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Abstract

We discuss the design and implementation of new highly-
scalable distributed-memory parallel algorithms for two
prototypical graph problems, edge-weighted matching and
distance-1 vertex coloring. Graph algorithms in general
have low concurrency, poor data locality, and high ratio of
data access to computation costs, making it challenging to
achieve scalability on massively parallel machines. We over-
come this challenge by employing a variety of techniques,
including speculation and iteration, optimized communica-
tion, and randomization. We present preliminary results on
weak and strong scalability studies conducted on an IBM
Blue Gene/P machine employing up to tens of thousands of
processors. The results show that the algorithms hold strong
potential for computing at petascale.

Key words: Combinatorial scientific computing; graph
coloring; graph matching; parallel algorithms; petascale
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1. Introduction

We discuss on-going work on the design and implementa-
tion of new scalable distributed-memory parallel algorithms
for two prototypical combinatorial problems of central im-
portance to scientific computing, edge-weighted matching
and distance-1 vertex coloring, and present preliminary
results from experiments conducted on an IBM Blue Gene/P
employing up to tens of thousands of processors.

Developing scalable parallel graph algorithms on tera-
scale (and peta-scale) distributed-memory architectures is
challenging for several reasons [17]. Many graph algo-
rithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency.
Graph algorithms possess poor data locality making it
difficult to obtain good memory system performance on
distributed-memory architectures. Computation and commu-
nication schedules can be determined often only at runtime,

which makes compile-time prefetching techniques inapplica-
ble. There is relatively low computation per communicated
word, causing loss of performance on distributed-memory
architectures where communicating a word typically costs
much more than computing with it.

We overcome many of these challenges for the two
problems we consider by employing a variety of techniques.

An optimal solution for the edge-weighted matching
problem can be obtained in polynomial time on a serial
machine. However, such optimal algorithms are ill-suited
for parallelization since they involve long augmenting paths.
We circumvent this difficulty by working with a suitable ap-
proximation algorithm instead. The approximation algorithm
we work with has a near linear-time complexity, guarantees
a solution that is at least half of the optimal weight, and
is amenable for parallelization as it is based on the idea
of identifying locally dominant (heaviest) edges. Although
the algorithm guarantees a half-approximate solution, ex-
perimental evidence indicates that the algorithm often gives
higher than 90% of the optimal weight for graphs that arise
in practice. See Table 1.1 for sample results.

Matrix #Vertices #Edges Quality
ASIC 680k 1, 365, 724 3, 871, 773 99.99%
Hamrle3 2, 894, 720 5, 514, 242 99.36%
rajat31 9, 380, 004 20, 316, 253 100.00%
cage14 3, 011, 570 27, 130, 349 100.00%
ldoor 1, 904, 406 46, 522, 475 100.00%
audikw 1 1, 887, 390 77, 651, 847 100.00%

Table 1.1: Quality of the solution computed by the half-
approximation matching algorithm. The data set consists of the bi-
partite graph representation of randomly chosen matrices from the
University of Florida Sparse Matrix Collection. The first column
identifies the matrices, the second and third columns provide the
size of the corresponding graphs, and the fourth column provides
the quality of the suboptimal solutions relative to optimal solutions
(percentages).

The distance-1 vertex coloring problem is NP-hard to
solve optimally [6]. Yet, a greedy algorithm, which runs
in linear time in the number of edges and uses at most



∆ + 1 colors, where ∆ is the maximum degree in the
graph, often yields near-optimal solution for graphs that
arise in practice when good vertex ordering techniques
are employed—the near optimality of the solutions can be
verified by computing appropriate lower bounds [8]. Such a
greedy coloring algorithm is, however, sequential in nature.
We use speculation and iteration, where concurrency is max-
imized by tentatively allowing inconsistencies and resolving
them later (iteratively), as a technique for overcoming this
obstacle. This iterative approach is further enhanced by
using randomization in the conflict-resolution phase, where
bias and computational load imbalance among processors is
avoided by picking the vertex to be re-colored in the event
of a conflict (an edge whose endpoints have received the
same color) randomly rather than deterministically.

The input graph in both the matching and coloring algo-
rithms is assumed to be already distributed among proces-
sors. In both algorithms, we exploit the parallelism created
due to the initial data distribution. Furthermore, the cost
associated with unavoidable communication is optimized.
The optimization is achieved by aggregating frequent, small
messages into infrequent, large messages, and by doing as
much computation as possible in between communication
phases, even if the computation has to be performed with
incomplete information.

