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Abstract�

Two algorithms for reordering sparse� symmetric matrices or undirected graphs to
reduce envelope and wavefront are considered� The �rst is a combinatorial algorithm
introduced by Sloan and further developed by Du�� Reid� and Scott� we describe
enhancements to the Sloan algorithm that improve its quality and reduce its run time�
Our test problems fall into two classes with di�ering asymptotic behavior of their
envelope parameters as a function of the weights in the Sloan algorithm� We describe
an e�cient O�n log n 	m
 time implementation of the Sloan algorithm� where n is the
number of rows �vertices
� and m is the number of nonzeros �edges
� On a collection
of test problems� the improved Sloan algorithm required� on the average� only twice
the time required by the simpler RCM algorithm while improving the mean square
wavefront by a factor of three� The second algorithm is a hybrid that combines a
spectral algorithm for envelope and wavefront reduction with a re�nement step that
uses a modi�ed Sloan algorithm� The hybrid algorithm reduces the envelope size and
mean square wavefront obtained from the Sloan algorithm at the cost of greater running
times� We illustrate how these reductions translate into tangible bene�ts for frontal
Cholesky factorization and incomplete factorization preconditioning�

AMS subject classi�cation� ��F�
� ��R�
� ��F�
�

Key words� envelope reduction� Laplacian matrices� reordering algorithms� spectral
methods� Sloan Algorithm� sparse matrices� wavefront reduction

� Introduction

We consider two algorithms for reducing the envelope and wavefront of sparse�
symmetric matrices or undirected graphs� The �rst algorithm was introduced
by Sloan ����� improved further by Du	� Reid� and Scott �

�� and is currently
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the best combinatorial algorithm for this problem� We describe enhancements
to Sloan�s algorithm that 
i� reduce the envelope and wavefront size further�
and 
ii� reduce its asymptotic time complexity and practical execution times�
The second algorithm is a new hybrid algorithm that combines an algebraic

spectral� algorithm for envelope reduction described by Barnard� Pothen and
Simon ��� with the Sloan algorithm as a post�processing step� The spectral
algorithm takes a �global� viewpoint of the problem� but could potentially be
improved by combining it with a �local� re�nement algorithm� The spectral
algorithm is known to produce envelope and wavefront sizes signi�cantly smaller
than previous algorithms ���� The hybrid algorithm further reduces the envelope
size and wavefronts over the spectral and Sloan algorithms� We present a few
examples to show that these improved orderings could lead to faster frontal
solves and more e�cient incomplete factorization preconditioners�
Sloan ���� described an implementation of his algorithm for unweighted graphs�

The idea of Sloan�s algorithm is to number vertices from one endpoint of an
approximate diameter in the graph� choosing the next vertex to number from
among the neighbors of currently numbered vertices and their neighbors� A
vertex of maximum priority is chosen from this eligible subset of vertices� the
priority of a vertex has a �local� term that attempts to reduce the incremental
increase in the wavefront� and a �global� term that re�ects its distance from a
second endpoint of the approximate diameter�
Du	� Reid� and Scott �

� have extended this algorithm to weighted graphs

obtained from �nite element meshes� and have used these orderings for frontal
factorization methods� The weighted implementation is faster for �nite element
meshes when several vertices have common adjacency relationships� They have
also described variants of the Sloan algorithm that work directly with the ele�
ments 
rather than the nodes of the elements�� The Sloan algorithm is a remark�
able advance over previously available algorithms such as RCM ���� Gibbs�Poole�
Stockmeyer �
�� ���� and Gibbs�King �
�� algorithms since it computes smaller
envelope and wavefront sizes�
For the most part� we follow Sloan� and Du	� Reid and Scott in our work on

the Sloan algorithm� Our new contributions are the following�

� We show that the use of a heap instead of an array to maintain the priorities
of vertices leads to a lower time complexity� and an implementation that
is about four times faster on our test problems� Sloan had implemented
both versions� preferring the array over the heap for the smaller problems
he worked with� and had reported results only for the former� Du	� Reid�
and Scott had followed Sloan in this choice�

� Our implementation of the Sloan algorithm for vertex�weighted graphs
mimics what the algorithm would do on the corresponding unweighted
graph� unlike the Du	� Reid� and Scott implementation� Hence we de�ne
the key parameters in the algorithm di	erently� and this results in smaller
wavefront sizes�

� We examine the weights of the two terms in the priority function to show
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that our test problems fall into two classes with di	erent asymptotic behav�
iors of their envelope parameters� by choosing di	erent weights for these
two classes� we reduce the wavefront sizes obtained from the Sloan algo�
rithm� on the average� to ��� of the original Sloan algorithm on a set of
eighteen test problems�

