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The computation of a sparse Hessian matrix H using automatic differentiation (AD) can be

made efficient using the following four-step procedure.

1. Determine the sparsity structure of H.

2. Obtain a seed matrix S that defines a column partition of H

using a specialized coloring on the adjacency graph of H.

3. Compute the compressed Hessian matrix B = HS.

4. Recover the numerical values of the entries of H from B.

The coloring variant used in the second step depends on whether the recovery in the fourth

step is direct or indirect: a direct method uses star coloring, and an indirect method uses

acyclic coloring. In an earlier work, we had designed and implemented effective heuristic

algorithms for these two NP-hard coloring problems. Recently, we integrated part of the

developed software with the AD tool ADOL-C, which has recently acquired a sparsity detec-

tion capability. In this paper, we provide a detailed description and analysis of the recovery

algorithms, and experimentally demonstrate the efficacy of the coloring techniques in the

overall process of computing the Hessian of a given function using ADOL-C as an example

of an AD tool. We also present new analytical results on star and acyclic coloring of chordal

graphs. The experimental results show that sparsity exploitation via coloring yields enor-

mous savings in runtime and makes the computation of Hessians of very large size feasible.

The results also show that evaluating a Hessian via an indirect method is often faster than

a direct evaluation. This speedup is achieved without compromising numerical accuracy.
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1 Introduction

Background. Solvers for nonlinear optimization problems such as IPOPT [19] and

LOQO [18] require second-order derivatives of the Lagrangian function. Further, exact

Hessians are needed in parametric sensitivity analysis, such as in the control of dynamical

systems in real time [2]. A Hessian matrix or Hessian-vector products can be computed

accurately using automatic differentiation (AD), a generic name for a set of chain-rule based

techniques for evaluating derivatives of a function given as a computer program [11].

A Hessian matrix that arises in a large-scale application is typically sparse. Sparsity,

along with symmetry, can be exploited to reduce the runtime and the storage required to

compute the Hessian using AD (or estimate it using finite differences). Matrix compression

has been found to be an effective technique in this context: Given an n×n Hessian matrix H

of known sparsity structure, an n×p seed matrix S, with p as small as possible, is determined;

then the numerical values in the n× p compressed matrix B ≡ HS are obtained using AD;

and finally the nonzero entries of the original Hessian H are recovered from the compressed

representation B.

One way a matrix H is compressed to form a matrix B is to partition the columns of H

into p structurally disjoint groups and let each column of B be the sum of the columns of

H that belong to the same group. Mathematically, S is an n× p matrix whose (j, k) entry

is 1 if column hj of the matrix H belongs to group k, and 0 otherwise. Since the matrix S

defines a partitioning of the columns of H, each of its entries is either zero or one, and in

every row r of S there exists exactly one column c where the entry src is equal to one.

The criteria used to find a suitable seed matrix S where the parameter p is minimized—

the specific partitioning problem—depends on whether the numerical values of the entries of

the Hessian H are to be recovered from the compressed matrix B directly or indirectly (via

substitution). In a direct recovery, no further arithmetic is required, whereas in a recovery

via substitution, a set of simple triangular systems of equations needs to be solved implicitly.

The partitioning requirements for a seed matrix suitable for a substitution method are less

strict than the requirements for a seed matrix appropriate for a direct method. Hence, the

former usually results in a smaller p compared to the latter.

The computation of a seed matrix requires only structural information. Such matrix

problems can be formulated conveniently and solved as graph problems. Coleman and Moré

[4] showed that a star coloring of the adjacency graph of a Hessian models the partitioning
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problem that occurs in the computation of the Hessian via a direct method. Coleman and

Cai [3] showed that the corresponding model in a substitution-based computation is acyclic

coloring. These specialized graph coloring problems are described in Section 2.

In a previous work, we had developed effective heuristic algorithms for the NP-hard

star and acyclic coloring problems, and showed that the algorithms are superior to previous

approaches [9]. In an even earlier work [8], we had provided a comprehensive review of the

role of graph coloring in the efficient computation of Jacobians and Hessians. Recently, we

have developed efficient algorithms for recovering the numerical values of a Hessian from a

compressed representation obtained using a star or an acyclic coloring. These algorithms

take advantage of two-colored structures that the associated coloring algorithms maintain.

Our implementations of the coloring as well as the recovery algorithms, which form part of

the software package COLPACK [10], have been integrated with ADOL-C, an operator

overloading based AD tool for the differentiation of functions specified in C/C++ [12].

Walther [20] has recently developed a sparsity detection technique for Hessians and added

the functionality to ADOL-C.

Contributions. Our contributions in this paper are analytical as well as experimental.

In terms of theory, in Section 3, we provide a detailed description and analysis of the Hessian

recovery algorithms mentioned earlier. Our analysis includes time complexity as well as

numerical stability: we show that our recovery algorithms are linear in the size of the problem

and that indirect recovery using two-colored trees is nearly as stable as direct recovery. We

also present, in Section 4, new results on star and acyclic coloring of chordal graphs, a class

to which adjacency graphs of banded matrices belong.

Experimentally, we demonstrate in Section 5 the advantage coloring techniques offer in

sparse Hessian computation using AD. We use two test-cases: a real-world power transmis-

sion problem and a synthetic unconstrained quadratic optimization problem. In both cases,

we compute Hessians of various dimensions and sparsity structures, including banded and

random structures, using ADOL-C. The results obtained show that sparsity exploitation

via star and acyclic coloring enables one to compute affordably Hessians of dimensions that

could not have been computed otherwise. For sizes where dense Hessian computation is at

least possible, the saving in runtime obtained by exploiting sparsity via coloring is dramatic.

Further, an indirect method that uses acyclic coloring quite often is found to be faster than

a direct method that relies on star coloring, considering the overall process. This speedup

is achieved without compromising numerical accuracy. The experimental results also show
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that both the star and the acyclic coloring heuristic algorithm we used find optimal solutions

for banded matrices.

Related work. In sparse Hessian computation, an approach that can be used either

orthogonal to or in combination with compression is the use of elimination techniques on the

computational graph of the Hessian. This approach was first considered by Dixon [6] and is

the subject of current research in the AD community. Partial separability is another related

approach used in sparse Hessian computation. Gay [7] has considered such an approach and

its implementation using AMPL.

2 Graph Coloring

In the current work, we have used the star and acyclic coloring algorithms we had developed

earlier [9]. After reviewing a few preliminary concepts, we briefly discuss these algorithms

in this section.

2.1 Preliminaries

Two distinct vertices in a graph are distance-k neighbors if a shortest path connecting them

consists of at most k edges. The degree-k of a vertex v, denoted by dk(v), is the number

of distinct paths of length at most k edges that start at the vertex v; the average degree-k

is denoted by dk(v). A distance-k coloring of a graph G = (V, E) is a mapping φ : V →

{1, 2, . . . , p} such that whenever vertices v and w are distance-k neighbors, φ(v) 6= φ(w).