Employing the ingredients outlined above, we imple-
mented the parallel algorithms for the matching and coloring
problems using MPI. We show that the implementations
scale well to tens of thousands of processors for graphs
that are distributed on processors in such a way that the
percentage of boundary vertices is low.

Our work is motivated by the enabling role graph match-
ing and coloring (in many variations) play in computational
science and engineering (CSE) and in high-performance
computing. Examples of contexts in which some variant
of graph matching is used to devise an effective solu-
tion strategy include: maximizing diagonal dominance in
sparse linear solvers—to improve numerical stability in
direct solvers and convergence rate in iterative solvers
[4], [5]; computation of block triangular decomposition of
sparse matrices [22]; computation of sparse bases for under-
determined matrices [21]; the coarsening phase of multi-
level algorithms for graph partitioning [13]; discovery (or
when specified, identification) of substructures in networks
arising in bioinformatics [1], [16] and web technology appli-
cations [19]; etc. Likewise, a few examples of scenarios in
which some variant of graph coloring is used to make overall
computation efficient (or feasible) include: task scheduling
and concurrency discovery in parallel computing [12], [24];
efficient computation of sparse Jacobian and Hessian matri-
ces in numerical optimization [7]; frequency assignment in
wireless networks [15]; etc.

There is a large body of work in the literature on graph
matching and on coloring, but much of it is theoretical in

nature. Few studies are concerned with the development of
efficient implementations useful for CSE. And there does
not seem to exist prior work on parallel implementations
suitable for computing at the tera-scale and beyond. In
this regard, our work stands in contrast to other efforts.
Manne and Bisseling [18] had described, albeit briefly,
a variant of the parallel half-approximation algorithm for
edge-weighted matching presented here and reported results
using up to 32 processors for two test cases. We achieve
much greater scalability primarily by paying careful at-
tention to the communication cost involved. A significant
part of the improvement comes from aggressive message
bundling, where messages sent between the same pair of
processors are grouped as often as possible.

The parallel coloring algorithm presented here is de-
rived from the framework for parallelizing greedy coloring
(based on speculation and iteration) developed by Bozdag
et al [3]. The work in [3] showed that algorithms based
on speculation and iteration outperform previously known
algorithms that rely on iterative computation of maximal
independent sets in parallel. The work also showed how
specialized algorithms—tailored to specific input structures
and computational scenarios—can be designed using the
framework. Experiments in [3] showed that the best special-
ized algorithm scaled well up to a few hundred processors.
The algorithm presented here extends the scalability range
to several thousands of processors. The improvement, here
again, is due to the use of new techniques for reducing inter-
processor communication cost.

2. Preliminaries

Graph matching and coloring problems come in many
variations depending on whether the problem is defined
on a bipartite or a non-bipartite graph, on whether or not
weights are associated with the vertices and/or edges of a
graph, and on the specifics of the computational scenario
under consideration [7], [9]. We focus in this paper on
two specific variants, distance-1 vertex coloring and edge-
weighted matching on non-bipartite graphs.

The goal of the distance-1 vertex coloring problem is
to assign colors to the vertices of a graph such that every
pair of adjacent vertices receives different colors and the
number of colors used is minimized. In the edge-weighted
matching problem, the goal is to find a subset M of the
edges in an edge-weighted graph such that every vertex in
the graph is incident on at most one edge in M and the
sum of the weights of the edges in M is maximized. As
mentioned earlier, the distance-1 coloring problem in NP-
hard, whereas the edge-weighted matching problem is poly-
nomial time solvable. We rely here on a linear-time greedy
heuristic for the coloring problem and near linear-time half-
approximation algorithm for the matching problem.



In the parallel versions of these algorithms that we de-
scribe in the next two sections, the input graph is assumed
to be partitioned and distributed among the available proces-
sors in some reasonable way. By partitioning is meant that
processors are assigned nearly the same number of vertices
and the number of cross edges—edges that connect vertices
assigned to different processors—is relatively small. The
partitioning classifies the vertices as interior and boundary.
An interior vertex is a vertex all of whose neighbors are
assigned to the same processor as itself whereas a boundary
vertex is a vertex that has at least one neighbor assigned to a
different processor. We say that a processor owns the vertices
assigned to it, and assume that a processor is responsible for
coloring (or matching) the vertices it owns. We refer to an
edge whose endpoints are assigned to the same processor as
interior.