Together� these enhancements enable the Sloan algorithm to compute small en�
velope and wavefront sizes fast�the time it needs is in general between two to
�ve times that of the simpler RCM algorithm�
This paper is the third in a series on spectral algorithms for envelope and

wavefront reduction� We will now summarize the �ndings in the �rst two papers
to put our work on the hybrid algorithm in context�
Barnard� Pothen� and Simon ��� described a spectral algorithm that associates

a Laplacian matrix with the given symmetric matrix� computes an eigenvector
corresponding to the smallest positive Laplacian eigenvalue� and then computes
the permutation by sorting the components of the eigenvector in monotonically
increasing or decreasing order�
Unlike the rest of the algorithms that are combinatorial in nature� the spec�

tral algorithm is algebraic� and hence its good envelope�reduction properties
are intriguing� George and Pothen �
�� analyzed the algorithm theoretically� by
considering a related problem called the ��sum problem� They showed that min�
imizing the ��sum over all permutations is equivalent to a quadratic assignment
problem� in which the trace of a product of matrices is minimized over the set
of permutation matrices� This problem is NP�complete� however� lower bounds
for the ��sum could be obtained by minimizing over the set of orthogonal and
doubly stochastic matrices� 
Permutation matrices satisfy the additional prop�
erty that their elements are nonnegative� this property is relaxed to obtain a
lower bound�� This technique gave tight lower bounds for the ��sum for many
�nite�element problems� showing that the ��sums from the spectral ordering
were nearly optimal 
within a few percent typically�� They also showed that the
permutation matrix closest to the orthogonal matrix attaining the lower bound
is obtained 
to �rst order� by permuting the second Laplacian eigenvector in
monotonic order� This justi�es the spectral algorithm for minimizing the ��sum�
These authors also showed that a family of graphs with small 
n� � separators
has small mean square wavefront 
at most O
n������ where n is the number of
vertices in the graph� and the exponent � � 
�� determines the separator size�
The analysis of the spectral algorithm suggests that while spectral orderings

may also reduce related quantities such as the envelope size and the work in an
envelope factorization� they might be improved further by post�processing with
a combinatorial reordering algorithm� We explore this issue further by using
the second step of the Sloan algorithm in the post�processing step� the resulting
algorithm is called the hybrid algorithm in the rest of this paper�
We list some work on related problems� Juvan and Mohar ���� ��� have consid�

ered spectral methods for minimizing the p�sum problem 
for p � 
�� and Paulino
et al� ���� ��� have applied spectral orderings to minimize envelope sizes� Addi�
tionally� spectral methods have been applied successfully in areas such as graph
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partitioning ���� ��� ���� the seriation problem ���� and DNA sequencing �����
The rest of this paper is organized as follows� In Section �� we review back�

ground information� First we de�ne various envelope parameters� delve into the
details of the spectral algorithm� and then describe a problem where the spectral
algorithm performs poorly but where the hybrid algorithm does well� Section �
describes the details of a weighted Sloan algorithm� we show how the envelope
parameters vary as a function of the weights in the priority function� We an�
alyze the time complexity of our e�cient implementation 
in the Appendix��
and show that it runs about four times faster� on the average� than previous
implementations� In Section �� we then describe the hybrid algorithm� which
re�nes the spectral ordering by means of the second step of a modi�ed Sloan
algorithm� In Section �� we present results from the RCM� Sloan� spectral� and
hybrid ordering algorithms for a collection of problems� Comparisons are made
across four envelope parameters 
envelope size� bandwidth� maximumwavefront�
and mean�square wavefront�� and running time� Section � presents some prelim�
inary results from using the hybrid ordering in frontal Cholesky and incomplete
factorization preconditioning� Conclusions and directions for future work are
included in Section ��

� Background

We provide de�nitions of various envelope parameters in Section ��
� and re�
view the spectral algorithm for envelope and wavefront reduction in Section ����
Then in Section ���� we motivate the hybrid algorithm by describing a class
of problems where a poor spectral ordering is improved by the Sloan post�
processing step in the hybrid�

��� De�nitions and Notation

Consider a sparse symmetric n�n matrix A � �aij�� whose diagonal elements
are all nonzero� We consider only the lower triangle ofA 
including the diagonal��
Let fi
A� denote the column index of the �rst nonzero element of the ith row�
The row width of the ith row� rwi
A�� is the di	erence between i and fi
A�� or
equivalently�

rwi
A� � max
j�aij ��


fi� jg �

The envelope of a matrix is de�ned as

Env
A� � f
i� j� � fi
A� � j � i� 
 � i � ng �

The envelope of a symmetric matrix is easily visualized� picture the lower trian�
gle of the matrix� and remove the diagonal and the leading zero elements in each
row� The remaining elements 
whether nonzero or zero� are in the envelope of the
matrix� The number of these elements is the envelope size� Esize
A� � jEnv
A�j�
which can also be expressed as

Esize
A� �
nX

i��

rwi
A��
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Sloan ���� uses the term pro�le which denotes the envelope size plus the number
of elements on the diagonal�
Another envelope parameter is the bandwidth of a matrix� de�ned as

bw
A� � max
��i�n

frwi 
A�g �

Consider the ith step of Cholesky factorization where only the lower triangle
of A is stored� An equation 
row� k is active at the ith step if k � i and there
exists a column l � i such that akl �� �� The ith wavefront of A� wfi
A�� is the
set of active equations during the ith step of Cholesky factorization� We can
describe the ith wavefront in three ways that are more intuitive� It is the set of
rows that have nonzeros in the submatrix consisting of the �rst i columns of A
and rows i to n� It is also the set of rows in the ith column that are within the
envelope of the matrix� where the ith row is also included� We can also de�ne
the ith wavefront in terms of the adjacency graph of A� If X is a set of vertices
in a graph� then its adjacency set