The kth power of a graph G = (V, E) is the graph Gk = (V, F ) where (v, w) ∈ F whenever

vertices v and w are distance-k neighbors in G. A mapping φ is a distance-k coloring of a

graph G if and only if φ is a distance-1 coloring of the graph Gk.

A star coloring of a graph is a distance-1 coloring where, in addition, every path in the

graph on four vertices (P4) is required to use at least three colors. An acyclic coloring of

a graph is a distance-1 coloring with the further restriction that every cycle in the graph

uses at least three colors. The names star and acyclic coloring are due to the structure of

two-colored induced subgraphs. In a star-colored graph, a subgraph induced by any two

color classes—sets of vertices having the same color—is a collection of stars. A star is a

complete bipartite graph in which one of the vertex sets consists of a single vertex, called

the hub. The other vertices of the star are spokes. An edge is a degenerate case of a star,

in which one vertex is the hub and the other, the spoke, assigned arbitrarily. Similarly, in
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an acyclically-colored graph, a subgraph induced by any two color classes is a collection of

trees, and thus acyclic.

Each one of the distance-k, star and acyclic coloring problems, whose objective is to

appropriately color a graph using the fewest possible colors, is known to be NP-hard [3, 4, 13].

The minimum number in each case is referred to as a specialized chromatic number of the

graph. The distance-k chromatic number χk(G), the star chromatic number χs(G), and the

acyclic chromatic number χa(G) of a general graph G are all known to be hard to approximate

[9]. The following observation on the relationship among these chromatic numbers follows

directly from the definitions of the various colorings and the fact that a distance-1 coloring

of a graph G is equivalent to a distance-2 coloring of the square graph G2.

Observation 2.1. For every graph G, χ1(G) ≤ χa(G) ≤ χs(G) ≤ χ2(G) = χ1(G
2).

2.2 Star and acyclic coloring algorithms

The star and acyclic coloring heuristic algorithms we developed in [9] are founded on one

common key idea: maintain and efficiently use the structure of two-colored induced sub-

graphs. As stated earlier, the respective subgraphs here are a collection of stars or trees.

Both algorithms are greedy in the sense that a partial coloring is progressively extended by

processing one vertex at a time. In each step, a vertex v of an input graph G = (V, E) is

assigned the smallest allowable color with respect to the current partial coloring. This is

achieved by first determining the set of forbidden colors to the vertex v. Here, identifying

and forbidding colors used by the vertices adjacent to the vertex v is straightforward. Main-

taining the collection of two-colored structures turns out to be crucial for identifying and

forbidding colors that could lead to two-colored paths on four vertices in the case of star

coloring and to two-colored cycles in the case of acyclic coloring.

For star coloring, there are exactly two cases that need to be considered to avoid a

two-colored P4 involving the vertex v.

1. If the vertex v has two adjacent vertices w and x of the same color, then the color

of every vertex adjacent to w and the color of every vertex adjacent to x should be

marked as a forbidden color to the vertex v.

2. If the vertex v has exactly one adjacent vertex w of color c, and w belongs to a star

S consisting of at least two edges but is not the hub of S, then the color used by the

hub of S should be marked as a forbidden color to the vertex v.
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Likewise, for acyclic coloring, there is one case that needs to be addressed to avoid a two-

colored cycle involving the vertex v.

If the vertex v is adjacent to two vertices in a two-colored tree T , and these vertices

have the same color, then the other color used in the tree T should be marked as a

forbidden color to the vertex v.

Once the color for the vertex v is determined, every edge incident on v that leads to an

already colored vertex is placed in the appropriate two-colored structure. Note that since

a star (resp. an acyclic) coloring is also a distance-1 coloring, there is a unique two-colored

star (resp. two-colored tree) to which such an edge belongs. In other words, a star (resp. an

acyclic) coloring partitions the edge set of a graph into two-colored stars (resp. two-colored

trees). In the acyclic coloring algorithm being described, the placement of an edge in a two-

colored tree may result in the merging of two previously disconnected trees in a two-colored

forest. Such a situation does not arise in the star coloring case.

In [9] it was shown that the acyclic coloring algorithm sketched above can be implemented

efficiently using the disjoint-set data structure to maintain the collection of two-colored trees.

A simpler data structure was shown to be sufficient for a similar purpose in the star coloring

algorithm. The complexity of the star and the acyclic coloring algorithm was shown to be

O(|V |d2) and O(|V |d2 · α), respectively, where α is the inverse of Ackermann’s function, a

function that grows very slowly with |V |.

3 Sparse Hessian Computation

We now relate the graph coloring variants discussed in the previous section with partitioning

strategies for Hessian compression for direct and indirect recovery.

3.1 Direct method

Matrix partitioning. For a direct recovery, the columns of a Hessian matrix H need to

be partitioned in such a way that for every nonzero entry hij, either hij or its symmetric

counterpart hji appears as a sole entry in the compressed matrix. A symmetrically orthogonal

partition of H precisely captures this requirement. A partition of the columns of a Hessian H

is symmetrically orthogonal if for every nonzero element hij, either (1) the group containing

column hj has no other column with a nonzero in row i, or (2) the group containing column

hi has no other column with a nonzero in row j.
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Figure 1: Top—a symmetrically orthogonal partition of the columns of a Hessian and its repre-
sentation as a star coloring of the adjacency graph. Bottom—the compressed matrix obtained by
adding together columns that belong to the same group in the partitioning.

The left part of the upper row of Figure 1 illustrates a symmetrically orthogonal partition

of a Hessian matrix H with a specific sparsity pattern. A nonzero entry of H is denoted by

the symbol ‘X’ and a zero entry is left blank. The ten columns of H are partitioned into five

groups and columns that belong to the same group are painted with the same color. The five

groups in the partition are also identified by the integers 1 through 5, as shown at the bottom

edge of the matrix. The partition in the illustration defines a 10× 5 seed matrix, which we

denote by S1. For example, column 1 of S1 has 1’s in rows 1, 3, 5 and 9, corresponding to

the columns of H that belong to group 1 (color red), and 0’s in all other rows. The lower

row of Figure 1 shows the resultant compressed matrix B1 = HS1. The reader can easily

verify that every nonzero entry of the matrix H (or its symmetric counterpart) can be read

off directly from some entry of the matrix B1.

Coloring model. Let H be a Hessian each of whose diagonal elements is nonzero. The

adjacency graph G(H) of the matrix H is an undirected graph whose vertex set consists of

the columns of H and whose edge set consists of pairs (hi, hj) whenever the matrix entry

hij, i 6= j, is nonzero. In such a graph, entries hij and hji are represented by the single edge

(hi, hj) and there are no explicit edges representing the diagonal entries of H. Coleman and

Moré [4] established that the problem of finding a symmetrically orthogonal partition of a

Hessian having the fewest groups is equivalent to the star coloring problem on its adjacency
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Input: The adjacency graph G(H) of a Hessian H of order n; a vertex-indexed integer array color

specifying a star coloring of G(H); a compressed matrix B representing H.
Output: Numerical values in H.

for i← 1, 2, . . . , n
for each j where hij 6= 0

if ∃j′ 6= j where hij′ 6= 0 and color[hj ] = color[hj′ ]
H[j, i]← B[j, color[hi]];

else

H[i, j]← B[i, color[hj ]];
end-if

end-for

end-for

Figure 2: directRecover1—a routine for recovering a Hessian from a star-coloring based com-
pressed representation.

graph. The right part of the upper row of Figure 1 illustrates this equivalence.

