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Abstract—In computing matchings in graphs on parallel pro-
cessors, it is challenging to achieve high performance because
these algorithms rely on searching for paths in the graph,
and when these paths become long, there is little concurrency.
We present a new algorithm and its shared-memory paral-
lelization for computing maximum cardinality matchings in
bipartite graphs. Our algorithm searches for augmenting paths
via specialized breadth-first searches (BFS) from multiple source
vertices, hence creating more parallelism than single source
algorithms. Unfortunately, algorithms that employ multiple-
source searches cannot discard a search tree once no augmenting
path is discovered from the tree, unlike algorithms that rely on
single-source searches. We describe a novel tree-grafting method
that eliminates most of the redundant edge traversals resulting
from this property of multiple-source searches. We also employ
the recent direction-optimizing BFS algorithm as a subroutine
to discover augmenting paths faster. Our algorithm compares
favorably with the current best algorithms in terms of the the
number of edges traversed, the average augmenting path length,
and the number of iterations. We provide a proof of correctness
for our algorithm. Our NUMA-aware implementation is scalable
to 80 threads of an Intel multiprocessor. On average, our parallel
algorithm runs an order of magnitude faster than the fastest
algorithms available. The performance improvement is more
significant on graphs with low matching number.

I. INTRODUCTION

We design and implement a parallel algorithm for com-
puting maximum cardinality matchings in bipartite graphs on
shared memory parallel processors. Approximation algorithms
are employed to create parallelism in matching problems, but
a matching of maximum cardinality is needed in several appli-
cations. One application in scientific computing is to permute
a matrix to its block triangular form (BTF) via the Dulmage-
Mendelsohn decomposition of bipartite graphs [1]. Once the
BTF is obtained, in circuit simulations, sparse linear systems
of equations can be solved faster [2], and data structures for
sparse orthogonal factors for least-squares problems can be
correctly predicted [3].

Matching algorithms that achieve high performance on mod-
ern multiprocessors are challenging to design and implement
because they either rely on searching explicitly for long
paths or implicitly transmit information along long paths in a
graph. In earlier work, effective parallel matching algorithms
have been designed and implemented on shared memory
multiprocessors, especially multi-threaded machines [4], [5].
These algorithms achieve parallelism by multi-source graph
searches, i.e., by searching with many threads from multiple

(unmatched) vertices for augmenting paths that can increase
the cardinality of the matching.

Algorithms based on multi-source graph searches (i.e.,
multi-source or MS algorithms) have a significant weakness
relative to algorithms based on single-source graph searches
(i.e., single-source or SS algorithms). When an SS algorithm
fails to match a vertex u, it will not match u at any future
step [6], so it can remove u (and other vertices in its search
tree) from further consideration. However, the search trees
in MS algorithms are constrained to be vertex-disjoint to
allow concurrent augmentations along multiple augmenting
paths [7], [8]. Thus, even if the algorithm fails to find an
augmenting path from an unmatched vertex u at some step,
there could be an augmenting path from u at a future step since
some vertices that could be included in the search tree rooted
at u at this step might have been included in some other search
tree. Hence, MS algorithms cannot discard search trees failing
to discover augmenting paths and have to reconstruct them
many times. This property limits the scaling of MS algorithms,
especially on graphs where the size of the maximum matching
is small compared to the number of vertices.

We address this limitation of MS algorithms by reusing the
trees constructed in one phase in the next phase. We graft a part
of a search tree that yields an augmenting path onto another
search tree from which we have not found an augmenting
path. If the search succeeds in finding an augmenting path
in the grafted tree, we reuse parts of this tree in subsequent
grafting operations. Otherwise, we keep the grafted tree intact
with the hope of discovering an augmenting path in future.
In both cases, we have avoided the work of constructing this
search tree from scratch, at the cost of the work associated with
the grafting operation. In addition to tree-grafting, we have
integrated the direction optimization idea [9] to the specialized
breadth-first-searches (BFS) of our algorithm. We demonstrate
that the new serial algorithm computes maximum cardinality
matchings an order of magnitude faster than the current best-
performing algorithms on several classes of graphs. Even faster
performance is obtained by the parallel grafting algorithm on
multi-threaded shared memory multiprocessors.

Our main contributions in this paper are as follows:
• We present a novel tree-grafting method that eliminates

most of the redundant edge traversals of MS matching
algorithms, and prove the correctness of our algorithm.

• We employ the recently developed direction-optimized
BFS [9] to speed up augmenting path discoveries.



• We provide a NUMA-aware multithreaded implementa-
tion that attains up to 15x speedup on a two-socket node
with 24 cores. The algorithm yields better search rates
than its competitors, and is less sensitive to performance
variability of multithreaded platforms.

• On average, our algorithm runs 7x faster than current best
parallel algorithm on a 40-core Intel multiprocessor. On
graphs where the maximum matching leaves a number
of vertices unmatched, our algorithm runs 10x and 27x
faster than two state-of-the-art implementations.

II. EXISTING ALGORITHMS FOR MAXIMUM MATCHING
IN BIPARTITE GRAPHS

A. Background and Notations

Given a graph G=(V,E) on the set of vertices V and edges
E, a matching M is a subset of edges such that at most one
edge in M is incident on each vertex in V . The number of
edges in M is called the cardinality |M | of the matching. A
matching M is maximal if there is no other matching M ′ that
properly contains M . M is a maximum cardinality matching if
|M |≥|M ′| for every matching M ′. M is a perfect matching if
every vertex of V is matched. The cardinality of the maximum
matching is the matching number of the graph. In this paper,
we report the matching number as a fraction of the number of
vertices in V . We denote |V | by n and |E| by m.