Clearly, the subgraphs induced by interior vertices (con-
sisting of only interior edges) are independent of each other.
Hence, a coloring in each can be computed independently
of any other. In the coloring algorithm presented in this
paper, these sub-solutions are concurrently computed and
are conceptually pieced-together to give a partial solution to
the original problem on the entire input graph. To obtain a
complete solution, a coloring of the remainder of the graph,
the interface graph, needs to be computed in parallel—and
this is the phase in our algorithm where speculation is used
and techniques for minimizing inter-processor communica-
tion cost are employed.

In the parallel matching algorithm, the computation on the
subgraphs and the interface graph is not as cleanly delineated
as in the parallel coloring algorithm. Dependencies between
edges make it necessary to interleave the processing of
interior and cross edges. On each processor, the compu-
tation considers interior edges for matching at first. Then,
processors exchange messages as cross edges are considered
for matching. This process is alternated in an asynchronous
manner until the algorithm terminates.

3. Parallel Matching

The approximation algorithm we use for the parallel
computation of a matching M in a graph G = (V,E)
is based on the concept of local dominance: edges that
are heavier than their neighbors are moved from E to M
(M is initially empty) and their neighbors (free edges) are
removed from E; the process continues until E becomes
empty. Preis [23] showed that such a procedure guarantees
a 1/2 approximation factor. Describing the parallel matching
algorithm based on this procedure in full detail requires more
space than is available here. Hence we describe in adequate
detail (i) the sequential algorithm and (ii) the communication
involved in its parallel version within the simplified context
of one vertex per processor. Then, we only sketch the details

of the parallel algorithm in the practical context when the
number of vertices per processor is much larger than one.

3.1. The Sequential Algorithm

A matching based on local dominance can be computed in
linear (O(|E|)) time [23]. Unfortunately, such an implemen-
tation is not well suited for parallelization, since it requires
inspecting augmenting paths that can be arbitrarily long.

Hoepman [10] and later Manne and Bisseling [18] discuss
an implementation, based on maintaining candidate mates,
that is better suited for parallelization. The complexity
of a basic variant of this algorithm is O(|E|∆), where
∆ is the maximum vertex degree. The run time can be
improved to O(|E| log ∆) by sorting the adjacency list of
each vertex based on edge-weights. However, if the weights
are distributed uniformly at random then the expected run
time is O(|E|) [18].

In the candidate mate-based algorithm, for every vertex v,
a candidate mate, denoted as candidateMate(v), is main-
tained. This becomes the true mate, denoted as mate(v), if
v gets matched to it (mate(v) is set to 0 otherwise). Initially,
for every vertex v, candidateMate(v) is set to be the other
endpoint of a heaviest edge incident on v. If there is more
than one such edge then ties are broken by choosing the
neighbor with the smallest label. In addition to the candidate
mate, for every vertex v, a set S(v) that keeps track of all
remaining edges incident on v is maintained. Each set S(v)
is initialized to adj (v).

The algorithm then proceeds by identifying locally
dominant edges, i.e., an edge (u, v) such that
candidateMate(u) = v and candidateMate(v) = u.
Each such edge is moved from E to M and the remaining
edges incident on vertices u and v are removed from E, a
task accomplished by setting mate(u) = v, mate(v) = u,
S(u) = ∅ and S(v) = ∅, and by removing u and v from
S(w), for every vertex w adjacent to u or v. Also, for each
such neighbor vertex w, if candidateMate(w) happens to
be equal to u or v, it is necessary to recompute its value,
considering the endpoints of the remaining edges incident
on w, which are stored in S(w). When no edges remain in
S(w), candidateMate(w) becomes 0.

In a sequential computation this can be implemented
efficiently by processing the matched vertices through a
queue Q. The termination can be controlled either by the
status of E or Q, since both become empty at the same
time. Each time an edge (u, v) is added to M , its two
endpoints u and v are added to Q. When a vertex is removed
from Q, for each one of its exposed neighbors w, S(w) and
candidateMate(w) are updated accordingly.

3.2. A Simple Parallel Algorithm

We now consider how the candidate mate-based algorithm
just described can be parallelized in the simple case where
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Figure 3.1: Visualization of the basic communication in the parallel matching algorithm, using a simple graph (three different stages of
the computation are illustrated).

there is only one vertex mapped to a processor. (The
procedure we describe is similar to the procedure presented
in [10] and [18]).

Three message types are used to communicate between
processors:
• REQUEST—to signal a matching preference,
• SUCCEEDED—to signal that a vertex has already been

successfully matched and is therefore no longer avail-
able for matching, and

• FAILED—to signal that a vertex cannot be matched at
all.