Recovery routines. Figure 2 outlines a simple routine, called directRecover1, for

recovering the numerical values of the nonzero entries of a Hessian H from its compressed

representation B obtained via a star coloring of G(H). The routine achieves this by consid-

ering the structure of H one row at a time. The nonzero entries in a specific row are in turn

considered one element at a time. For each nonzero entry hij in row i, the if-test in the inner

for-loop checks whether there exists a column index j ′ where entries hij and hij′ ‘collide’, i.e.,

columns hj and hj′ belong to the same group. Depending on the outcome of the test, either

the entry hij or the entry hji is read from an appropriate location in the matrix B. Clearly,

the if-test can be performed within O(d1(hi)) time, where hi is the vertex being considered in

the current iteration of the outer for-loop, and d1(hi) is its degree-1 in the adjacency graph

G(H). Hence, the complexity of directRecover1 is O(|E| · d1), where d1 is the average

vertex degree in G(H).

The recovery of Hessian entries in a direct method theoretically could be done more effi-

ciently by using the set of two-colored stars defined by a star coloring of the adjacency graph.

Specifically, directRecover2, the routine specified in Figure 3, shows that the recovery

of the entries of the matrix H from the matrix B can be done in O(|E|)-time when the two-

colored structures are readily available. As can be seen in the first for-loop, since adjacent

vertices in a star coloring receive different colors, each diagonal element hii can be retrieved

simply from B[i, color(hi)]. The second (outer) for-loop shows that each off-diagonal element

hij can be obtained by consulting the unique two-colored star to which the edge (hi, hj)
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Input: The adjacency graph G(H) of a Hessian H of order n; a vertex-indexed integer array color

specifying a star coloring of G(H); a set S of two-colored stars; a compressed matrix B representing
H. Output: Numerical values in H.

for i← 1, 2, . . . , n
H[i, i]← B[i, color[hi]];

end-for

for each two-colored star S ∈ S
Let hj be the hub vertex in S;
for each spoke vertex hi ∈ S

H[i, j]← B[i, color[hj ]];
end-for

end-for

Figure 3: directRecover2—a routine using two-colored stars for recovering a Hessian from a
star-coloring based compressed representation.

belongs. The reader is encouraged to see the routine in Figure 3 in conjunction with the

illustration in Figure 1. For example, one can see that all of the edges (off-diagonal nonzeros)

that belong to the red-blue (color 1-color 2) star induced by the vertices {h1, h2, h3, h5} can

be obtained from the group that corresponds to the color of the hub vertex h2 (i.e. column

2 of B1). Note also that an edge such as (h1, h7) that belongs to a single-edge-star can be

obtained from either one of its endpoints.

3.2 Substitution method

Matrix partitioning. If the requirement that the entries of a Hessian be recovered directly

from a compressed representation is relaxed, then the compression can be done much more

compactly. One possibility here is to use what is called a substitutable partition. A partition

of the columns of a symmetric matrix H is substitutable if there exists an ordering on the

elements of H such that for every nonzero element hij, either (1) column hj is in a group

where all the nonzeros in row i, from other columns in the same group, are ordered before

hij, or (2) column hi is in a group where all the nonzeros in row j, from other columns in

the same group, are ordered before hij. In the definition just stated, a nonzero entry hij

of a symmetric matrix H is identified with the entry hji. A nonzero entry hij is said to be

ordered before a nonzero entry hi′j′ if hij is evaluated before hi′j′.

Coloring model. Fortunately, the rather clumsy notion of substitutable partition has

a simple graph coloring formulation: Coleman and Cai [3] proved that an acyclic coloring of

the adjacency graph of a Hessian induces a substitutable partition of its columns. Thus, the
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Figure 4: Top—a substitutable partition of the columns of a Hessian and its representation as
an acyclic coloring of the adjacency graph. Bottom—the compressed matrix obtained by adding
together columns that belong to the same group in the partitioning.

problem of finding a substitutable partition with the fewest groups reduces to the problem

of finding an acyclic coloring with the fewest colors.

We use the illustration in Figure 4 to show how an acyclic coloring can be used to obtain

a substitutable partition. The matrix H shown in Figure 4 has the same sparsity structure

as the matrix in Figure 1. The coloring of the adjacency graph G(H) depicted in Figure 4

is clearly acyclic. In the illustration, the columns of the matrix H have been painted in

accordance with the shown acyclic coloring of G(H). The lower row shows the compressed

matrix obtained using the seed matrix S2 defined by the depicted acyclic coloring.

Recovery routine. We proceed to show how the acyclic coloring in Figure 4 will be

used in recovering the entries of the matrix H from the compressed matrix B2 = HS2.

First, observe that every diagonal element hii is directly recoverable from the compressed

matrix B2, since hii appears “alone” in row i and column k of the matrix B2, where k

corresponds to the group to which column hi belongs. This is a direct consequence of the

fact that adjacent vertices in an acyclically colored graph, as in a star-colored graph, receive

different colors.

Next, consider the task of determining the off-diagonal nonzero entries hij, i 6= j. Recall

that each such matrix entry and its symmetric counterpart correspond to an edge in the

adjacency graph, and an acyclic coloring partitions the edges of the graph into two-colored
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trees. We use each of these two-colored trees, separately, to define an order in which edges

can be solved for.

In a two-colored tree, every edge incident on a leaf vertex can be determined directly

since it is the only nonzero in a row of the group of columns to which its parent vertex

belongs. As an example, consider the red-blue (color 1-color 2) tree in Figure 4 induced by

the vertices {h1, h2, h3, h4, h5, h7, h9, h10}. In this tree, the vertex h7 is a leaf, and the edge

(h7, h1) can be immediately read from row 7 of the first column of B2, the group to which

column h1 belongs. Similarly, the vertex h9 is a leaf, and the edge (h9, h10) can be read from

row 9 of the first column of B2, again the group to which column h10 belongs. Likewise, edge

(h5, h2) can be directly obtained from B2[5, 2].

Once the edges incident on leaf vertices have been determined, they can be deleted from

the tree to create new leaves. The process can then be repeated to solve for edges incident

on the new leaf vertices, by using values computed for the leaf edges from earlier steps.

The process terminates when the tree becomes empty, i.e., when all of the edges have been

evaluated. In general, there are alternative ways in which an edge can be solved for, so the

evaluation process is not unique.