This paper focuses on matchings in a bipartite graph,
G=(X∪Y,E), where the vertex set V is partitioned into two
disjoint sets such that every edge connects a vertex in X
to a vertex in Y . Given a matching M in a bipartite graph
G, an edge is matched if it belongs to M , and unmatched
otherwise. Similarly, a vertex is matched if it is an endpoint
of a matched edge, and unmatched otherwise. If x in X is
matched to y in Y , we call x is the mate of y and write
x=mate[y] and y=mate[x]. An M -alternating path in G
with respect to a matching M is a path whose edges are
alternately matched and unmatched. An M -augmenting path is
an M -alternating path which begins and ends with unmatched
vertices. By exchanging the matched and unmatched edges
on an M -augmenting path P , we can increase the size of
the matching M by one (this is equivalent to the symmetric
difference of M and P , M⊕P=(M\P )∪(P\M)). Given a
set of vertex disjoint M -augmenting paths P, M ′=M⊕P is a
matching with cardinality |M |+|P|.

B. Classes of cardinality matching algorithms

Maximal matching algorithms compute a matching with
cardinality at least half of the maximum matching. For many
input graphs, the maximal matching algorithms finds all or
a large fraction of the maximum cardinality matching [10].
Since maximal matching algorithms can be implemented in
O(m) time, which is much faster than maximum matching al-
gorithms, the former algorithms are often used to initialize the
latter. We use the Karp-Sipser [11] algorithm to initialize all
matching algorithms described in this paper, because it is one
of the best initializer algorithms for cardinality matching [8].

Maximum matching algorithms are broadly classified into
two groups: (1) augmenting-path based and (2) push-relabel
based [12], [5]. This paper is primarily focused on the
augmenting-path based algorithms. An augmenting-path based
matching algorithm runs in several phases, each of which
searches for augmenting paths in the graph with respect to
the current matching M and augments M by the augmenting
paths. The algorithm finds a maximum matching when no
augmenting path is discovered in a phase [13]. Augmenting
path based algorithms primarily differ from one another based
on the search strategies used to find augmenting paths. The
search can be performed form one unmatched vertex (SS
algorithms) or from all unmatched vertices simultaneously
(MS algorithms). The search can be performed by using the
BFS, depth-first search (DFS), or a combination of both BFS
and DFS (the Hopcroft-Karp algorithm [7]). For more details,
we refer the reader to a book on matching algorithms [14].

In this paper, without loss of generality, we search for
augmenting paths from unmatched X vertices, one vertex part
of a bipartite graph. The graph searches for augmenting paths
have a structure different from the usual graph searches: the
only vertex reachable from a matched vertex y in Y is its
unique mate. The search for all neighbors continues from the
mate, which is again a vertex in X . We call the search trees
constructed in a phase of the algorithms as alternating search
trees. An alternating search tree T is rooted at an unmatched
vertex x, and all paths from x to other vertices in the tree are
alternating paths. We denote a tree rooted at x by T (x).

C. Single- and multi-source algorithms

The SS-MATCH (Algorithm 1) and MS-MATCH (Algo-
rithm 2) functions describe the general structures of the SS
and MS augmenting path based algorithms. They both take
a bipartite graph G(X ∪ Y,E) and an initial matching M as
input, and return a maximum cardinality matching by updating
M . In each phase, SS-MATCH searches for an augmenting
path from an unmatched vertex x0 in X using the SS-SEARCH
function. SS-SEARCH constructs an alternating tree T (x0)
by using Y vertices whose visited flags are 0 and sets the
visited flag to 1 for every Y vertex included in the current
search tree. SS-SEARCH stops exploring the graph as soon
as an augmenting path P is found, which is then used to
augment the matching. By contrast, MS-MATCH traverses the
graph from X0, the set of all unmatched X vertices, using the
MS-SEARCH function. MS-SEARCH constructs an alternating
forest and returns a set of vertex disjoint augmenting paths P,
which is used to augment the matching.

There is a crucial difference between the SS and MS
algorithms when we fail to augment a matching from an
unmatched vertex x0. For the SS algorithm, vertices and edges
in the alternating search tree T (x0) cannot be part of any future
augmenting paths. Hence, we can remove x0 and all other
vertices and edges in T (x0) from further consideration [6],
[8], [15]. If a search tree T (x0) fails to produce an augmenting
path, the SS-MATCH function does not clear the visited
flags of the vertices in T (x0), thus hiding them from future



Algorithm 1 Matching algorithms based on single-source aug-
menting path searches. Input: A bipartite graph G(X∪Y,E),
a matching M . Output: A maximum cardinality matching M .

1: procedure SS-MATCH(G, M )
2: for each y ∈ Y do visited [y ] ← 0

3: for each unmatched vertex x0 ∈ X do
4: P ←SS-SEARCH(G, x0 , visited ,M ) . search for

an augmenting path from x0 using previously unvisited vertices.
visited [y ] is set to 1 for every traversed vertex y in Y .

5: Ys ← Y vertices traversed in the latest search
6: if P 6= φ then . An augmenting path is found
7: M ←M ⊕ P . Increase matching by one
8: for each y ∈ Ys do visited [y ]← 0

Algorithm 2 Matching algorithm based on multi-source aug-
menting path searches. Input and Output same as Algorithm 1

1: procedure MS-MATCH(G, M )
2: for each y ∈ Y do visited [y ] ← 0

3: repeat
4: X0 ← all unmatched X vertices
5: P←MS-SEARCH(G,X0 , visited ,M ) . search for a

set of vertex disjoint augmenting paths from X0 using unvisited
vertices. visited [y ] is set to 1 for each traversed vertex y in Y .

6: Ys ← Y vertices traversed in the latest search
7: for each y ∈ Ys do visited [y ]← 0

8: M ←M ⊕ P . Increase matching by |P|
9: until P = φ . Continue if an augmenting path is found

searches. Otherwise, we clear the visited flags of Y -vertices
in T (x0), making them available for future searches (line 8
of Algorithm 1). By contrast, an MS algorithm cannot discard
vertices from a tree T (x0) without an augmenting path in a
phase of the algorithm, because the same tree could yield an
augmenting path in future phases. Consequently, Algorithm 2
always clears the visited flags of the Y -vertices in the current
forest and makes them available for future searches (line 7).