Each such message is sent across some edge (u, v), from
p(u), the processor that owns the vertex u, to p(v), the
processor that owns the vertex v. Accordingly, each message
contains the identities of the endpoints of the corresponding
edges. All communication is asynchronous and point-to-
point.

The computation begins by initializing candidateMate(v)
and S(v), for every vertex v, as before (the processor that
owns vertex v stores all the information about v, including
adj (v)), and by sending REQUEST(v, candidateMate(v))
messages. After that, incoming messages are processed:
processor p(v) listens as long as there still exist edges
incident on v (determined through the status of S(v)), and
its further actions involve sending one of the three types
of messages. Message processing is guaranteed to remove
edges until every set S(v) becomes empty (thus E becomes
empty as well), therefore the computation is guaranteed to
terminate.

For every vertex v an additional set R(v) is used in
the parallel implementation, in order to keep track of the
incoming REQUEST messages. This set is initialized to ∅,
can grow when REQUEST messages are received, and is
emptied when v gets matched.

We illustrate the basic communication involved in the
parallel matching algorithm using the simple example shown
in Fig. 3.1. In the figure, a complete graph on three vertices,
u, v, w, with the weights of edges (u, v), (u, w) and

(v, w) equal to 3, 2 and 1, respectively, is considered.
Initially, candidateMate(u) = v, candidateMate(v) = u,
candidateMate(w) = u, and S(u) = {v, w}, S(v) =
{u, w}, S(w) = {u, v}.

The graph is depicted three times, corresponding to three
different stages of the computation. During the first stage,
all edges are drawn with dashed lines, to indicate that they
are present and free. At this time, the initial messages
REQUEST(u, v), REQUEST(v, u) and REQUEST(w, u) are
sent.

The former two REQUEST messages trigger the move-
ment of edge (u, v) from E to M and the removal of edges
(u, w) and (v, w) from E; this is indicated by drawing
the edges with solid and dotted lines, respectively, in the
last two stages of the computation. Every such handshake
(two symmetric REQUEST messages) implies a locally dom-
inant edge that must be added to M . Furthermore, S(u)
becomes {w}, S(v) becomes {w}, and SUCCEEDED(u, w)
and SUCCEEDED(v, w) messages are sent during the second
stage of the computation, informing vertex w that vertices
u and v are no longer available for matching and that w
should look for some other candidate mate.

In this case w is left with no choice, S(w) becomes
empty and processor p(w) stops listening for further mes-
sages since no edge incident on w is left. However, right
before processor p(w) ends its part of the computation,
FAILED(w, u) and FAILED(w, v) messages are sent during
the third stage of the computation, indicating that vertex w
cannot be matched. This is required in order for S(u) and
S(v) to be updated: they both become empty, which means
that p(u) and p(v) stop listening as well.

Note that a slight variation of the computation is possible
in this example, depending on the timing of the communi-
cation. In the scenario discussed so far there is an implicit
assumption that message SUCCEEDED(v, w) is received by
processor p(w) before message SUCCEEDED(u, w), thus w
is really left with no choice for a candidate mate. However,
if the two SUCCEEDED messages arrive in reverse order, an



Algorithm 3.1 Parallel Matching
procedure PARALLELMATCHING(v)

mate(v)← 0
S(v)← adj (v)
R(v)← ∅
candidateMate(v)← COMPUTECANDIDATEMATE(v)
if candidateMate(v) 6= 0 then

send REQUEST to candidateMate(v)
while S(v) 6= ∅ do

receive message from u ∈ S(v)
if message = REQUEST then

PROCESSREQUESTMESSAGE(u, v)
else if message = SUCCEEDED then

PROCESSSUCCEEDEDMESSAGE(u, v)
else if message = FAILED then

S(v)← S(v) \ {u}

Algorithm 3.2 Process REQUEST Message
procedure PROCESSREQUESTMESSAGE(u, v)

if mate(v) 6= 0 then
return

if candidateMate(v) = u then
mate(v)← candidateMate(v)
S(v)← S(v) \ {mate(v)}
R(v)← ∅
for w ∈ adj (v) \ {mate(v)} do

send SUCCEEDED to w
else

R(v)← R(v) ∪ {u}

opportunity is given to vertex w to consider vertex v as a
candidate mate, resulting in an additional REQUEST(w, v)
message. The final outcome of the computation is, however,
the same.