Returning to our illustration, in the red-blue tree, once the edges (h7, h1), (h9, h10), and

(h5, h2) have been evaluated and deleted, the path h1–h2–h3–h4–h10 remains. In this path,

the edges (h1, h2) and (h10, h4) are incident on leaf vertices; the edge (h1, h2) can be evaluated

using B2[1, 2] and the previously computed value for the edge (h7, h1), and the edge (h10, h4)

can be evaluated using B2[10, 2] and the previously computed value for the edge (h9, h10).

After this, the edges (h1, h2) and (h4, h10) can be deleted, leaving the path h2–h3–h4 from

which the edges (h2, h3) and (h3, h4) can be evaluated.

The red-blue tree in Figure 4 enabled the determination of seven of the thirteen distinct

off-diagonal nonzero entries. The remaining six nonzeros are determined using the other two

trees, the red-yellow (color 1-color 3) tree and the blue-yellow (color 2-color 3) tree.

We summarize the process we have been describing thus far in Figure 5, where we outline

the routine indirectRecover for evaluating the nonzeros of a Hessian from a compressed

representation induced by an acyclic coloring. Note the resemblance between the routines

directRecover2 and indirectRecover. The first for-loops in each case correspond

to the determination of diagonal nonzeros, and the second for-loops to the recovery of off-

diagonal nonzeros from two-colored stars (resp. trees). In indirectRecover, the variable

storedValues is used to store edge values that will be “substituted” in the determination of
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Input: The adjacency graph G(H) of a Hessian H of order n; a vertex-indexed integer array
color specifying an acyclic coloring of G(H); a set T of two-colored trees; a compressed matrix B
representing H. Output: Numerical values in H.

for i← 1, 2, . . . , n
H[i, i]← B[i, color[hi]];

end-for

for each two-colored tree T ∈ T
for each vertex hj ∈ T

storedValues[hj ]← 0;
end-for

while the tree T is not empty
Pick a leaf vertex hi ∈ T ;
Let hj be the parent of hi in T ;
H[i, j]← B[i, color[hj ]]− storedValues[hi];
storedValues[hj ]← storedValues[hj ] + H[i, j];
Delete vertex hi (along with edge (hi, hj)) from T ;

end-while

end-for

Figure 5: indirectRecover—a routine using two-colored trees for recovering a Hessian from an
acyclic-coloring based compressed representation.

edges in later steps. Specifically, let (hi, hj) be a pair of child and parent vertices, respectively,

in a two-colored tree T , and let T (hi) denote the subtree of T rooted at the vertex hi that

would remain if the edge (hi, hj) were to be removed from T . Then it is easy to see that the

quantity stored in the variable storedValues at the index hi is

storedValues[hi] =
∑

(hr ,hs)∈ET (hi)

H
[
r, s

]
, (1)

where ET (hi) denotes the set of edges in the tree T (hi), and the entry H[i, j] of the Hessian

is computed using the equation

H
[
i, j

]
= B

[
i, color[hj]

]
− storedValues[hi] . (2)

Using appropriate data structures, the computational work associated with each two-colored

tree in indirectRecover can be performed in time proportional to the number of edges

in the tree. Thus, the overall complexity of indirectRecover on an adjacency graph

G(H) = (V, E) is O(|E|).
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3.3 Numerical stability

How does the routine indirectRecover compare with the routines directRecover1

or directRecover2 in terms of numerical stability? The answer to this question turns

out to be quite positive: indirectRecover for practical purposes is nearly as stable as

directRecover. Our analytical justification for this claim is a natural extension of the

works of Powell and Toint [17] and Coleman and Cai [3] who analyzed the error bounds

associated with (specialized) substitution methods in the context of Hessian estimation using

finite differences. In our context, since the compressed Hessian B is computed analytically

using automatic differentiation (and thus exactly within machine precision), the associated

numerical stability analysis is fundamentally different. Issues such as truncation error and

choice of step-length do not arise in our context.

The only arithmetic operations involved in indirectRecover are subtraction and ad-

dition; the absence of division is highly favorable for numerical stability. Furthermore, the

determination of nonzeros (edges) in one two-colored tree is entirely independent of the de-

termination of edges in another two-colored tree, and therefore there is less opportunity for

error magnification. As we shall show shortly, the error accumulation within a two-colored

tree is in turn very limited.

Let (hi, hj) be an edge in the input graph G(H) = (V, E) to indirectRecover, and let

T = (VT , ET ) be the two-colored tree to which the edge (hi, hj) belongs. Further, as done

earlier, let T (hi) = (VT (hi), ET (hi)) denote the subtree of T rooted at the vertex hi that is

obtained by removing the edge (hi, hj) from T . Let n, nT , and nT (hi) denote the number of

vertices in G(H), T , and T (hi), respectively. Our goal is to prove a bound on the accuracy

of the Hessian entry H[i, j] computed using Equation (2). First, following Powell and Toint,

we define the error matrix E, the pointwise difference between the computed Hessian H and

the analytic Hessian ∇2f , as

E
[
i, j

]
= H

[
i, j

]
−

(
∇2 f(x)

)
ij

(3)

for all pairs i and j such that (hi, hj) is an edge in G(H). In Theorem 3.1 we will show

that |E[i, j]|, the magnitude of the error associated with the computation of H[i, j] by

indirectRecover, is bounded by the product of nT (hi), the number of vertices in the

subtree T (hi) of T , and a constant independent of T .

Theorem 3.1. The numerical value computed by indirectRecover for each edge (hi, hj)

in the input graph G(H) is such that
∣∣E

[
i, j

]∣∣ ≤ nT (hi) · η, where η is a positive constant.

13



Proof. Since the compressed Hessian B is computed in floating point arithmetic, it inevitably

contains rounding errors. Let

B̂
[
i, color[hj]

]
= B

[
i, color[hj]

]
+ ε

[
i, color[hj]

]
(4)

denote the computed matrix taking such errors into account. Thus the actual value H[i, j]

evaluated using indirectRecover is

H
[
i, j

]
= B̂

[
i, color[hj]

]
− storedValues[hi] . (5)

Analogous to the error matrix E associated with H, let the error matrix δ be the pointwise

difference between the computed values contained in B̂ and the corresponding values in the

analytic Hessian ∇2f , i.e., let

δ
[
i, color[hj]

]
:= B̂

[
i, color[hj]

]
−

∑

(hr,hs)∈ET (hi)

(
∇2 f(x)

)
rs
− (∇2 f(x)

)
ij

. (6)

Using Equations (1) and (5), Equation (6) can be written as

δ
[
i, color[hj]

]
= H

[
i, j

]
− (∇2 f(x)

)
ij

+
∑

(hr ,hs)∈ET (hi)

(
H

[
r, s

]
−

(
∇2 f(x)

)
rs

)

= E
[
i, j

]
+

∑

(hr ,hs)∈ET (hi)

E
[
r, s

]
.

It then follows that

E
[
i, j

]
= δ

[
i, color[hj]

]
−

∑

(hr ,hs)∈ET (hi)

E
[
r, s

]
.