D. DFS- and BFS-based Algorithms

SS and MS algorithms search for augmenting paths using
DFS, BFS, or a combination of both. We briefly describe three
algorithms with theoretical and practical importance [8], [4].

The multi-source BFS (MS-BFS) algorithm runs a level-
synchronous BFS from all unmatched vertices and builds
an alternating forest. At each level, the MS-BFS algorithm
explores the unvisited neighbors of the current frontier (the set
of vertices in the current level) and the mates of the neighbors.
A tree stops growing when it finds an augmenting path, while
other trees continue growing by advancing the frontier in a
level-synchronous way. When the frontier becomes empty,
we augment the current matching by the augmenting paths
discovered in this phase and proceed to the next phase. In the
worst case, the MS-BFS algorithm might need n phases to
find the maximum matching, hence the O(mn) bound.

The Pothen-Fan (PF) algorithm [1] is a multi-source DFS-
based algorithm that uses DFS with lookahead to find a
maximal set of vertex-disjoint augmenting paths. The idea
of the lookahead mechanism in DFS is to search for an
unmatched vertex in the adjacency list of a vertex x being
searched before proceeding to continue the DFS from one of

x’s children. If the lookahead discovers an unmatched vertex,
then we obtain an augmenting path and can terminate the
DFS. From one iteration to the next, the direction in which
the adjacency list is searched for unmatched vertices can be
switched from the beginning of the list to the end of the list,
and vice versa. Duff et al. [8] call this fairness, and found
that this enhancement leads to faster execution times of the
PF algorithm. The complexity of the algorithm is O(mn).

The Hopcroft-Karp (HK) algorithm [7] finds a maximal
set of shortest vertex-disjoint augmenting paths and aug-
ments along each path simultaneously. At each phase, the
HK algorithm employs BFS from all unmatched vertices and
constructs an alternating layered graph by traversing the graph
level by level. The BFS stops at the first level where an
unmatched vertex is discovered, hence exposing only the
shortest augmenting paths. Next, the DFS is used to find a
maximal set of vertex-disjoint augmenting paths within this
layered graph. By using the two-step searches, the number of
augmentation phases could be bounded by O(

√
n), resulting

in faster asymptotic time complexity (m
√
n) [7].

E. Characteristics of existing algorithms

We investigate three properties of matching algorithms: (a)
the number of traversed edges, (b) the number of phases,
and (c) average length of augmenting paths. Since matching
algorithms spends most of its time on graph searches (Fig. 6),
the first property determines the their serial execution time.
Parallel matching algorithms need to synchronize between
consecutive phases. Due to the complexity of storing explicit
paths, most parallel algorithms represent an augmenting path
P by a chain of parent pointers and augment matching by P
sequentially (vertex-disjoint augmenting paths are processed in
parallel). Hence, the second and third properties influence the
performance of parallel algorithms. We compare five sequen-
tial algorithms, all initialized via the Karp-Sipser algorithm:
(1) single-source DFS (SS-DFS), (2) single-source BFS (SS-
BFS), (3) the PF algorithm (with fairness), (4) multi-source
BFS (MS-BFS), and (5) the HK algorithm. The MS-BFS
implementation is taken from Azad et al. [4] and the rest
are taken from Duff et al. [8]. We selected three graphs
(kkt-power, cit-patents, and wikipedia), one from
each class of graphs described in Table IV-A.

Number of traversed edges (Fig. 1(a)): PF and MS-
BFS algorithms traverse fewer edges than HK algorithm in
spite of the latter’s superior asymptotic time complexity [8],
[4]. For kkt-power (with a perfect matching), MS algo-
rithms perform significantly better than SS algorithms with PF
traversing the fewest edges. However, for graphs with lower
matching numbers (cit-patents, and wikipedia), SS-
BFS traverses the fewest number of edges.

Number of phases (Fig. 1(b)): MS algorithms could
identify multiple augmenting paths in a single phase; hence
they need fewer number of phases than the SS algorithms.
For scale free and web graphs, the PF algorithm might require
more phases than MS-BFS because the former usually finds
longer augmenting paths instead of several short augmenting
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Fig. 1. (a) The number of traversed edges, (b) the number of phases, and (c) the average length of augmenting paths for five maximum matching algorithms.

paths. Despite the superior bound (
√
n) on the number of

phases, the HK algorithm requires more phases than MS-BFS
since the former discovers only the shortest augmenting paths.

Augmenting path lengths (Fig. 1(c)): BFS-based algo-
rithms finds shorter augmenting paths than DFS-based algo-
rithms. The HK algorithm guarantees to discover the shortest
augmenting paths. MS algorithms usually discover shorter
augmenting paths than the SS algorithms, and the difference
is more dramatic for the DFS based algorithm.

Practical considerations: For the three classes of graphs
that we consider, PF, SS-BFS, and MS-BFS algorithms tra-
verse fewer edges than others and are expected to run faster
when run sequentially. The SS-BFS algorithm can remove a
search tree when no augmenting path is found in it (see the
discussion in Section II-C). Hence, SS-BFS traverses fewer
edges when a graph has a small matching number. In the next
section, we describe a tree-grafting mechanism that reduces the
repetition of work across multiple phases in MS algorithms.
MS algorithms are more scalable because of increased con-
currency and decreased synchronization between consecutive
phases. In contrast to the PF algorithm that employs course
grained parallelism [4], the MS-BFS algorithm can employ
fine-grained parallelism with each thread processing one vertex
in a level of a BFS tree. Hence, we employ tree-grafting to
enhance MS-BFS and show that its parallel implementation
outperforms the competitors for most practical graphs.