This simple parallel algorithm is formalized by procedure
PARALLELMATCHING (Algorithm 3.1), which starts the
computation for every vertex v and then keeps processing
incoming messages as long as S(v) is not empty. The
processing is performed by two procedures PROCESSRE-
QUESTMESSAGE and PROCESSSUCCEEDEDMESSAGE (Al-
gorithms 3.2 and 3.3 respectively).

Procedure COMPUTECANDIDATEMATE, omitted here,
simply computes candidateMate(v) out of S(v). Note that
at least two and at most three messages are sent across any
edge.

3.3. The General Parallel Algorithm

The general parallel algorithm (many vertices per pro-
cessor), which is only briefly described here, is based on
the procedures presented so far. We refer the reader to [9]
for a detailed discussion of this algorithm and its analysis.
In a similar work, Manne and Bisseling present a serial
implementation of the Hoepman’s algorithm and discuss its
parallelization using the Bulk Synchronous Parallel (BSP)
model [18]. Our implementation is asynchronous and uses

Algorithm 3.3 Process SUCCEEDED Message
procedure PROCESSSUCCEEDEDMESSAGE(u, v)

S(v)← S(v) \ {u}
if mate(v) 6= 0 then

return
if candidateMate(v) = u then

candidateMate(v)← COMPUTECANDIDATEMATE(v)
if candidateMate(v) 6= 0 then

send REQUEST to candidateMate(v)
if candidateMate(v) ∈ R(v) then

mate(v)← candidateMate(v)
S(v)← S(v) \ {mate(v)}
R(v)← ∅
for w ∈ adj (v) \ {mate(v)} do

send SUCCEEDED to w
else

for w ∈ adj (v) do
send FAILED to w

message-aggregration to optimize communication. In addi-
tion, we provide important implementation details.

We assume that the input graph is pre-distributed on
a set of processors that will be involved in computing a
matching. Cross edges are represented using ghost vertices:
A boundary vertex u is stored on its corresponding processor
p(u) as well as on every other processor p(v) such that (u, v)
is a cross edge. On processor p(v) vertex u represents a
ghost vertex.

As before, for every vertex v the algorithm maintains the
variable candidateMate(v), which becomes the true mate
of v, if v gets matched, or is 0 otherwise; it also maintains
the set S(v) that keeps track of all remaining edges incident
on v. In this case, however, interior and cross edges are
maintained separately.

The parallel computation interleaves local processing for
the interior edges, with asynchronous point-to-point com-
munication for the cross edges, handled with the same three
types of messages. As before, at least two and at most three
messages would be sent across any cross edge; however, in
our algorithm, this number of messages is reduced substan-
tially by bundling together messages sent between the same
pair of processors, whenever possible. This is an important
feature that distinguishes our algorithm from previous ones,
and it makes it possible for the algorithm to scale to tens of
thousands of processors.

The communication reduction is enabled by organizing
the interleaved computation as a double loop, where the
inner loop corresponds to the processing of interior vertices
and the outer loop corresponds to the processing of the
boundary vertices. The inner loop generates no messages
in the algorithm, although an interior vertex might have
to wait for a boundary vertex to be matched or become
available to be matched, before it can decide on its mate.
The inner loop employs a queue Q of matched vertices to be
processed by each processor, terminating when Q becomes
empty. The outer loop seeks to match the boundary vertices,



and might have to communicate with a processor owning
a ghost vertex to find if a cross edge is available to be
matched. In our implementation, the messages generated by
all currently unmatched boundary vertices on a processor
are sent in bundles to its neighboring processors. The
termination of the outer loop is controlled by the number
of cross edges remaining in the subgraph mapped to the
corresponding processor. The number of iterations of the
outer loop required for the parallel algorithm to terminate
depends on the distribution of weights on the edges of the
graph.

In a recent related work, Patwary et al. present a parallel
greedy algorithm for the maximum (cardinality) matching
problem [20]. We note that the maximum matching problem
is different from the maximum-weighted matching problem.

4. Parallel Coloring

The parallel coloring algorithm for which results are
presented in this paper is derived from the framework
for parallel greedy coloring developed in [3]. We begin
this section with a review of the essential features of the
framework, and then point out aspects of the new, improved
algorithm.

4.1. The Framework

By a greedy coloring algorithm is meant an algorithm
that runs through the set of vertices in some order at each
step assigning a vertex v the smallest color not used by
any of the vertices adjacent to v (such a choice of color
is referred to as first-fit). There exist several degree-based
vertex ordering techniques that enable the greedy coloring
algorithm to use near optimal number of colors [8]. The
framework developed in [3] considered how the greedy
coloring could be efficiently parallelized on distributed-
memory architectures.