adj
X� �

� �
v�X

adj
v�

�
nX�

In the adjacency graph of A� the ith wavefront consists of the vertex i together
with the set of vertices adjacent to the vertices numbered from 
 to i� Formally�
the ith wavefront is

wfi
A� � vi � adj 
fv�� v�� � � � � vig��

The n wavefront sizes 
one for each column� can be characterized by the values
maximum wavefront and mean�square wavefront

maxwf
A� � max
��i�n

fjwfi
A�jg �

mswf
A� �



n

nX
i��

jwfi
A�j
�
�

The maximumwavefront size measures the maximumstorage needed for a frontal
matrix during a frontal factorization� while the mean square wavefront measures
the number of �oating point operations in the factorization� Du	� Reid� and
Erisman ��� discuss the application of wavefront reducing orderings to frontal
factorization� It is easy to verify the identity

nX
i��

jwfi
A�j � n �
nX

i��

rwi
A� � n� Esize�

Figure ��

a� shows a small two�dimensional grid and Figure ��

b� shows the
structure of its associated matrix A� The envelope and wavefront parameters
depend on the order in which vertices of the graph are numbered and are inde�
pendent of the numerical values of the actual matrix elements� This process of
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Figure ��
� A two dimensional mesh and its vertex ordering are shown in 
a��
the structure of the associated matrix is in 
b�� and a table of pertinent data is
in 
c��

vertex numbering permutes the corresponding matrix symmetrically by rows and
columns� Formally� we construct a permutation matrix P for a given ordering
and symmetrically permute a matrix A such that

A� � PAPT �

The goal is to �nd a permutation matrix or an ordering of the vertices of
adjacency graph to minimize the envelope size or the mean�square�wavefront�
Minimizing the envelope size and the bandwidth of a matrix are NP�complete
problems ��
�� and related problems such as minimizing the ��sum are also NP�
complete �
���
Figure ��
 illustrates these concepts� Figure ��

c� is a table showing the row�

widths and wavefronts of the matrix A� From this table� we can compute the
parameters Esize
A� � ��� bw
A� � �� maxwf
A� � �� and mswf
A� � 
���� If
we numbered the vertices in Figure ��
 in a spiral fashion beginning with vertex
one and numbering from the outside towards the inside� the permuted matrix A�

yields Esize
A
�� � ��� bw
A�� � 

� maxwf
A�� � �� and mswf
A�� � ����� We

use an unstructured grid bcsstk�� to illustrate the performance of the ordering
algorithms throughout this paper� This problem is from the Harwell�Boeing test
collection �
��� and is the sti	ness matrix of an o	�shore generator platform� We
show the nonzero patterns from the RCM� Sloan� spectral� and hybrid orderings
in Figure ����

��� Spectral Ordering Algorithm

Spectral methods associate a Laplacian matrix with the given symmetric ma�
trix A�
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a� 
b�


c� 
d�

Figure ���� RCM 
a�� Sloan 
b�� spectral 
c�� and hybrid 
d� orderings of
bcsstk���

Laplacian
A� � �lij � �

��
�

�
 if i �� j� aij �� �
� if i �� j� aij � �P

i��k jlikj if i � j
�

The Laplacian matrix of an undirected graph is de�ned as the Laplacian ma�
trix associated with its adjacency matrix� The Laplacian matrix is a singular
M�matrix� By construction� the Laplacian has row and column sums identi�
cally zero� Its smallest eigenvalue is zero� and the corresponding eigenvector is
the vector of all ones� If the given matrix is irreducible� or equivalently� if its
adjacency graph is connected� zero is a simple eigenvalue� An eigenvector corre�
sponding to the smallest positive eigenvalue of the Laplacian matrix is called a
Fiedler vector in recognition of the pioneering work of Miroslav Fiedler on the
spectral properties of the Laplacian �
�� 
���
The spectral ordering is obtained by sorting the components of the Fiedler
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vector in monotonically nonincreasing or nondecreasing order� The same per�
mutation is applied to the original matrix to obtain the spectral ordering� George
and Pothen �
�� show that reversing the ordering will change 
improve or deteri�
orate� the envelope size by a multiplicative factor that is at most the maximum
degree of a vertex in the graph�
We do not need to compute the Fiedler vector very accurately for these ap�

plications� Since a multilevel algorithm is used to compute the Fiedler vector
for the large problems that we consider� the practical implementations of our
algorithms sometimes work with misconverged Fiedler vectors� Our experience
is that these misconverged vectors work quite well in this application� Greater
reductions in the envelope parameters result from investing in a local re�ne�
ment algorithm� such as the Sloan algorithm� than by computing the Fiedler
vector more accurately� Similar observations have been made when multilevel
algorithms are used in graph partitioning �����
We �nd that on many �nite element problems spectral orderings do well in a

global sense� but often do poorly on a local scale� It is exactly this amenability
to local re�nement that we seek to exploit with our hybrid algorithm�

��� Counter�Examples for Spectral Envelope Reduction

The spectral algorithm computes the lowest wavefront and envelope sizes over
current algorithms for many �nite element meshes as the results in Section � will
show� However� there are problems on which the spectral method can perform
poorly� as can be seen in the results presented in Subsection ���� Here we con�
sider an example due to Guattery and Miller ���� where a spectral partitioning
algorithm fails to �nd a good cut if the part sizes must be balanced� turns out
to be one on which the spectral ordering algorithm does badly as well� We show
that the hybrid algorithm� in which the spectral ordering is re�ned by the Sloan
algorithm in a post�processing step� does well on this problem�
Figure ��� shows an example of the �roach� graph and the ordering computed

by the hybrid algorithm� The roach graph is a ladder with the top � � of the
rungs removed� For a given positive integer k� this graph has �k vertices� �k
along each �antenna�� and �k vertices on the ladder� The spectral ordering of
this graph would begin numbering from the endpoint of one of the antennae�
march along the outline of the graph� and end at the endpoint of the other
antenna� This leads to an envelope size of �k�� and a mean square wave front
of k��
�� 
Only leading terms are shown�� It can be seen in Figure ��� that
the hybrid algorithm numbers nodes along one antenna� then alternates across
the rungs of the ladder� and �nally numbers the second antenna� This leads
to an envelope size of 
�k� and a mean square wavefront of 
����k� an order of
magnitude decrease in both�
For the bene�t of the reader familiarwith graphs constructed from the crossprod�

uct of a path and double tree� described in ����� we mention that the proposed
hybrid algorithm exhibits similar behavior�
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Figure ���� The hybrid ordering of the roach grid and its associated matrix�

� A Fast Implementation of the Sloan Algorithm

We describe a variant of the Sloan algorithm applicable to vertex�weighted
graphs in Section ��
� we also discuss the behavior of the envelope parameters as
a function of the weights in the Sloan algorithm� In Section ���� we describe an
e�cient implementation of this algorithm� The Appendix contains a complexity
analysis to demonstrate that the new implementation takes O
n logn� time for
problems with good separators� whereas earlier implementations require at least
O
n���� time�

��� The Weighted Sloan Algorithm

In this section we consider a weighted graph on a set of multi�vertices and
edges� with integer weights on the multi�vertices� We think of the weighted
graph as being derived from an unweighted graph� and the weight of a multi�
vertex as the number of vertices of the unweighted graph that it represents� The
weighted graphs in our applications are obtained from �nite element meshes�
where neighboring vertices with the same adjacency structures are �condensed�
together to formmulti�vertices� The weighted graph could potentially have fewer
vertices and many fewer edges than the original unweighted graph in many
�nite element problems� Du	� Reid� and Scott �

� call the weighted graph
the supervariable connectivity graph� Ashcraft ��� refers to it as the compressed
graph� and has used it to speed up the minimum�degree algorithm� andWang ����
used it for an e�cient nested dissection algorithm�
A few graph�theoretic concepts are needed to describe Sloan�s algorithm� The

distance between two vertices in a graph is the number of edges in a shortest path
joining them� The diameter is a path in the graph whose length is the largest
distance between any two vertices� A pseudo�diameter is an approximation to a
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diameter�
Sloan�s algorithm ���� is a graph traversal algorithm that has two parts� The

�rst part is heuristic algorithm that selects a start vertex s and an end vertex
e that form the endpoints of a pseudo�diameter� The second part then numbers
the vertices� beginning from s� and chooses the next vertex to number from a
set of eligible vertices by means of a priority function� Roughly� the priority of
a vertex has a dynamic and static component� the dynamic component favors
a vertex that increases the current wavefront the least� while the static part
favors vertices at the greatest distance from the end vertex e� The computation�
intensive part of the algorithm is maintaining the priorities of the eligible vertices
correctly as vertices are numbered�
We followDu	� Reid and Scott in their e�cient scheme to compute the pseudo�

diameter in the �rst step of the Sloan algorithm�
Eligible Vertices� Vertices are in four mutually exclusive states at each step

of the algorithm� Any vertex that has already been numbered in the algorithm
is a numbered vertex� Active vertices are unnumbered vertices that are adjacent
to some numbered vertex� Vertices that are adjacent to active vertices but are
neither active nor numbered are called preactive vertices� All other vertices are
inactive� Initially all vertices are inactive� except for s� which is preactive�
At any step k� the sum of the sizes of the active vertices is exactly the size of

the wavefront at that step for the reordered matrix� wfk
PAPT �� where P is the
current permutation� Active and preactive vertices comprise the set of vertices
eligible to be numbered in future steps�
An eligible vertex with the maximum priority is chosen to be numbered next�

The priority function of a vertex i has two components� incr
i�� the increase in
the wavefront size 
the number of additional vertices that enter the wavefront�
if i were to be numbered next� and dist
i� e�� its distance from the end vertex e�
Increase in Wavefront Size� Our implementation of the weighted Sloan

algorithm on the weighted graph mimics what the Sloan algorithm would do on
an unweighted graph� and thus we de�ne the degrees of the vertices and incr
i�
di	erently from Du	� Reid� and Scott �

��
We denote by size
i� the integer weight of a multi�vertex i� The degree of the

multi�vertex i� deg
i�� is the sum of the sizes of its neighboring multi�vertices�
Let the current degree of a vertex i� cdeg
i�� denote the sum of the sizes of
the neighbors of i among preactive or inactive vertices� It can be computed
by subtracting from the degree of i the sum of the sizes of its neighbors that
are numbered or active� When an eligible vertex is assigned the next available
number� its preactive or inactive neighbors move into the wavefront� Thus

incr
i� �

�
cdeg
i� � size
i�� if i is preactive
cdeg
i�� if i is active

�

The size
i� term for a preactive vertex i accounts for the inclusion of i into
the wavefront� 
Recall that the de�nition of the wavefront includes the diagonal
element�� Initially� incr
i� is deg
i� � size
i� since nothing is in the wavefront
yet�



ALGORITHMS FOR WAVEFRONT REDUCTION 



function Sloan
begin

f Initialize� given a vertex�weighted graph G� weights W� and W��
start vertex s� end vertex e� and adjacency lists of verticesg


� norm � bdist�s� e���c�
�� for i � � to n
	� status�i� � inactive

�� P �i� � �W� � norm � incr�i� �W� � dist�i� e�
�� endfor
�� status�s� � preactive

f Main Loop g

� for k � � to n
�� i � vertex of maximum priority �P ���� among all active or preactive vertices
�� order�i� � k
�� forall j � adj�i� do
�
� case �status�i� � preactive and status�j� � inactive or preactive��
��� P �j� � P �j� ��size�i� � size�j�� � norm �W� fj now active� i numberedg
�	� status�j� � active
��� far neighbors�j�
��� break
��� case �status�i� � preactive and status�j� � active��
�
� P �j� � P �j� �size�i� � norm �W� fi moves from preactive to numberedg
��� break
��� case �status�i� � active and status�j� � preactive��
��� P �j� � P �j� �size�j� � norm �W� fj moves from preactive to activeg
	
� status�j� � active
	�� far neighbors�j�
		� break
	�� end forall
	�� status�i� � numbered
	�� end for

end

function far neighbors�j�
begin

	
� forall � � adj�j��� �� i� do
	�� if �status��� � inactive� then status��� � preactive end if
	�� P ��� � P ��� �size�j� � norm �W� fj now activeg
	�� end forall

end

Figure ��
� The Sloan algorithm for a vertex�weighted graph�
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The second component of the priority function� dist
i� e�� measures the dis�
tance of a vertex i from the end vertex e� This component encourages the
numbering of vertices that are very far from e even at the expense of a larger
wavefront at the current step� This component is easily computed for all i by a
breadth �rst search rooted at e�
The Priority Function� Denote by P 
i� the priority of an eligible vertex i

during a step of the algorithm� The priority function used by Sloan� and Du	�
Reid and Scott is a linear combination of two components

P 
i� � �W� 	 incr
i� �W� 	 dist
i� e��

where W� and W� are positive integer weights� At each step� the algorithm
numbers next an eligible vertex i that maximizes this priority function�
The value of incr
i� ranges from � to 
!�
� 
where ! is the maximumdegree

of the unweighted graph G�� while dist
i� e� ranges from � to the diameter of
the graph G� We felt it desirable for the two terms in the priority function to
have the same range so that we could work with normalized weightsW� andW��
Hence we use the priority function

P 
i� � �W� 	 b
dist
s� e��!�c 	 incr
i� �W� 	 dist
i� e��

If the pseudo�diameter is less than the maximum degree� we set their ratio to
one� We discuss the choice of the weights later in this section�
The Algorithm� We present in Figure ��
 our version of the weighted Sloan

algorithm� This modi�ed Sloan algorithm requires fewer accesses into the data
structures representing the graph 
or matrix� than the original Sloan algorithm�
The priority updating in the algorithm ensures that incr
j� is correctly main�
tained as vertices become active or preactive� When a vertex i is numbered� its
neighbors and possibly their neighbors need to be examined� Vertex i must be
active or preactive� since it is eligible to be numbered� We illustrate the updating
of the priorities for only the �rst case in the algorithm� since the others can be
obtained similarly� Consider the case when i is preactive and j is inactive or pre�
active� The multi�vertex i moves from being preactive to numbered� and hence
moves out of the wavefront� decreasing incr
j� by size
i�� and thereby increases
P 
j� by W� 	 b
dist
s� e��!�c 	 size
i�� Further� since j becomes active and is
now included in the wavefront� it does not contribute in the future to incr
j��
and hence P 
j� increases by W� 	 b
dist
s� e��!�c 	 size
j��
The Choice of Weights� Sloan ����� and Du	� Reid and Scott �

� recom�

mend the unnormalized weights W� � �� W� � 
� We studied the in�uence of
the normalized weights W� and W� on the envelope parameters� and found� to
our initial surprise� that the problems we tested fell into two classes�
The �rst class is exempli�ed by the BARTH� problem� whose envelope param�

eters are plotted for various choice of weights in Figure ���� The value of each
envelope parameter is scaled with respect to the value obtained with the unnor�
malized weights W� � 
 and W� � � in the Sloan algorithm� Thus this and the
next Figures reveal the improvements obtained by normalizing the weights in
the Sloan algorithm�
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Figure ���� Envelope parameters of BARTH� as a function of the weights W� and
W��

The envelope parameters are plotted at successive points on the x�axis cor�
responding to changing the weight W� or W� by a factor of two� The ratio of
the pseudo�diameter to maximum degree is 
� for this problem� and here large
values of W� lead to the smallest envelope size and wavefront sizes� The nor�
malized weights W� � � and W� � 
 su�ce to obtain these values� note the
asymptotic behavior of the envelope parameters� The bandwidth has a contrar�
ian behavior to the rest of the parameters� and thus high values of W� lead to
small bandwidths for these problems�
The second class is exempli�ed by the FINANCE��� problem� whose envelope

parameters are plotted for various choice of weights in Figure ���� Again� the
value of each parameter is scaled by the value obtained by the Sloan algorithm
with unnormalized weightsW� � ��W� � 
� The ratio of the pseudo�diameter to
maximumdegree is 
� Here high values ofW� lead to small envelope parameters�
Note that the bandwidth follows the same trend as the rest of the envelope
parameters� unlike the �rst class� Other problems from Table � that belong to
this class are� FORD�� FORD�� SKIRT� NASARB� BCSSTK��� and FINANCE����
All other problems belong to the �rst class�
A user needs to experiment with the weights to obtain a near�optimal value

of an envelope parameter for a new problem� since one does not know a priori
which of the two classes it belongs to� Fortunately� small integer weights su�ce
to get good results in our experiments� and hence a set of good weights can
be selected automatically by computing the envelope parameters with a few
di	erent weights�
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Figure ���� Envelope parameters of FINANCE��� as a function of the weights W�

and W��

The results tabulated in Section � show that it is possible to reduce the mean
square wavefront by choosing one normalized set of weights for each problem in
Class 
� and another for each problem in Class �� rather than the unnormalized
weights 
W� � ��W� � 
� used by Sloan� and Du	� Reid and Scott� The weights
we have used are W� � �� W� � 
 for Class 
 problems� and W� � 
� W� � �
for problems in Class �� An automatic procedure could compute the envelope
parameters for a few sets of weights� and then choose the ordering with the
smaller values�
There are two limiting cases of the Sloan algorithm�
When W� � �� W� �� �� then the distance from the end vertex e determines

the ordering� and the Sloan algorithm behaves almost like RCM� However� this
limiting case di	ers from the case when W� is nonzero and W� is much larger
than W�� In the latter case� the �rst term still plays a role in reducing the
envelope parameters� For instance� the values of envelope parameters obtained
when the ratio W��W� is ��� are signi�cantly smaller than the values obtained
when W� � � and W� �� �� Only neighbors and second�order neighbors of the
numbered vertices are eligible to numbered at any step� and among these vertices
the �rst term serves to reduce the local increase in the wavefront when W� is
nonzero�
The second limiting case� when W� � �� W� �� �� corresponds to a greedy

algorithm in which vertices are always numbered to reduce the local increase in
wavefront� This greedy algorithm does particularly poorly on Class � problems�
The two classes of problems di	er in the importance of the �rst� �local�� term
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that controls the incremental increase in the wavefront relative to the second�
�global�� term that emphasizes the numbering of vertices far from the end�vertex�
When the �rst term is more important in determining the envelope parameters�
the problem belongs to Class 
� and when the second term is more important� it
belongs to Class �� We have observed that the �rst class of problems represent
simpler meshes� e�g�� discretization of the space surrounding a body� such as an
airfoil in the case of BARTH�� The problems in the second class arise from �nite
element meshes of complex three�dimensional geometrical objects� such as auto�
mobile frames� The FINANCE��� problem is a linear program consisting of several
subgraphs joined together by a binary tree interconnection� In these problems�
it is important to explore several �directions� in the graph simultaneously to
obtain small envelope parameters�
The bandwidth is smaller when larger weights are given to the second term� for

both classes of problems� This is to be expected� since to reduce the bandwidth�
we need to decrease� over all edges� the maximumdeviation between the numbers
of the endpoints of an edge�

��� The Accelerated Implementation

In the Sloan algorithm� the vertices eligible for numbering are kept in a priority
queue� Sloan ���� implemented the priority queue both as an unordered list in an
array and as a binary heap� and found that the array implementation was faster
for his test problems 
all with less than �� ��� vertices�� Hence he reported results
from the array implementation only� Du	� Reid� and Scott �

� have followed
Sloan in using the array implementation for the priority queue in the Harwell
library routine MC�� �
��
We provide a complexity analysis of the worst�case execution time of the two

implementations in the Appendix� which shows that the heap implementation
runs in O
n logn� time� while the array implementation requires O
n���� time
for two�dimensional problems� and O
n���� time for three�dimensional problems�
This di	erence in running time requirements is experimentally observed as

well� In Figure ��� we compare the times taken by the array and heap imple�
mentations of the Sloan algorithm relative to our implementation of the RCM
algorithm� The RCM algorithm uses a fast pseudo�diameter algorithm described
by Du	� Reid� and Scott �

��
For the eighteen matrices in Table �� the mean time of the ArraySloan was



�� times that of RCM� while the median time was ��� that of RCM� However�
the mean cost of the HeapSloan was only ��� times of RCM� with the median
cost only ���� The greatest improvements are seen for the problems with greater
numbers of vertices or with higher average degrees�
We have also computed the times taken by MC��B to order these problems�

and found them to be comparable to the times reported here for the ArraySloan
implementation� inspite of the di	erent programming languages used 
Fortran
for MC��B and and C for ours��
We emphasize that this change in the data structure for the priority queue

has no signi�cant in�uence on the quality of the envelope parameters computed
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Figure ���� Relative timing performance of RCM� ArraySloan� and HeapSloan
algorithms�

by the algorithm� Minor di	erences might be seen due to di	erent tie�breaking
strategies�

� The Hybrid Algorithm

The hybrid algorithm consists of two steps� �rst compute the spectral ordering�
then use a modi�cation of the second part of the Sloan algorithm to re�ne the
ordering locally� We shall refer to this modi�cation of the second part as the
modi�ed Sloan algorithm� This abuse of nomenclature should not cause any
confusion in the context of the hybrid algorithm� We describe how we modi�ed
Sloan to re�ne a given input ordering in Section ��
� Implementation details are
presented in Section ����

��� Modi�cations to the Sloan Algorithm

To change the Sloan algorithm from one that computes an ordering from
scratch to one that re�nes a given ordering� we need to modify the selection
of start and end nodes� and the priority function� We use input ordering in this
section to describe the ordering of the matrix immediately before the Sloan re�
�nement is performed� In our implementation� this input ordering is the spectral
ordering� though the re�ning algorithm can work with any input ordering�
The Sloan algorithm requires a start node to begin numbering from� and an

end node to compute the priority function� We choose the start node s to be the
�rst node and the end node e to be the last node in the input ordering� Hence
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the burden of �nding a good set of endpoints is placed on the spectral method�
Experience suggests that this is where it should be� The spectral method seems
to have a broader and more consistent view than the local diameter heuristic�
This feature alone yields improved envelope parameters over the Sloan algorithm
for most of our test problems�
The priority function is

P 
i� � �W� 	 b
n�!�c 	 incr
i� �W� 	 dist
i� e� �W� 	 i�

The �rst two terms are similar to the priority function of the Sloan algorithm

Subsection ��
�� except that the normalization factor has n� the number of
vertices in the numerator� rather than the pseudo�diameter� The latter is not
computed in this context� and this choice makes the �rst and third term range
from 
 to n�
This function is sensitive to the initial ordering through the addition of a third

weight� W�� For W� � �� higher priority is given to lower numbered vertices in
the input ordering� Conversely� forW� � �� priority is given to higher numbered
vertices� This e	ectively performs the re�nement on the reverse input ordering�
provided s and e are also reversed� There is some redundancy between weighting
the distance from the end in terms of the number of hops 
dist
i� e�� and the
distance from the end in terms of the input ordering 
i��
Selection of the nodes s and e and the new priority function are the only

algorithmic modi�cations made to the Sloan algorithm� The node selection�
node promotion� and priority updating scheme 
see Fig� ��
�� are unchanged�
The normalization factor in the �rst term of the priority function makes the

initial in�uence of the �rst and third terms roughly equal in magnitude whenW�

and W� are both equal to 
� The weight W� is usually set to one� This makes it
a very weak parameter in the whole algorithm� but small improvements result
when its in�uence is nonzero� If the component of the Fiedler vector with the
largest absolute value has the negative sign� we set W� � �
 and swap s and
e� Otherwise� we set W� � 
 and use the nondecreasing ordering of the Fiedler
vector�
For Class 
 problems� higher values of W� can lead to improvements in the

envelope parameters over the choice of W� � 
� even though it is slight in
most cases� For Class � problems� use of W� � 
� W� � W� � � can lead to
improvements as well�

��� Implementation Details

All the results presented in the following section were obtained on a Sun
SPARCstation �� with ��MB physical main memory and ���MB of swap space�
running SunOS ��
��� The software used includes Matlab ���a� Chaco ��� ����
and a suite of Matlab M��les and MEX��les� that we wrote� All of the MEX��les

�Both M��les and MEX��les are programs in Matlab� M��les are interpreted and are
analogous to UNIX scripts or DOS batch �les� MEX �les are compiled C or Fortran codes
that are dynamically linked into Matlab�
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Problem jV j jEj Comment
BARTH ����
 
�����
BARTH� ���
� 
����� ��D CFD problems
BARTH� 
����� ������
SHUTTLE�EDDY 
����� ������
COPTER
 
����� �����

COPTER� ������ �������
FORD
 
����� �
���� ��D structural problems
FORD� 
���
�� �������
SKIRT �����
 
��������
NASASRB ������ 
��

����
COMMANCHE DUAL ����� 

����
TANDEM VTX 
����� 

����� ��D CFD problems
TANDEM DUAL ������ 
����
�
ONERA DUAL ������ 

���
�
BCSSTK�� ������ 
�������� ��D sti	ness matrix
PDS
� 
����� ������
FINANCE��� ������ 
������ linear programs
FINANCE�
� ������ ��
�
��
COMP�SKIRT 
����� 
�����
 compressed SKIRT
COMP�NASARB ������ ������� compressed NASARB
COMP�BCSSTK�� ����� 