III. MS-BFS ALGORITHM WITH TREE GRAFTING

A. Intuition behind the algorithm

Consider a maximal matching in a bipartite graph shown in
Fig. 2(a). The MS-BFS algorithm traverses the graph from un-
matched X vertices x1 and x2 and creates two vertex-disjoint
alternating trees T (x1) and T (x2). The trees are shown in
Fig. 2(b) where the edges (x1, y2) and (x3, y3) (shown with
broken lines) are scanned but not included in T (x1) to main-
tain the vertex-disjointedness property. In Fig. 2(b), T (x1)
stops growing because its last frontier {x3} does not have any
unvisited neighbors. On the other hand, T (x2) stops growing
as soon as an augmenting path (x2, y3, x5, y5) is found. Next,
we augment the current matching with (x2, y3, x5, y5) as
shown in Fig. 2(c), which finishes the current phase. After
augmentation, existing MS algorithms (e.g., the PF algorithm)
destroy both T (x1) and T (x2) and start the next phase from

the remaining unmatched vertex x1. Notice that the whole tree
T (x1) must be grown again along with the edges (x1, y2) and
(x3, y3) before we can explore the rest of the graph for an
augmenting path. An alternative approach is to keep T (x1)
intact, graft relevant edges ((x1, y2) and (x3, y3)) into T (x1),
and then continue the next phase with the grafted tree T (x1).
We call this process “tree grafting”.

In this context, we call T (x1) (a tree where no augmenting
path is found) an active tree and T (x2) (a tree where an
augmenting path is found) a renewable tree. Additionally,
vertices that are not explored in the current phase (x6 and
y6 in Fig. 2(a)) are called inactive vertices. At the end of a
phase, we graft a Y vertex yj from a renewable tree onto an X
vertex xi in an active tree if (xi, yj) is an edge in the graph. In
Fig. 2(c), y2 and y3 from the renewable tree have edges to x1
and x3 in the active tree. Therefore, y2 and y3 along with their
matched vertices are grafted into T (x1) as shown in Fig. 2(d).
The rest of T (x2) are destroyed (by clearing parent pointers,
visited flags, etc.). The next phase of the algorithm begins with
the frontier {x2, x4} obtained after the tree grafting step (see
Fig. 2(d)) and continues growing T (x1). Fig. 2(e) shows the
next phase where the algorithm discovers an augmenting path
(x1, y2, x4, y4, x6, y6). The tree grafting mechanism therefore
reduces the work involved in the reconstruction of alternating
trees at the beginning of every phase.

B. The MS-BFS-Graft algorithm
We employ tree grafting and direction-optimized BFS [9]

to the MS-BFS algorithm and call it the MS-BFS-Graft algo-
rithm. A multithreaded version of this algorithm is described
in Algorithm 3 that takes a bipartite graph G(X∪Y,E) and an
initial matching represented by a mate array of size |X ∪ Y |
as inputs. mate[u] is set to -1 for an unmatched vertex u.
The MS-BFS-Graft algorithm updates the mate array with
the maximum cardinality matching.

We assume that the alternating trees are rooted at unmatched
X vertices. Since the alternating forest grows two levels at a
time, the BFS frontier F is always a subset of X vertices. A
visited flag for each Y vertex ensures that it is part of a single
tree. The pointer parent [y ] points to the parent of a vertex y
in Y . A matched X vertex is visited from its mate , hence it
does not need a visited flag or parent pointer. For every vertex
v in X ∪ Y , root [v ] stores the root of the tree containing v.
Finally, leaf [x ] stores an unmatched leaf of a tree rooted at x,
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Fig. 2. (a) A maximal matching in a bipartite graph. Matched and unmatched vertices are shown in filled and empty circles, respectively. Thin lines represent
unmatched edges and thick lines represent matched edges. (b) A BFS forest with two trees T (x1) and T (x2) created by the MS-BFS algorithm. The edges
(x1, y2) and (x3, y3) (shown with broken lines) are scanned but not included in T (x1) to keep the trees vertex-disjoint. Inactive vertices shown in Subfig.
(a) did not take part in the current BFS traversal. (c) The current matching is augmented by the augmenting path (x2, y3, x5, y5). T (x1) remains active
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vertices x2 and x4 form the new frontier. (e) BFS proceeds from the new frontier and finds an augmenting path in T (x1).

Algorithm 3 The MS-BFS-Graft algorithm. Input: A bipartite
graph G(X∪Y,E), an initial matching vector mate . Output:
Updated mate with a maximum cardinality matching.

1: for each y ∈ Y in parallel do
2: visited [y ]← 0, root [y ]←−1, parent [y ]←−1
3: for each x ∈ X in parallel do
4: root [x ]←−1, leaf [x ]←−1
5: F ← all unmatched X vertices . initial frontier
6: repeat
7: . Step 1: Construct alternating BFS forest
8: while F 6= ∅ do
9: if |F | < numUnvisitedY /α then

10: F ← TOPDOWN(G,F, ...)
11: else
12: R ← unvisited Y vertices
13: F ← BOTTOMUP(G,R, ...)

14: . Step 2: frontier F becomes empty. Augment matching.
15: for every unmatched vertex x0 ∈ X in parallel do
16: if an augmenting path P from x0 is found then
17: Augment matching with P
18: . Step 3: Construct frontier for the next phase
19: F ← GRAFT(G, visited , parent , root , leaf ,mate)
20: until no augmenting path is found in the current phase

Algorithm 4 Top-down construction of the next level BFS
frontier from the current frontier F .

1: procedure TOPDOWN(G, F , visited , parent , root , leaf , mate)
2: Q ← ∅ . next frontier (thread-safe queue)
3: for x ∈ F in parallel do
4: if x is in an active tree then . leaf [root [x ]] = −1
5: for each unvisited neighbor y of x do . atomic
6: Update pointers and queue (Algorithm 5)

return Q

denoting an augmenting path from x to leaf [x ]. The parent ,
root and leaf pointers are set to −1 for a vertex that is not
part of any tree. Each iteration of the repeat-until block in
Algorithm 3 is a phase of the algorithm. Each phase is further
divided into three steps: (1) discovering a set of vertex-disjoint

Algorithm 5 Updating pointers in BFS traversals.
1: parent [y ]← x, visited [y ]← 1, root [y ]← root [x ]
2: if mate[y] 6= −1 then
3: Q← Q ∪ {mate[y]} . thread safe
4: root [mate[y ]]← root [y ]
5: else . an augmenting path is found
6: leaf [root [x ]]← y . end of augmenting path

Algorithm 6 Bottom-up construction of BFS frontier from a
subset of Y vertices R.