Given a graph partitioned among the processors of a
distributed-memory machine, in the stated framework, each
processor speculatively colors the vertices assigned to it
in a series of rounds. Each round consists of a tentative
coloring and a conflict detection phase. The coloring phase
in a round is further broken down into supersteps. In each
superstep, a processor first colors a pre-specified number
s � 1 of its assigned vertices sequentially, using color
information available at the beginning of the superstep,
and only thereafter exchanges recent color information with
other, relevant processors. The rationale for using infrequent,
coarse-grained communication (rather than communication
after a single vertex is colored) is to reduce the associated
communication cost.

If two adjacent vertices owned by two different processors
are colored in the same superstep, they may receive the same
color and cause a conflict. In the conflict-detection phase,

therefore, each processor examines those of its boundary
vertices that are colored in the current round for consis-
tency and identifies a set of vertices that needs to be re-
colored in the next round to resolve any detected conflicts.
For a given conflict-edge—a cross edge whose endpoints
have received the same color—it suffices to recolor either
one of the endpoints to resolve the conflict. In order to
achieve a balanced workload distribution across processors,
the vertex to be re-colored is chosen randomly. For this
purpose a random function is defined over boundary vertices
at the beginning of the algorithm (this avoids the need for
generating/communicating a random number each time it
is needed). The conflict detection phase does not require
communication since by the end of the tentative coloring
phase every processor has gathered complete information
about the colors of the neighbors of its vertices. The scheme
terminates when no more conflicts to be resolved remain.
The framework is outlined more formally in Algorithm 4.1.

Several variant algorithms derived from this framework
had been implemented using MPI and experimentally ana-
lyzed in [3]. The objective of the analysis was to determine
the best way in which the various parameters of the frame-
work need to be combined in order to reduce both runtime
and number of colors. Among the questions the analysis
attempted to answer are: How large should the superstep
size s be? Should the supersteps be run synchronously or
asynchronously? Should interior vertices be colored before,
after, or interleaved with boundary vertices? How should
a processor choose a color for a vertex (options of strate-
gies here include first-fit, staggered first-fit, least-used etc)?
Should inter-processor communication be customized or
broadcast-based?

Experiments were carried out on two different platforms
(PC clusters) using large-size synthetic as well as real graphs
drawn from various application areas. The computational
results obtained show that, for large-size well-partitioned
graphs (have a small fraction of boundary vertices), a combi-
nation of parameters in which (i) a superstep size in the order
of a thousand is used, (ii) supersteps are run asynchronously,
(iii) each processor colors its assigned vertices in an order
where interior vertices appear either strictly before or strictly
after boundary vertices, (iv) a processor chooses a color
for a vertex using a first-fit scheme (where the smallest
available color is chosen at each coloring step), and (v)
inter-processor communication is customized gives overall
the best performance. This variant is called FIAC in [3].

For poorly-partitioned graphs (a majority of the vertices
are boundary), good performance was observed to be attain-
able by using a superstep size close to a hundred in item
(i), a broadcast based communication mode in item (v), and
by keeping the remaining parameters as in the case with
well-partitioned graphs. This variant is called FIAB in [3].

For most of the test graphs used in the experiments in
[3], algorithms FIAC and FIAB converged rapidly—within



Algorithm 4.1 A Parallel Coloring Framework. Input: graph G = (V,E) and superstep size s. Initial data distribution: V
is partitioned into p subsets V1, . . . , Vp; processor Pi owns Vi, stores edges Ei incident on Vi, and stores the identity of
processors hosting the other endpoints of Ei.

procedure PARALLELCOLORING(G = (V,E), s)
on each processor Pi, i ∈ I = {1, . . . , p}

for each boundary v ∈ V ′i = {u|(u, v) ∈ Ei} do
Assign v a random number r(v) generated using v’s ID as seed

Ui ← Vi . Ui is the current set of vertices to be colored
while ∃j ∈ I, Uj 6= ∅ do

if Ui 6= ∅ then
Partition Ui into `i subsets Ui,1, . . . , Ui,`i

, each of size s
for k ← 1 to `i do . each k corresponds to a superstep

for each v ∈ Ui,k do
assign v a “permissible” color c(v)

Send colors of boundary vertices in Ui,k to other processors
Receive color information from other processors

