros
in the Hessian case come from the target function involving asum of squares and a
regularization of the control in the inner computational domain. Table 1 provides a
summary of the sizes of the three test problems considered inthe experiments.
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ñ m n n+m nnz (∇c) nnz (∇2L )
600 360 000 722 404 1 082 404 2 160 000 2 880 000
800 640 000 1 283 204 1 923 204 3 840 000 5 120 000

1 000 1 000 000 2 004 004 3 004 004 6 000 000 8 000 000

Table 1 Summary of problem sizes used in the experiments.
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Fig. 4 Timing results for multithreaded computation of the Jacobian∇c when sparsity is exploited.
Three problem sizes are considered: ˜n = 600 (top), ˜n = 800 (middle), and ˜n = 1000 (bottom).

4.2 Runtime results

The experiments are conducted on an Intel, Fujitso-Siemens, model RX600S5 sys-
tem. The system has four Intel X7542, 2.67GHz, processors each of which has six
cores; the system thus supports the use of a maximum of 24 cores (threads). The
node memory is 128 GByte DDR3 1066, and the operating system is Linux (Cen-
tOS). All codes are compiled with gcc version 4.4.5 with -O2 optimization enabled.

Figure 4 shows runtime results on the computation of the Jacobian of the con-
straint function for the three problem sizes summarized in Table 1 and various num-
ber of threads. Figure 5 shows analogous results for the computation of the Hessian
of the Lagrangian function. The plots in Fig. 4 (and Fig. 5) show a breakdown of the
total time for the sparse Jacobian (and Hessian) computation into four constituent



8 B. Letschert, K. Kulshreshtha, A. Walther, D. Nguyen, A. Gebremedhin, and A. Pothen

1 2 4 8 16
10

0

10
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Fig. 5 Timing results for multithreaded computation of the Hessian ∇2L when sparsity is ex-
ploited. Three problem sizes considered: ˜n = 600 (top), ˜n = 800 (middle), and ˜n = 1000 (bottom).

parts: tracing, sparsity pattern detection, seed generation, and derivative computa-
tion. The results in both figures show the times needed for the“distributed” (across
threads) Jacobian and Hessian computation, excluding the time needed to “assem-
ble” the results. We excluded the assembly times as they are nearly negligibly small
and would have obscured the trends depicted in the figure. (The assembly time is
less than 0.03 sec for ˜n = 600 and less than 0.09 sec for ˜n = 1000 for the Jacobian
case, and less than 0.17 sec for the Hessian case for both sizes.)

Note that the vertical axis in Fig. 4 is in linear scale, whilethe same axis in Fig. 5
is in log scale, since the relative difference in the time spent in the four phases in
the Hessian case is too big. Note also the magnitude of the difference between the
runtimes in the Jacobian and Hessian cases: the runtimes in the various phases of the
Jacobian computation (Fig. 4) are in the order of seconds, while the times in some
of the phases in the Hessian case (Fig. 5) are in the order of thousands of seconds.
We highlight below a few observations on the trends seen in Fig. 4 and Fig. 5.

• Tracing: In the Jacobian case, this phase scales poorly with number ofthreads.
A likely reason for this phenomenon is that the phase is memory-intensive. In the
Hessian case, tracing accounts for only a small fraction of the overall time that
its scalability becomes less important.
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• Sparsity pattern detection: The routine we implemented for this phase involves
many invocations of themalloc() function, which essentially is serialized in
an OpenMP threaded computation. To better reflect the algorithmic nature of
the routine, in the plots we report results after subtracting the time spent on the
mallocs. In the Jacobian case, the phase did not scale with number ofthreads,
whereas in the Hessian case it scales fairly well. A plausible reason for the poorer
scalability in the Jacobian case is again that the runtime for that step (which is
about one second) is too short to be impacted by the use of morethreads.

• Seed generation: For this phase, we depict the time spent on coloring (but not
graph construction) and seed matrix construction. It can beseen that this phase
scales relatively well. Further, the number of colors used by the coloring heuris-
tics turned out to be optimal (or nearly optimal). In particular, in the Jacobian
case, for each problem size, 7 colors were used to distance-2color the local bipar-
tite graphs consisting ofn column vertices andm/N row vertices on each thread,
whereN denotes the number of threads. Since each Jacobian has six nonzeros per
row this coloring is optimal. In the Hessian case, again for each problem size, 6
colors were used to star color the local adjacency graphs (consisting ofn + m
vertices) on each thread.

• Derivative computation: This phase scales modestly in both the Jacobian and
Hessian cases.

• Comparison with dense computation: The relatively short runtime of the col-
oring algorithms along with the drastic dimension reduction (compression) the
colorings provide enables enormous overall runtime and space saving compared
to a computation that does not exploit sparsity. The runtimes for the dense com-
putation of the Jacobian for ˜n = 600, for example, are at least three to four or-
ders of magnitude slower requiring hours instead of secondseven in parallel (we
therefore omitted the results in the reported plots). For the larger problem sizes,
the Jacobian (or Hessian) could not be computed at all due to excessive memory
requirement to accommodate the matrix dimensions (see Table 1).

5 Conclusion

We demonstrated the feasibility of exploiting sparsity in Jacobian and Hessian com-
putation using Automatic Differentiation via operator overloading on multithreaded
parallel computing platforms. We showed experimental results on a modest number
of threads. Some of the phases in the sparse computation framework scaled reason-
ably well, while others scaled poorly. In future work, we will explore ways in which
scalability can be improved. In particular, more investigation is needed to improve
the scalability of the sparsity pattern detection algorithm used for Jacobian compu-
tation (Fig. 4) and the tracing phase in both the Jacobian andHessian case. Another
direction for future work is the development of a parallel optimizer that could take
advantage of the distributed function and derivative evaluation.
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