1: procedure BOTTOMUP(G, R, visited , parent , root , leaf ,mate)
2: Q ← ∅ . next frontier (thread-safe queue)
3: for y ∈ R in parallel do
4: for each neighbor x of y do
5: if x is in an active tree then . leaf [root [x ]] = −1
6: Update pointers and queue (Algorithm 5)
7: break . stop exploring neighbors of y

return Q

Algorithm 7 Rebuild frontier for the next phase.
1: procedure GRAFT(G, visited , parent , root , leaf , mate)
2: activeX ← {x ∈ X : root [x ] 6=−1 & leaf [root [x ]] = −1}
3: activeY ← {y ∈ Y : root [y ] 6=−1 & leaf [root [y ]] = −1}
4: renewableY ← {y ∈ Y : root [y ] 6=−1 &
5: leaf [root [y ]] 6= −1}
6: for y ∈ renewableY in parallel do
7: visited[y]← 0, root[y]← −1
8: if | activeX | > | renewableY |/α then . tree grafting
9: F ← BOTTOMUP(G, renewableY , ...)

10: else . regrow active trees
11: F ← unmatched X vertices
12: for y ∈ activeY in parallel do
13: visited [y ]← 0, root [y ]← −1
14: for x ∈ activeX in parallel do
15: root [y ]← −1

return F . return frontier for the next phase

augmenting paths by multi-source BFS, (2) augmenting the
current matching with the augmenting paths, and (3) rebuilding
the frontier for the next phase by the tree-grafting mechanism.



Each iteration of the repeat-until block in Algorithm 3 is a
phase of the algorithm. Each phase is further divided into three
steps: (1) discovering a set of vertex-disjoint augmenting paths
by multi-source BFS, (2) augmenting the current matching
with the augmenting paths, and (3) rebuilding frontier for the
next phase by the tree-grafting mechanism.

Step 1 (BFS traversal): Algorithm 3 employs level-
synchronous BFS to grow an alternating BFS forest until the
frontier F becomes empty. We use the direction-optimizing
BFS algorithm [9] that dynamically selects between top-down
and bottom-up traversals based on the frontier size.

The top-down traversal: Algorithm 4 describes the top-
down traversal that constructs the next frontier Q by exploring
the neighbors of the current frontier F . If a vertex x in F is
a part of an active tree, then each unvisited neighbor y of x
becomes a child of x. Then we update the necessary pointers
by Algorithm 5. When y is matched, we include mate[y ] into
Q . Otherwise, we discover an augmenting path from root [x ]
to y and set leaf [root [x ]] = y. In the latter case, T (root [x ])
becomes a renewable tree and stops growing further.

In the multithreaded implementation of the TOPDOWN
function, threads maintain the vertex-disjointedness properties
of the alternating trees via atomic updates of the visited
pointers. Hence, a vertex y is processed by one thread and
becomes a child of a single vertex x in F . (We check the
visited flags before performing the atomic operations to reduce
the overhead of unnecessary atomics [16]). A vertex is inserted
in Q in a thread-safe way (line 3 of Algorithm 5). To reduce
memory contentions among threads, we assign a small private
queue to each thread so that it fits in the local cache. When a
private queue is filled up, the associated thread copies the local
queue to the global shared queue. This approach is similar to
the implementation of omp_csr reference code of Graph500
benchmark [17]. When a thread discovers an augmenting path,
it immediately marks the corresponding tree as renewable by
setting the leaf pointer (line 6). This could create a race
condition if multiple threads discover augmenting paths in the
same tree at the same time. This is a benign race condition
that does not affect correctness because the last update of the
leaf pointer overwrites previous updates by other threads and
maintains a single augmenting path in a tree.

The bottom-up traversal: Algorithm 6 describes the
bottom-up traversal that explores the neighborhood of a subset
of Y vertices, R, that will be defined below. We use the same
BOTTOMUP function for both regular BFS traversal and the
tree grafting steps. Here R is the set of unvisited Y vertices
in the former case and the set of Y vertices in the renewable
trees in the latter case. If a vertex y in R has a neighbor x in
an active tree, y becomes a child of x. The necessary pointers
and the next frontier Q are updated by Algorithm 5, similar
to the top-down traversal. We stop exploring the neighbors of
a vertex y in R as soon as it is included in an active tree
(break at line 7). In a multithreaded execution, the vertices in
R are concurrently processed by different threads. Unlike the
TOPDOWN function, a vertex y in R is processed by a single
thread in the BOTTOMUP function. Hence, visited flags can

be updated without atomic operations.
Top-down or bottom-up?: When the size of the current

frontier F is smaller than a fraction (1/α) of the number of
unvisited Y vertices numUnvisitedY , we use top-down BFS.
Otherwise, the bottom-up BFS is used. The parameter α is
greater than one since the bottom-up BFS traverses a fraction
of the neighbors of R. In our experiments, we found that α ∼ 5
performs better for the MS-BFS-Graft algorithm.

Step 2 (Augment the matching): Assume that x0 is the
root of a renewable tree T (x0) and leaf [x0]=y0, where both
x0 and y0 are unmatched vertices. The unique augmenting path
P is retrieved from T (x0) by following the parent and mate
pointers from y0 to x0. We augment the matching by flipping
the matched and unmatched edges in P . Since the augmenting
paths are vertex disjoint, each path can be processed in parallel
by different threads (lines 15–17 of Algorithm 3).