Wait until all incoming messages are successfully received
Ri ← ∅ . Ri is a set of vertices to be re-colored
for each boundary vertex v ∈ Ui do

if ∃ (v, w) ∈ Ei where c(v) = c(w) and r(v) < r(w) then
Ri ← Ri ∪ {v}

Ui ← Ri

end on

at most six rounds—and yielded fairly good speedup when
up to a few hundred processors are used. These algorithms
were also compared with maximal independent set-based
parallel coloring algorithms of the kinds suggested by Jones
and Plassmann [11], and they were found to be consistently
superior in performance. The main reason for the better
performance is that the framework in Algorithm 4.1 uses
provably fewer or at most as many rounds as the maximal
independent set-based algorithm [3].

4.2. The New Algorithm

The algorithm presented in this paper is an enhancement
of the FIAC scheme for scalability. Like FIAC, inter-
processor communication in the new algorithm is cus-
tomized, but it is performed in a different way. We explain
next the difference between FIAC, the new algorithm and the
broadcast based variant FIAB. Let B be the set of boundary
vertices owned by a processor Pi, and let BS ⊆ B denote the
vertices colored by Pi in a superstep S. We say a processor
Pj is neighbor to the processor Pi if processor Pj owns at
least one vertex that is adjacent to some vertex in B, and
we call Pj superstep-neighbor to Pi if Pj owns at least one
vertex that is adjacent to some vertex in BS .
• In algorithm FIAB, processor Pi sends the same mes-

sage, the union of the colors of the vertices in BS , to
every other processor Pk in the system.

• In algorithm FIAC, processor Pi again sends mes-
sages to every other processor Pk in the system, but

each message (color information) is customized to the
processor Pk. In the case where Pk does not own a
vertex adjacent to some vertex in BS , then the message
would be “empty”. Therefore, compared to FIAB, this
reduces the total message volume, but not the number
of messages.

• In the new algorithm, processor Pi sends customized
messages to every neighboring processor Pj . Clearly,
this reduces both the volume and the number of mes-
sages.

The implementation of the new algorithm is made avail-
able as part of the Zoltan parallel data management and
load-balancing library [2].

5. Preliminary Experimental Results

We present in this section a small set of experimental re-
sults on the improved parallel distance-1 coloring algorithm
just described and the parallel half-approximation algorithm
for edge-weighted matching discussed in Section 3.

5.1. Experimental Setup

As inputs for this preliminary investigation on weak and
strong scalability, we use a set of synthetically generated
graphs and two real-world graphs derived from a circuit
simulation application.

The synthetic graphs are five-point grid graphs that are
model problems for partial differential equations. In these



Figure Problem Scaling Input graph Distribution Max proc
Fig. 5.1 matching & Weak k × k grid graphs, various k Uniform 2D 16,384

coloring smallest: |V | ≈ 64M , |E| ≈ 128M
largest:|V | ≈ 1B, |E| ≈ 2B

Fig. 5.2 matching & Strong 32,000 × 32,000 grid graph Uniform 2D 16,384
coloring |V | ≈ 1B, |E| ≈ 2B

Fig. 5.3 matching Strong Circuit simulation graph1 METIS 4,096
|V | ≈ 3.2M , |E| ≈ 7.7M (6% edge cut)

Fig. 5.4 coloring Strong Circuit simulation graph2 ParMETIS 4,096
|V | ≈ 1.5M , |E| ≈ 3M (40% edge cut)

Max and Min degree: 6 and 2

Table 5.1: Overview of experimental setup and results.

graphs, a node in a two-dimensional grid is connected to its
neighbors to the east, west, north and south (except at the
boundaries). These graphs are too simplistic to be reasonable
choices for experiments on either coloring or matching in
terms quality of solution (i.e. the number of colors used
and the weight of the matching obtained). For example,
exploiting the available structure, a five-point grid graph
can be colored using just two colors. We do not exploit the
structure of the grid graphs in our experiments. Similarly,
for the matching case, a solution close to optimal could be
obtained fairly easily, again exploiting the structure. Rather,
we use the grid graphs to be able to conduct weak scalability
study, where input size needs to be increased in proportion
to the number of processors employed.