Applying the same decomposition to each E
[
r, s

]
for (hr, hs) ∈ ET (hi), one obtains

E
[
i, j

]
= δ

[
i, color[hj]

]
−

∑

(hr ,hs)∈ET (hi)

δ [r, color[hs]
]

.

Taking the absolute values of scalar quantities and noting that the tree T (hi) has nT (hi) − 1

edges,

∣∣ E
[
i, j

] ∣∣ ≤
∣∣δ

[
i, color[hj]

]∣∣ +
∑

(hr ,hs)∈ET (hi)

∣∣ δ
[
r, color[hs]

] ∣∣ (7)

≤
∣∣δ

[
i, color[hj]

]∣∣ + (nT (hi) − 1) max
(hr,hs)∈ET (hi)

∣∣δ
[
r, color[hs]

] ∣∣ . (8)
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If we assume that the second derivatives of f are bounded, then there exists a positive

constant M such that the maximum of the two terms in Equation (8), and indeed of similar

terms in the entire graph G(H), can be bounded as follows:

η := max
1≤r′,s′≤n

{∣∣δ
[
r′, color[hs′ ]

]∣∣} ≤M + max
1≤r′,s′≤n

{∣∣ε[r′, color[hs′ ]]
∣∣}.

Thus Equation (8) reduces to |E[i, j]| ≤ nT (hi) · η, which is what we wanted to show.

Suppose the acyclic coloring used in the context of indirectRecover is actually a star

coloring. Then, clearly, for each edge (hi, hj), the two-colored tree to which the edge (hi, hj)

belongs is a star, i.e. T (hi) is simply the vertex hi. In such a case, in agreement with our

expectations, Theorem 3.1 suggests that the error associated with the evaluation of (hi, hj)

is bounded simply by η.

4 Coloring Chordal Graphs

The test-suite in our experiments includes Hessian matrices with banded nonzero structures,

whose adjacency graphs are band graphs (defined later in this section). Here we present

analytical results on the distance-k, star, and acyclic chromatic numbers of the larger class

of chordal graphs, an important class of graphs with a wide range of applications [1].

Let A be a symmetric matrix of order n with nonzero diagonal elements. The lower

bandwidth of A is defined as βl(A) = max{|i− j| : i > j, aij 6= 0}, and the bandwidth of A is

the quantity β(A) = 2βl(A) + 1. The matrix A is banded if it is completely dense within the

band, i.e., if for any pair of indices 1 ≤ i, j ≤ n, |i− j| ≤ β(A)⇔ aij 6= 0.

The bandwidth of a matrix has a twin concept in the adjacency graph.

Let G = (V, E) be a graph on n vertices and let π be an ordering v1, v2, . . . , vn of the

vertices. The bandwidth of the ordering π in G is βπ(G) = max{|i − j| : (vi, vj) ∈ E}, and

the bandwidth of the graph G is β(G) = min{βπ(G) : π is an ordering of V }. A graph G is

a band graph if there exists an ordering v1, v2, . . . , vn of its vertices such that for any pair

of indices i, j drawn from the set {1, 2, . . . , n}, |i − j| ≤ β(G) ⇔ (vi, vj) ∈ E; the order

v1, v2, . . . , vn is referred to as the natural ordering of the band graph G. For a general graph,

finding a vertex ordering with the minimum bandwidth—computing the quantity β(G)—is

an NP-complete problem [16].

The bandwidth of a symmetric matrix A and that of the adjacency graph G(A) are

related in the following way: β(G(A)) ≤ βl(A) ≡ (β(A)−1)/2. In this relationship, equality
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holds when A is banded, in which case G(A) is a band graph, and the natural ordering of

the vertices of G(A) corresponds to the given ordering of the columns of A. When A is not

banded, there exists a permutation matrix P such that β(G(A)) = βl(PAP T ).

A graph G is chordal if every cycle in G of length at least four has a chord—an edge that

connects two non-consecutive vertices in the cycle. Clearly, a band graph is chordal. In fact,

it is a highly structured, almost regular, chordal graph: the degree d(vi) of the ith vertex in

the natural ordering of the vertices can be expressed as d(vi) = d(vn−i+1) = β(G) + i− 1 for

1 ≤ i ≤ β(G), and d(vi) = 2β(G) for β(G) + 1 ≤ i ≤ n − β(G). A graph does not need to

be this regular to be chordal. For example, the adjacency graph of a symmetric matrix in

which rows are allowed to have variable number of nonzeros, but the nonzeros in every row

are required to be consecutive, is chordal but not band.

In what follows we present results, which we believe to be new, concerning the relation-

ships among the distance-k chromatic number χk(G), the star chromatic number χs(G), the

acyclic chromatic number χa(G), the clique number ω(G)—the size of the largest clique in

G—and the bandwidth β(G) of a chordal (not necessarily band) graph G. We begin with a

simple observation that is true of any (not necessarily chordal) graph.

Lemma 4.1. For every graph G = (V, E), ω(G) ≤ β(G) + 1, and

ω(G2) ≤ min{2β(G) + 1, |V |}.

Proof. Let π be an ordering of the vertices of G such that βπ(G) = β(G). Suppose there

exists a clique Q in G of size greater than β(G)+ 1. Then it means there exists some pair of

vertices v and w in the clique Q such that |π(v)−π(w)| > β(G), a contradiction. Hence, the

clique number of G cannot exceed β(G) + 1. The result for the square graph can be shown

in an analogous fashion.

Lemma 4.2. If a mapping φ is a distance-1 coloring for a chordal graph G, then φ is also

an acyclic coloring for G.

Proof. Let φ be a distance-1 coloring for a chordal graph G. Consider any cycle C in G,

and let l be its length. If l = 3, then φ clearly uses three colors. If l ≥ 4, then C contains a

chord, and therefore φ uses at least three colors. Hence, φ is an acyclic coloring for G.

Theorem 4.3. For every chordal graph G, χa(G) = χ1(G) = ω(G) ≤ β(G) + 1. In the last

relationship, equality holds when G is a band graph.
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Proof. The equality χa(G) = χ1(G) follows from Lemma 4.2. Since a chordal graph is perfect,

χ1(G) = ω(G) by the perfect graph theorem [14]. The last inequality was proven in Lemma 4.1

for any (including chordal) graph. When G is a band graph, clearly, ω(G) = β(G) + 1.

There exist chordal graphs where the last inequality in Theorem 4.3 is strict. For example,

a star graph G on n vertices has ω(G) = 2, but β(G) = bn/2c.

Theorem 4.4. For every chordal graph G = (V, E),

χs(G) ≤ χ2(G) = ω(G2) ≤ min{2β(G) + 1, |V |}.

In both the first and the third relationship, equality holds when G is a band graph.