Step 3 (Reconstruction of the frontier): When the current
frontier becomes empty, Algorithm 3 constructs the frontier
for the next phase by calling the GRAFT function described in
Algorithm 7. For this step, we identify three sets of vertices:
(1) activeX is the set of X vertices in an active tree, (2)
activeY is the the set of Y vertices in an active tree, and (3)
renewableY is the the set of Y vertices in a renewable tree.
We reset visited flags and root pointers of the renewableY
vertices so that they can be reused (lines 6–7 of Algorithm 7).

Algorithm 7 constructs the frontier for the next phase
by using the tree grafting mechanism (line 9) or with the
set of unmatched X vertices (line 11). The former is more
beneficial than the latter when the size of the renewable forest
is smaller than the size of the active forest. Following the
same argument of the top-down vs bottom-up traversal, we
employ tree grafting when the size of activeX is greater than
| renewableY |/α. The BOTTOMUP function grafts vertices
from renewable trees onto active trees when the function
is called with renewableY as its argument. When it is not
profitable to employ the tree grafting, we destroy all trees and
start building active trees from scratch (lines 11–15). For most
graphs, we observe that tree-grafting is usually not beneficial
in the first few phases when a large number of augmenting
paths is discovered (i.e., a large number of renewable trees).

After a new frontier is constructed, Algorithm 3 proceeds to
the next phase. The algorithm terminates when no augmenting
paths are found in a phase, at which point the maximum
cardinality matching is attained.

C. Correctness of the algorithm

Theorem 1: The MS-BFS-Graft algorithm finds a maximum
cardinality matching M in a bipartite graph G(X ∪ Y,E).

Proof: To obtain a contradiction, assume that M is not
a maximum cardinality matching. Then by Berge’s theorem,
there is an M -augmenting path in the graph G that the MS-
BFS-Graft algorithm failed to find.

Let P = (x0, y1, x1, ..., yk, xk, yk+1) be an M -augmenting
path in G, where x0 and yk+1 are unmatched vertices. The
MS-BFS-Graft algorithm discovers no augmenting path in the
last phase, and thus there are no renewable trees when the



algorithm terminates. Hence, each vertex u on the augmenting
path P is either active or inactive (a vertex is active if it is in
an active tree). x0 is an active vertex because it being an un-
matched vertex in X is the root of an active tree. Suppose that
all vertices in the alternating path P ′ = (x0, y1, x1, ..., yi, xi)
with 0 ≤ i < k are active. Since P is a path, (xi, yi+1) is
an edge in G. Therefore, yi+1 is an active vertex because it
must be explored by xi (and possibly by other active vertices
as well) in the BFS traversal and included in an active tree.
Furthermore, if yi+1 is matched, its mate xi+1 is also active.
By induction, every vertex u ∈ P is an active vertex.

If the unmatched vertex yk+1 belongs to another active tree
T (xj) with xj 6= x0, then there exists an M -alternating path
from the unmatched vertex xj (root of this active tree) to
the unmatched vertex yk+1 consisting entirely of vertices and
edges in T (xj). This is an M -augmenting path that the MS-
BFS-Graft algorithm would have discovered since it belongs to
the active tree T (xj). This contradiction proves that the MS-
BFS-Graft algorithm terminates without an augmenting path
in G, and there does not exist an augmenting path in G with
respect to M . Hence M is a maximum cardinality matching.
Time complexity: In the worst case, the MS-BFS-Graft algo-
rithm might need n phases, each phase traversing O(m) edges.
Hence, the complexity of the (serial) algorithm is O(mn).

IV. EXPERIMENTAL SETUP

A. Methodology and Implementation Details

We evaluate the performance of parallel matching algo-
rithms on Mirasol, an Intel Nehalem-based machine, and
on a single node of Edison, a Cray XC30 supercomputer
at NERSC. The specifications of these systems are de-
scribed in Table IV-A. We implemented our algorithms using
C++ and OpenMP. For atomic memory access, we used
compiler builtin functions __sync_fetch_and_add and
__sync_fetch_and_or. We store current and next fron-
tiers in parallel queues, similar to the implementation of
omp_csr reference code of the Graph500 benchmark [17].
In particular, we assign a small private queue for each thread
so that it fits in the local cache. When a private queue is
filled up, the associated thread copies the local queue to the
global shared queue in a thread-safe manner. These queue
management scheme improves the scalability of our matching
algorithm significantly across multiple sockets.

To reduce overhead of thread migration, we pinned threads
to specific cores. We employed compact thread pinning
(filling threads one socket after another) by setting envi-
ronment variable GOMP_CPU_AFFINITY on Mirasol and
KMP_AFFINITY on Edison. Both of these machines have
non-uniform memory access (NUMA) costs since physically
separate memory banks are associated with each socket. When
the threads are distributed across sockets, we employed inter-
leaved memory allocation (memory allocated evenly across
sockets). Otherwise, we allocated memory on the socket on
which the threads are running using the numactl command.

Feature Edison (24-core) Mirasol (40-core)

Architecture Ivy Bridge Westmere-EX
Intel Model E5-2695 v2 E7-4870
Clock rate 2.4 GHz 2.4 GHz
#Sockets 2 4
Cores/socket 12 10
Threads/socket 24 20
DRAM size 64 GB 256 GB
L3 cache/socket 30 MB 30 MB
Compiler icc 14.0.2 gcc 4.4.7
Optimization -O2 -O2

TABLE I
DESCRIPTION OF THE SYSTEMS USED IN THE EXPERIMENTS.