The grid graphs were generated in parallel, distributed
in a two-dimensional fashion among the available proces-
sors. Each processor owns a subgraph corresponding to
an appropriate portion of the grid and is responsible for
computational tasks on the subgraph, in coordination with
neighboring processors. For instance, in an experiment with
an input grid graph of size 8, 000 × 8, 000 run on 1, 024
processors (a 32 × 32 processor-grid ), each processor is
assigned a subgraph corresponding to a 250× 250 grid. As
the input size is doubled, the number of processors is also
doubled. Hence, ideally, the runtime is expected to remain
constant. We considered k × k grid graphs for values of
k ranging from 8, 000 to 32, 000. For the experiments on
matching, the edges in the graphs were assigned random
weights. This ensured that the grid structure did not play a
significant role for the scalability study.

The two real-world test graphs, used in our experiments
on strong scalability, are generated out of a matrix obtained
from the University of Florida Sparse Matrix Collection.
The matrix (named G 3 circuit) originates from a circuit
simulation application. For the experiment on the matching
algorithm, a bipartite graph representation of the matrix was
used, whereas for the experiments on coloring an adjacency
graph representation was used. For the experiments on
matching the graph was distributed among the processors
using the serial partitioning software tool METIS [13].
For the experiment on the coloring algorithm, the graph

was distributed among the processors using the parallel
partitioning tool ParMETIS [14]. METIS generally gives
much superior partitioning quality compared to ParMETIS
on a large number of processors. We used these two different
partitioning tools in our experiments, instead of just the
one that is more favorable to our algorithms, to show that
the algorithms deliver good performance even for relatively
poorly distributed input data.

The coloring experiments were carried out using the
Zoltan Toolkit [2] as a base framework. The experiments
were performed on Intrepid, the IBM Blue Gene/P machine
at Argonne’s Advanced Leadership Computing Facility.

5.2. Results

The scalability results we obtained are summarized in
Figure 5.1 through Figure 5.4. Table 5.1 gives a quick
overview of the experimental setup along with some of the
information contained in the figures. The compute times
reported in Figures 5.1 to 5.4 concern total coloring or
matching time, excluding the time taken to partition the input
graph (in the case of the experiment on the circuit simulation
graphs, Figures 5.3 and 5.4) or to do I/O.

On the grid graphs, it can be seen that both the matching
and the coloring algorithm exhibited excellent scalability—
both in terms of weak (Figure 5.1) and strong (Figure 5.2)
scaling. The observed behavior is in part due to the near-
ideal manner in which the grid graphs are distributed across
processors.

The observed scalability in the experiment on the circuit
simulation graphs (Figure 5.3 and Figure 5.4) is expectedly
less than ideal, but still highly impressive, since the graph
distribution across processors, attained here using the two
graph partitioning tools METIS and ParMETIS, is far from
ideal. For example, when partitioned with METIS on 4, 096
processors (as is done in the experiment on the matching
algorithm), nearly 6% of the edges of the circuit simulation
graph get cut (become cross edges). When partitioned using
ParMETIS on the same number of processors (as is done
in the experiment on the coloring algorithm), nearly 40%
of the edges of the graph get cut. The relative performance
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Figure 5.1: Weak scaling on various five-point grid graphs. Top,
matching. Bottom, coloring.

degradation for large number of processors and the relative
performance difference on the results on matching and
coloring seen in Figures 5.3 and 5.4 reflect the impact cross
edges have on overall performance.

On both the grid graphs and the circuit simulation graph,
the parallel matching algorithm yielded a solution in which
the sum of the weights of edges in the computed matching
remained the same, regardless of the number of processors
used. The number of colors the parallel coloring algorithm
uses varied as the number of processors is varied, but in
general remained nearly the same as the number used by
the underlying serial algorithm.

6. Concluding Remarks and Outlook

We plan to present in future work more comprehensive
experimental results and details that were omitted for space
consideration.

Emerging many-core computing platforms are likely to be
comprised of cores that in turn support parallelism via mul-
tithreading. Implementations that harness the full potential
of such architectures will need to rely on the use of hybrid
distributed-memory and shared-memory programming, for
example, via the combined use of MPI and OpenMP. In
future work, we will investigate how the coloring and
matching algorithms developed here could be extended to
employ such bi-level, hybrid programming approaches.
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Figure 5.2: Strong scaling on a five-point, 32, 000× 32, 000 grid
graph. Top, matching. Bottom, coloring.
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Figure 5.3: Strong scaling of the matching algorithm on a bipartite
graph of a circuit simulation application (3.2 million vertices and
7.7 million edges; edge cut at 4096 processors: 6%.)
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Figure 5.4: Strong scaling of the coloring algorithm on the
adjacency graph of a circuit simulation application (1.5 million
vertices and 3 million edges; edge cut at 4096 processors: 40%).
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