Proof. The first inequality follows from Observation 2.1, and the third from Lemma 4.1. The

square graph of a chordal graph is chordal and hence perfect. Therefore χ2(G) = χ1(G
2) =

ω(G2). Turning to the special case of band graphs, Coleman and Moré [4] have shown that

for a band graph G with at least 3β(G) + 1 vertices, χs(G) = χ2(G). For a band graph G,

ω(G2) = min{2β(G) + 1, |V |}.

There exist chordal graphs where the first inequality in Theorem 4.4 is strict. An example,

once again, is a star graph G on n vertices, which has χs(G) = 2 but χ2(G) = n.

If symmetry were to be ignored, a structurally orthogonal partition of the columns of a

Hessian—a partition in which no two columns in a group have nonzeros at a common row

index—could be used to compress a Hessian in a direct method. As McCormick [15] first

showed, a structurally orthogonal partition of a Hessian can be modeled by a distance-2

coloring of its adjacency graph. In light of these facts, the result χs(G) = χ2(G) = 2β(G)+1

for a band graph G given in Theorem 4.4 is negative: it shows that exploiting symmetry in a

direct computation of a banded Hessian matrix (star coloring) does not lead to fewer colors

in comparison with a direct computation that ignores symmetry (distance-2 coloring). The

result χ1(G) = χa(G) = β(G) + 1 in Theorem 4.3, on the contrary, shows that symmetry

exploitation in a banded matrix is worthwhile in a substitution method.

We conclude this section with some remarks on the performance of greedy coloring algo-

rithms on chordal graphs. Recall that a greedy coloring algorithm processes vertices in some

order, each time assigning a vertex the smallest allowable color subject to the conditions

of the specific coloring problem. There exist several “degree”-based ordering techniques,
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including largest-degree-first, smallest-degree-last and incidence-degree, that have proven to

be quite effective (but still suboptimal) for distance-k coloring of general graphs [8].

For chordal graphs, better ordering techniques exist. Given a graph G = (V, E), an

ordering v1, v2, . . . , vn of the vertices in V is a perfect elimination ordering (peo) of G if for

all i ∈ {1, 2, . . . , n}, the vertex vi is such that its neighbors in the subgraph induced by the

set {vi, . . . , vn} form a clique. It is well known that a graph G is chordal if and only if it

has a peo. It is also known that a greedy distance-1 coloring algorithm that uses the reverse

of a peo of G gives an optimal solution, i.e., computes a coloring with χ1(G) colors [1]. For

the special case of a band graph, the natural ordering of the vertices, as well as its reverse,

is a peo. Thus a greedy distance-1 coloring algorithm that uses the natural ordering of the

vertices would give an optimal solution. However, as Lemma 4.5 and its corollary will imply,

an optimal coloring for a band graph can be obtained without actually executing the greedy

algorithm.

Lemma 4.5. Let G = (V, E) be any graph and let v1, v2, . . . , vn be an ordering in which the

bandwidth of G is attained. Then the mappings φ1(vi) = i mod (β(G) + 1) and

φ2(vi) = i mod (2β(G) + 1) define a distance-1 coloring and a distance-2 coloring of G,

respectively. If G is a band graph, then both of these colorings are optimal.

Corollary 4.6. For every graph G = (V, E), χ1(G) ≤ β(G) + 1, and

χ2(G) ≤ min{2β(G)+1, |V |}. In both relationships, equality holds when G is a band graph.

The optimality of φ1 and φ2 in Lemma 4.5 in the case of band graphs, and the implied

equalities in Corollary 4.6, follow from Theorems 4.3 and 4.4.

5 Numerical Experiments

In this section, we present experimental results concerning the following four steps involved

in the efficient computation of the Hessian of a given function f .

S0: Detect the sparsity pattern of the Hessian
S1: Obtain a seed matrix S using an appropriate graph coloring
S2: Compute the Hessian-seed matrix product B = HS
S3: Recover the nonzero entries of H from B

We use two different optimization problems as test-cases: an electric power flow problem,

representing a real-world application, and an unconstrained quadratic optimization problem,
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a synthetic case chosen for a detailed performance analysis. The underlying test function

f in both test-cases is specified in the programming language C. The coloring and recovery

codes (steps S1 and S3) are written in C++ as part of the software package COLPACK

[10] and are incorporated into ADOL-C. For the step S3, in the direct case, the routine

directRecover1 is used. For the step S2, the second-order adjoint mode in the latest

version of ADOL-C, which is significantly faster than previous versions, is used. When

needed, the sparsity structure of the Hessian (step S0) is determined using the recently added

functionality in ADOL-C [20]. The experiments on the power flow problem are performed

on a Linux system with an Intel Xenon 1.5 GHz processor and 1 GB RAM, and those on the

synthetic problem are performed on a Fedora Linux system with an AMD Athlon XP 1.666

GHz processor and 512 MB RAM. In both cases, the gcc 4.1.1 compiler with -02 optimization

is used.

5.1 Optimal power flow problem

Description This problem is concerned with the management of power transmission over a

network that has observable parts, where measured data is available, and unobservable parts

[5]. For an unobservable part, one usually has estimations of the data, for example from the

past. For a proper management of the network, however, a complete and actual database

for the entire network is needed. Therefore, one relies on computed data in all parts of the

network. In the observable areas, the computed data should be as close to the measured data

as possible. In addition, one needs to minimize the weighted least squares distance between

the computed data and the estimated data in unobservable parts and boundary areas. This

gives a nonlinear optimization problem of the form

min
x∈Rn

f(x) s.t. g(x) = 0, l ≤ h(x) ≤ u, (9)

with the objective function f : R
n → R, the equality constraints g : R

n → R
m, and the

inequality constraints h : R
n → R

p being twice-continuously differentiable. The optimization

problem (9) can be solved using an interior point-based tool such as LOQO or IPOPT [18, 19].

These solvers require the provision of the Jacobian matrices ∇g(x) and ∇h(x) as well as the

Hessian of the Lagrange function L(x, λ, µ) = f(x) + λT g(x) + µT h(x) with respect to x in

sparse format. We report on runtimes for this Hessian computation using actual problem

instances.
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direct indirect dense
n eval(f) S0 S1 S2 S3 tot S1 S2 S3 tot

72 0.000008 0.001 0.0006 0.007 0.00003 0.008 0.0004 0.005 0.0004 0.005 0.08
3,760 0.000587 0.247 0.0252 0.805 0.00248 0.833 0.0464 0.646 0.0617 0.755 201.32
4,472 0.000717 0.372 0.0329 0.899 0.00307 0.935 0.0601 0.561 0.0791 0.700 257.99
9,932 0.001933 6.212 0.0929 2.839 0.00719 2.939 0.2220 1.159 0.3049 1.686 1315.43

22,540 0.002118 22.662 0.2170 20.162 0.01741 20.396 1.0402 12.531 1.2981 14.869 ***

Table 1: Absolute runtimes in seconds for the evaluation of the function f and the steps S0, S1,
S2 and S3 for test Hessians in the optimal power flow problem. The last column shows runtime
for the computation of a Hessian without exploiting sparsity. The asterisks *** indicate that space
could not be allocated for the full Hessian.

colors total (S1 – S3)
n ρ̄ direct indirect S0 direct indirect dense

72 3.72 9 6 125 954 725 10,000
3,760 4.11 15 12 421 1,419 1,285 342,964
4,472 3.99 16 10 519 1,304 976 359,819
9,932 3.91 22 9 3,213 1,520 872 680,512

22,540 3.94 16 10 10,700 9,630 7,020 ***

Table 2: Matrix structural data, number of colors, and normalized runtime relative to function
evaluation for test Hessians in the optimal power flow problem. The asteriks *** indicate that
space could not be allocated.