B. Input Graphs

Table IV-A describes a representative set of bipartite graphs
from the University of Florida sparse matrix collection [18]
and from randomly generated instances. Let A be an n1 × n2
matrix with nnz (A) nonzero entries. We create an undirected
bipartite graph G(X ∪ Y,E) such that every row (column)
of A is represented by a vertex in X (Y ), and each nonzero
entry A[i, j] of A is represented by two edges (xi, yj) and
(yj , xi) connecting the vertices xi (denoting the ith row) and
yj (denoting the jth column). We keep edges in both directions
to facilitate the top-down and bottom-up searches. Hence,
|V |=|X∪Y |=n1+n2=n and |E|=2·nnz (A)=m. The RMAT
random graph with skewed degree distribution is generated by
the Graph500 implementation [17]. In Table IV-A, we group
the problems into three classes based on application areas
where they arise. Note that the matching number is relatively
low for problems in the last group.

V. RESULTS

A. Relative performance of algorithms

We compare the performance of the MS-BFS-Graft algo-
rithm with the PF (with fairness) and PR algorithms, because
the latter algorithms performed better in several recent stud-
ies [4], [5], [8]. The multithreaded implementation of the PF
and PR algorithms are taken from Azad et al. [4] and Langguth
et al. [5], respectively. As suggested in the previous work on
PR algorithm [5], [19], we set the queue limit to 500, and the
relabel frequency to 2 on one thread and to 16 on 40 threads.

Fig. 3 shows the relative performance of three algorithms
on Mirasol using one and 40 threads. For every input graph,
we compute the average time of 10 runs of each algorithm.
We compute the relative speedups of an algorithm by dividing
its runtime by the runtime of the slowest algorithm (i.e.,
the slowest algorithm for a graph has speedup of 1). On
average, over all problem instances, serial MS-BFS-Graft
algorithm runs 5.7x faster than serial PR and 4.8x faster than
serial PF algorithms. We did no observe any performance
improvement for the first class of graphs (scientific computing
and random instances with high matching number) for serial
runs. However, the serial MS-BFS-Graft algorithm runs 4.9x
faster than PR and 8.2x faster than PF for the scale-free graphs,
and 11.3x faster than PR and 5.5x faster than PF for the web
and road networks. The performance improvement of the MS-
BFS-Graft algorithm is more significant on 40 threads (Fig. 3



Class Graph #Vertices #Edges Avg. Maximal Maximum Description
(M) (M) Degree Card. (%) Card. (%)

hugetrace 32.00 96.00 3.00 98.68 100.00 Frames from 2D Dynamic Simulations
Scientific delaunay n24 33.55 201.33 6.00 98.58 100.00 Delaunay triangulations of random points
Computing kkt power 4.13 29.23 7.08 99.03 100.00 Optimal power flow, nonlinear optimization

rgg n24 s0 33.55 530.23 15.80 99.97 99.99 Random geometric graph

coPaperDBLP 1.08 60.98 56.41 97.93 99.95 Citation networks in DBLP
Scale-free amazon0312 0.80 6.40 7.99 93.82 99.56 Amazon product co-purchasing network

cit-Patents 7.55 33.04 4.38 97.42 97.99 Citation network among US Patents
RMAT 8.38 255 30.4 96.12 96.78 RMAT random graph (param: .45,.15,.15,.25)

road usa 47.89 115.42 2.41 93.68 94.90 USA street networks
Networks wb-edu 19.69 114.31 5.81 79.90 80.50 Web crawl on .edu domain

web-Google 1.83 10.21 5.57 67.45 68.75 Webgraph from the Google prog. contest, 2002
wikipedia 7.13 90.06 12.62 58.33 58.70 Wikipedia page links

TABLE II
TEST PROBLEMS FOR EVALUATING THE MATCHING ALGORITHMS. THE PROBLEMS ARE GROUPED INTO THREE CLASSES: (TOP) SCIENTIFIC COMPUTING

AND RANDOM INSTANCES, (MIDDLE) SCALE FREE GRAPHS, (BOTTOM) ROAD AND WEB NETWORKS. MATCHING CARDINALITIES ARE SHOWN AS A
FRACTION OF TOTAL NUMBER OF VERTICES. THE MAXIMAL MATCHING IS COMPUTED BY THE KARP-SIPSER ALGORITHM.
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Fig. 3. Relative runtimes of MS-BFS-Graft, PR, and PF algorithms with respect to the slowest of these three algorithms on Mirasol using (a) one core and
(b) 40 cores. In Subfig. (b), we cut the y-axis at 16 and show large values beside the bars. Dashed vertical lines separate different classes of graphs.

(b)). On average, our algorithm runs 7.5x faster than PR and
11.4x faster than PF on 40 threads. For different classes of
problems, the average performance improvements of the MS-
BFS-Graft algorithm are as follows: (a) scientific: 4.9x to PR,
1.2x to PF (2) scale-free: 7.1x to PR, 5.1x to PF and (3)
networks: 10.4x to PR, 27.8x to PF. As in the serial case, the
performance improvement is more significant for the second
and third classes of graphs. Note that the PF algorithm might
achieve super-linear speedups for certain scale free graphs
(e.g., amazon0312) because the number of phases needed
by the PF algorithm decreases as we increase threads for
these graphs [4]. Hence, the PF algorithm becomes the fastest
algorithm for amazon0312 on 40 threads despite it being the
slowest serial algorithm for this graph.

B. Variation in parallel runtimes

In a multithreaded environment, different executions of an
algorithm are likely to process vertices in different orderings,
which could change the runtime of an algorithm. We run each
algorithm 10 times for each input graphs and compute the
variation in parallel runtimes. Following prior notation [4],

we measure the parallel sensitivity (ψ) of an algorithm as the
ratio of the standard deviation (σ) of runtimes from 10 runs,
to the mean of runtimes (µ): ψ = σ

µ × 100.
For all input graphs, we computed ψ for MS-BFS-Graft, PF,

and PR algorithms using 40 threads on Mirasol. On average,
the variation in runtimes is higher for PF (17%) and PR
(10%) relative to the MS-BFS-Graft algorithm (6%). In the
MS-BFS-Graft algorithm, the granularity of work per thread
is small; therefore, it can balance the work evenly among
threads. By contrast, the DFS-based algorithm assigns each
thread to explore a DFS tree, exposing a greater potential for
load imbalance. The stable parallel performance of MS-BFS-
Graft makes it an attractive candidate on future architectures.

C. Search rate

We report the search rate in millions of edges traversed
per second (MTEPS), defined by the ratio of the number of
traversed edges to the runtime. The MS-BFS-Graft algorithm
traverses fewer edges at a faster rate relative to the DFS-based
algorithms. Fig. 4 shows that MS-BFS-Graft searches at a rate
2-12 times faster than the PF algorithm for different input
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Fig. 4. Search rates of the MS-BFS-Graft and Pothen-Fan algorithms for
different input graphs on Mirasol with 40 threads.

graphs on Mirasol. The improvement is larger for graphs with
low matching number, e.g., our algorithm searches 12x faster
for wikipedia and 10x faster for web-Google.

The search rates of the matching algorithms are lower than
those reported for direction-optimized BFS [9] for several
reasons. First, the latter computes the search rate using the
total number of edges in the graph (not the actual number
of edges traversed) divided by the runtime. Second, matching
algorithms use a specialized BFS, searching from only one
part in a bipartite graph where the searches from the other
part involve finding the unique mate of each vertex. Third,
each phase of MS-BFS-Graft searches different subgraphs of
the input, and these subgraphs get smaller in the course of the
algorithm. Finally, the time taken by the augmentation step is
also included in the search rate of the matching algorithm.

D. Scalability

Fig. 5 shows the strong scaling of the MS-BFS-Graft
algorithm on Mirasol and Edison for different classes of
graphs. We report the average speedup for graphs in each
class with respect to the serial MS-BFS-Graft algorithm. The
results show good scaling on every class of graphs on these
architectures. Using all available cores (without hyperthread-
ing), the average speedup of problems in Table IV-A is 15
on Mirasol (stdev=3.5, min=9, max=21) and 12 on Edison
(stdev=2, min=7, max=15). This performance is significantly
better than the reported speedup (5.5x on a 32-core Intel
multiprocessor) of the PR algorithm [5].

In NUMA machines, scaling is more uniform within a
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Fig. 6. Breakdown of time spent on different steps of the MS-BFS-Graft
algorithm for different graphs.

single socket than across sockets. By using an efficient
queue implementation (discussed earlier), we achieve excellent
speedups on multiple sockets on both machines. On average
(over all problem instances), we observe 22% performance
improvement on Mirasol and 19% performance improvement
on Edison when we used hyperthreading. Hence, for the best
problem instance, we can achieve up to 35x speedup on
Mirasol and 19x speedup on Edison when all the available
threads are used with hyperthreading. Unlike PF and PR
algorithms [5], the MS-BFS-Graft algorithm continues to scale
up to 80 threads of Intel multiprocessors. Hence, the MS-BFS-
Graft algorithm is expected to scale better than its competitors
on the future manycore systems with hardware threads.

E. Breakdown of runtime

Fig. 6 shows the breakdown of the runtime of the MS-
BFS-Graft algorithm on Mirasol with 40 threads. Here, the
“Top-Down” and “Bottom-Up” steps comprise the BFS traver-
sal (Step 1 of Algorithm 3), “Augment” step increases the
cardinality of the matching (Step 2 of Algorithm 3), “Tree-
Grafting” step constructs frontier for the next phase (Step 3
of Algorithm 3), and “Statistics” denotes the time to collect
statistics needed for tree-grafting (lines 2-4 of Algorithm 7).
For all graphs in Table IV-A, at least 40% of the time is spent
on the BFS traversal. However, graphs with high matching
number (e.g., hugetrace, kkt_power) spend a larger
proportion of total runtime on BFS traversal, whereas graphs
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with low matching number (e.g., wb-edu, wikipedia, etc.)
spend more time on the augmentation and tree grafting steps.

F. Performance contributions

Fig. 7 shows the effects of direction-optimizing BFS and
tree-grafting on the performance of parallel MS-BFS. On
average, direction optimization speeds the MS-BFS algorithm
up by 1.6x, and tree grafting speeds it up by another 3x.
Graphs with relatively low matching number benefit most from
tree grafting, with 7.8x.

Fig. 8 shows the size of BFS frontiers at two phases of the
MS-BFS and MS-BFS-Graft algorithms on copaperDBLP.
At the beginning of each phase, tree-grafting generates a large
frontier that gradually shrinks as the algorithm progresses level
by level. By contrast, without grafting, a phase starts with
a small frontier (the unmatched vertices) that grows to the
highest size before shrinking. Hence, tree grafting reduces the
height of BFS forests, decreasing the synchronization points
of the parallel algorithm. Furthermore, tree grafting decreases
the number of vertices in an alternating forest (the area under
the curve), thus reducing the work in graph traversals at the
expense of additional work in the tree-grafting step.

VI. CONCLUSIONS

We presented a novel multi-source (MS) cardinality match-
ing algorithm that can reuse the trees constructed in earlier
phases. This method, called tree grafting, eliminates redundant
augmenting path reconstructions, which is a major impedi-
ment of MS algorithms for achieving high performance on
several classes of graphs, especially those with low matching
number. By combining tree-grafting, direction-optimizing BFS
searches, and an efficient parallel implementation, we compute
maximum cardinality matchings an order of magnitude faster
than the current best performing algorithms on graphs with
low matching numbers. The newly developed MS-BFS-Graft
algorithm scales up to 80 threads of an Intel multi-processor,
yields better search rates than its competitors, and is less sen-
sitive to performance variability of multithreaded platforms.
This insensitivity may be valuable for future systems with
nonuniform performance characteristics due to various reasons
such as frequent error correction and near-threshold voltage
scaling [20]. The MS-BFS-Graft algorithm employs level
synchronous BFSs for which efficient distributed algorithms
exist [21]. In future, we plan to develop a distributed memory
MS-BFS-Graft algorithm, which could be used in static pivot-
ing for solving large sparse systems of linear equations [22],
and computing the block triangular form.
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