Results and Discussion Table 1 lists the absolute runtimes in seconds spent in the

various steps for the five Hessians considered in our experiments. The first two columns

of Table 2 show the number of rows and the average number of nonzeros per row in the

Hessians used in the experiments; the next two columns show the number of colors used in

the direct and indirect cases; and the last four columns show timing results for various steps,

each normalized relative to the time needed to evaluate the underlying function f .

The results in Tables 1 and 2 clearly show that employing coloring in Hessian computa-

tion enables one to solve large-size problems that could not otherwise have been solved. For

problem sizes where dense computation is possible, the results show that sparsity exploita-

tion via coloring yields huge savings in runtime. Furthermore, it can be seen that indirect

computation using acyclic coloring is faster than direct computation using star coloring, con-

sidering overall runtime. Comparing the steps S1, S2 and S3 against each other, as can be

seen from Figure 6, the coloring (S1) and recovery (S3) steps are almost negligible compared

to the step in which the Hessian-seed matrix product is computed (S2), both in the direct

and indirect methods.

Numerically, we observed that indirect recovery gave Hessian entries of the same accuracy

as direct recovery. This experimental observation agrees well with the analysis in Section 3.3.
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Figure 6: Runtimes of the various steps normalized by the runtime of function evaluation
for the power flow problem.

A final point to be noted from Table 2 is that the runtime of the sparsity detection

routine is relatively large in comparison with the routines in the other steps. In future work,

we plan to explore ways in which this can be reduced.

5.2 Unconstrained quadratic optimization problem

5.2.1 Description

The sizes and structures of the Hessians from the optimal power flow problem that we could

include in our experiments were quite limited. To be able to study the performance of

the various steps in a systematic fashion, we considered a synthetic problem in which we

have a direct control over the size and structure of the Hessians. In particular, we used

the unconstrained quadratic optimization problem minx∈Rn f(x) with f(x) = xT Cx + aT x,

C ∈ R
n×n and aT = (10, . . . , 10) ∈ R

n, where the Hessian is simply the matrix C. We

considered two kinds of sparsity structures for the matrix C: banded (bd) and random (rd).

Further, the test matrices were designed in such a way that

(i) the number of nonzeros per row in a banded matrix (denoted by ρ) is nearly the same as

the number of nonzeros per row in a random matrix (denoted by ρ), and

(ii) the value for ρ, or ρ, remains constant as the problem dimension n is varied.

In our experiments, we used the values ρ ∈ {10, 20}, ρ ∈ {10.98, 20.99}, and n/1000 ∈ I ≡

{5, 10, 20, 40, 60, 80, 100}.
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ρ, ρ 10, 10.98 20, 20.99
star acyclic star acyclic

bd 11 6 21 11
rd 21 – 24 9 – 11 50 – 56 18 – 19

Table 3: Number of colors used by the star and acyclic coloring algorithms for all problem dimen-
sions n in the set n/1000 ∈ I ≡ {5, 10, 20, 40, 60, 80, 100}.

5.2.2 Results and Discussion

Number of colors Table 3 provides a summary of the numbers of colors used by the star

coloring algorithm (direct method) and the acyclic coloring algorithm (indirect method) for

all the sparsity structures and input sizes considered in the experiments. Two observations

can be made from this table.

First, for the banded structure, the acyclic and the star coloring algorithms invariably

used bρ

2
c + 1 and 2bρ

2
c + 1 colors, respectively, regardless of the value of n. In view of

Theorems 4.3 and 4.4, and noting that b ρ

2
c is the bandwidth of the corresponding graphs,

we see that both algorithms find optimal solutions for band graphs. Both algorithms are

greedy, and vertices were colored in the natural ordering of the graphs. Hence, the observed

phenomenon agrees with the theory of distance-1 coloring discussed in the last paragraph of

Section 4.

Second, in both the star and the acyclic coloring cases, the numbers of colors required

by the random structures were observed to be nearly twice the corresponding numbers in

the banded structures. Moreover, the numbers of colors varied only slightly as the problem

dimension n was varied.

Runtime Table 4 lists the absolute runtime in seconds spent in the various steps while

using a direct and an indirect method. The information in Table 4 is analogous to that

presented in Table 1 for the optimal power flow problem. The general conclusion to be

drawn from Table 4 in terms of the enabling power of the coloring techniques in the overall

computation is similar to that drawn from the optimal power flow problem. Our objective

here is to show how the execution time for each step grows as a function of the input size.

Figure 7 shows a collection of normalized runtime versus problem dimension (n) plots.

In particular, the vertical axis in each subfigure shows the execution time of a specific step

divided by the time needed to evaluate the function f being differentiated; note that the

scales on the axes differ from subfigure to subfigure. Below, we discuss the runtime behavior
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direct indirect dense
n

1000
eval(f) S1 S2 S3 tot S1 S2 S3 tot

bd:
5 0.0006 0.05 0.20 0.006 0.25 0.08 0.11 0.05 0.24 86.1

10 0.0010 0.11 0.40 0.012 0.52 0.25 0.22 0.10 0.57 342.0
20 0.0019 0.23 0.79 0.023 1.05 0.81 0.43 0.21 1.45 ***
40 0.0035 0.55 1.61 0.046 2.21 2.86 0.86 0.46 4.18 ***
60 0.0049 0.81 2.31 0.066 3.19 6.12 1.25 0.73 8.10 ***
80 0.0062 1.03 3.06 0.088 4.18 11.03 1.65 0.99 13.67 ***

100 0.0077 1.31 3.83 0.110 5.25 16.33 2.08 1.23 19.64 ***
rd:
5 0.0005 0.07 0.41 0.007 0.49 0.10 0.17 0.11 0.38 147.9

10 0.0009 0.19 0.90 0.014 1.10 0.30 0.38 0.30 0.98 589.4
20 0.0020 0.46 2.01 0.029 2.50 0.95 0.83 0.87 2.65 ***
40 0.0043 1.08 4.51 0.064 5.66 3.21 1.84 2.67 7.73 ***
60 0.0082 1.77 7.54 0.103 9.41 6.75 3.13 5.25 15.13 ***
80 0.0125 2.50 10.78 0.140 13.41 11.52 4.54 8.66 24.71 ***

100 0.0170 3.26 13.16 0.174 16.60 17.52 5.55 13.01 36.07 ***
bd:

5 0.0008 0.16 0.63 0.015 0.81 0.14 0.33 0.12 0.59 84.0
10 0.0015 0.36 1.27 0.030 1.66 0.37 0.67 0.23 1.28 362.8
20 0.0029 0.84 2.57 0.061 3.47 1.07 1.34 0.51 2.91 ***
40 0.0056 1.68 5.14 0.118 6.93 3.40 2.61 1.10 7.12 ***
60 0.0084 2.56 7.46 0.176 10.19 6.93 3.91 1.66 12.51 ***
80 0.0109 3.54 10.47 0.234 14.24 11.85 5.47 2.31 19.63 ***

100 0.0135 4.44 12.95 0.300 17.70 17.74 6.81 3.07 27.61 ***
rd:
5 0.0008 0.29 1.66 0.017 1.97 0.20 0.55 0.24 0.99 151.0

10 0.0015 0.70 3.49 0.035 4.23 0.52 1.15 0.65 2.31 594.9
20 0.0033 1.65 8.14 0.071 9.86 1.44 2.67 1.87 5.98 ***
40 0.0087 3.91 19.99 0.156 24.06 4.35 6.43 5.59 16.36 ***
60 0.0150 6.04 29.91 0.234 36.19 8.56 9.89 10.81 29.26 ***
80 0.0246 8.91 45.12 0.338 54.36 14.37 15.00 18.03 47.40 ***

100 0.0317 11.93 54.71 0.413 67.07 21.34 19.00 26.91 67.25 ***

Table 4: Absolute runtimes in seconds for the evaluation of the function f and the steps S1, S2,
and S3 in the quadratic optimization problem. The upper half of the table shows results for ρ = 10
(banded) and ρ = 10.98 (random) and the lower half for ρ = 20 and ρ = 20.99. All runtimes are
averages of five runs. For the random structures, the runtimes are in addition averaged over five
randomly generated matrices.
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of the various steps turn by turn. But first, we look at how the normalizing quantity, the

time needed for evaluating f , itself grows as a function of n.

Time for evaluating f . Since the number of nonzeros per row (column) in the struc-

tures we considered is constant, the time needed to evaluate the function f theoretically is

expected to be linear in the number of rows (columns) n. Figure 8 shows that the practically

observed execution times are roughly linear in n across the structures we considered. For

the banded structures, the growth is actually slightly sublinear. The growth is somewhat

superlinear for the random structures, especially for the cases where ρ̄ = 20.99. This is due

mainly to the irregular memory accesses involved and the associated nonuniform costs in

hierarchical memory.

Step S1: coloring and generation of seed matrix. Recall from Section 2 that the

complexity of the star coloring algorithm for a graph on n vertices is O(nd2) and that of

the acyclic coloring algorithm is O(nd2 · α), where α is the inverse of Ackermann’s function.

For the banded sparsity structures, the quantity d2 in the associated adjacency graphs is

nearly ρ2, independent of the parameter n. In light of these facts, the trends observed in

the various cases in Figure 7 are in agreement with theoretical analyses. For the banded

structures (the top two rows), it can be seen that the runtime of the star coloring algorithm

grows linearly with n (left column), while the runtime of the acyclic coloring algorithm is

slightly superlinear (right column). The general trend in the random structures is very

similar, but slightly more erratic, again due to irregular memory accesses.

Step S2: computation of the compressed Hessian. Figure 7 shows that the

time for the step in which the compressed Hessian HS is computed is linear in the problem

dimension n. The analytical justification for this behavior stems from two sources. First,

as mentioned earlier, the time needed for evaluating the function f is linear in n. Second,

the number of columns p in a seed matrix (the number of colors used) remained constant or

nearly constant as the problem dimension n in our experiments was varied, both in a direct

and an indirect method. Theoretically, the complexity of computing the Hessian-seed vector

product using AD is known to be a small constant (in the order of 10) times the time need

to evaluate the function being differentiated [11]. Hence, the fact that the observed runtime

grew linearly with n for both structures is consistent with theoretical analyses.

Step S3: recovery of the original Hessian entries. As discussed in Section 3,

the complexity of directRecover1 is O(mρ), where m is the number of nonzeros in the

Hessian. The constant hidden in this expression is rather small, since the computation
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Figure 7: Execution time of the various steps normalized by the time needed for function evaluation
versus problem size.
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Figure 8: Runtime of function evaluation in seconds normalized by input size n versus n.

involved is fairly easy. Similarly, the complexity of indirectRecover, which relies on

the use of two-colored trees, was shown to be O(m). Due to the overhead associated with

the management of non-trivial data structures, the hidden constant here is expected to be

considerably larger, to the extent that the execution time of the routine in practice becomes

more than the corresponding time for directRecover1. The observed runtimes in Figure 7

clearly reflect these facts. For a similar reason, even though directRecover2 theoretically

is faster than directRecover1, we used the latter in our experiments since it is likely to

be faster in practice.

Overall runtime. Considering all the steps together, is a direct method faster or

slower than an indirect method? The results in Figure 7 show that the answer depends on

the size and structure of the Hessian being computed. For the random structure with nearly

twenty nonzeros per row, an indirect method is consistently observed to be faster than a

direct method. A similar statement can be made for the banded structures of relatively

small size (n up to 20, 000). For larger size banded problems and for many of the random

matrices with nearly ten nonzeros per row, a direct method was observed to be faster. These

observations are in contrast to those in the optimal power flow problem where an indirect

method was always found to be faster. Comparing the relative contribution of the various

steps to the total runtime, we observe that the Hessian-seed matrix product step (S2) is by

a large margin the most expensive in a direct method, while the coloring step (S1) is slightly

the dominant step in an indirect method.

Numerical accuracy. As in the optimal power flow problem, here again, the numerical
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values of the Hessian entries obtained using indirectRecover were observed to be of the

same accuracy as the values obtained using directRecover1—a typical pair of values

obtained using the two methods matched in all of the computed digits in double precision.

6 Conclusion

We studied compression-based calculation of sparse Hessians using automatic differentia-

tion. We considered the case where a matrix is compressed such that the recovery is direct

(star coloring) and the case where the recovery requires additional arithmetic work (acyclic

coloring). Our experimental results showed that sparsity exploitation via star and acyclic

coloring enables one affordably to compute Hessians of dimensions that could not have been

computed otherwise. For sizes where a computation that does not exploit sparsity is at least

possible, the results showed that the techniques render dramatic savings in runtime. We be-

lieve savings of similar magnitude would be attained should an AD tool other than ADOL-C

be used, since the execution time for the Hessian-seed matrix product is likely to dominate

the overall runtime for any reasonable function. The experimental results also showed that,

for real-world optimization problems, an acyclic coloring-based method is faster than a star

coloring-based method, considering the overall process. Furthermore, we showed, both ana-

lytically and experimentally, that indirect recovery using two-colored trees is numerically as

stable as direct recovery.
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