���� compressed BCSSTK��

Table ��
� The list of eighteen test problems� For the three problems that
compressed well� their compressed versions are also shown�

are written in C� A toolbox of M��les written by Gilbert �
�� was used to gen�
erate some model problems� visualize results� and test code under development�
Matlab is the main platform on which the experiments were done� Its inter�

active environment is very �exible to use� M��les allowed for quick prototype
code generation� However� M��les are interpreted and too slow� in general� for
matrices of reasonable size� The code was then re�written in C� given a Mat�
lab wrapper function� and linked as a MEX �le into Matlab�s dynamic library�
Chaco was used to obtain the Fiedler vector�

� Computational Results

We describe in Section ��
 how we chose the computational parameters in the
hybrid algorithm� In Section ��� we discuss the relative reductions in envelope
size and wavefront of eighteen test problems obtained fromRCM� Sloan� spectral�
and hybrid algorithms�
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Problem mswf maxwf Esize bw Time

sec��

BARTH 
���e� 
�� ���
e� 
�� ��
�
BARTH� 
��
e� ��� ����e� �
� ����
BARTH� ����e� ��
 ����e� ��� ��
�
SHUTTLE ����e� 
�� ����e� ��� ��
�
COPTER
 ����e� ��� ����e� ��� ��
�
COPTER� ����e� ����� ����e� ����� ����
FORD
 ����e� ��� ����e� ��� ����
FORD� ����e� ��� ����e� ��� 
�

SKIRT 
�

e� 
���� ����e� ����� ���
NASARB 
���e� ��� ����e� ��
 ���
COMMANCHE�DUAL ����e� 
�� ����e� 
�� ����
TANDEM�VERTEX ����e� 
���� 
���e� 
���� ����
TANDEM�DUAL 
���e� ����� 
���e� ��
�� 
��
ONERA�DUAL ����e� ����� 
��
e� ����� 
��
BCSSTK�� 
���e� 
���� ����e� ����� ���
PDS
� ����e� ����� ����e� ����� ����
FINANCE��� ����e� 
���� ����e� ���
� ���

FINANCE�
� ����e� ��� ����e� 
���� 
��

Table ���� Envelope parameters and CPU time on a Sun Sparc��� workstation
for the RCM algorithm�

	�� Chaco
s User Parameters

We use the SymmLQ RQI option in Chaco to obtain the Fiedler vector� Chaco
takes a multilevel approach� coarsening the grid until it has less than some user
speci�ed number of vertices 

��� seems to be su�cient�� Then it computes
the Fiedler vector on the coarse grid� orthogonalizing only for eigenvectors cor�
responding to small eigenvalues� Then the coarse grid is re�ned back to the
original grid and the eigenvector is re�ned using Rayleigh Quotient Iteration

RQI�� This re�nement is the dominant cost of the whole process� During the
coarsening� we compute generalized eigenvectors of the weighted Laplacians of
the coarse graphs from the equation A�x � 	D�x� where D is the diagonal ma�
trix of vertex weights� This feature� obtained by turning on the parameter
MAKE	VWGTS� speeds up the eigenvector computation substantially�
Two other parameters� EIGEN	TOLERANCE and COARSE	NLEVEL	RQI� control

how accurately eigenvectors are computed and how many levels of graph re�ne�
ment occur before the approximate eigenvector is re�ned using RQI� respectively�
We set the value of EIGEN	TOLERANCE to 
���� and it was very e	ective in re�
ducing cpu�time� Even in the case where this tolerance induces misconvergences�
the spectral ordering is still good and the hybrid ordering even better for most
problems� The COARSE	NLEVEL	RQI parameter didn�t have much e	ect� so we
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Problem SLOAN NSLOAN SPECTRAL HYBRID

Class�

BARTH ���� ���� 

� ���� ����
BARTH� ���� ���
 

� ���� ��
�
BARTH� ���� ��
� 

� ��
� ��
�
SHUTTLE ���� ���� 

� 
�� ����
COPTER
 ���
 ���� 

� ���� ����
COPTER� ���� ���� 

� ���� ��
�
FORD
 ���� ���� 
�� ���� ����
FORD� ���
 ���
 
�� ���� ����
SKIRT ���� ���� 
�� ���� ����
NASARB ���� ���� 
�� ���� ���

COMMANCHE�DUAL ���� ���� 

� ���� ����
TANDEM�VTX ��
� ��
� 

� ��
� ��
�
TANDEM�DUAL ���� ���� 

� ��
� ��


ONERA�DUAL ���� ���
 

� ���� ����
BCSSTK�� ���� ���� 
�� ��
� ����
PDS
� ���� ��
� 

� ���� ��
�
FINANCE��� ���� ���� 
�� ���� ����
FINANCE�
� ���� ���� 
�� ��
� ����
COMP�SKIRT ���� 
�� ���
 ����
COMP�NASARB ���� 
�� 
�� ����
COMP�BCSSTK�� ���� 
�� ��
� ����

Table ���� Mean square Wavefront sizes for various algorithms relative to RCM�
The numbers in parentheses after the values for the normalized Sloan algorithm
show the class of each problem 
See Section ���

used the program�s default value of ��

	�� Results

We consider �ve ordering algorithms RCM� Sloan with unnormalized weights
W� � �� W� � 
� Sloan with normalized weights 
W� � �� W� � 
 for prob�
lems in Class 
� and W� � 
� W� � � for problems in Class ��� spectral� and
hybrid 
normalized weights W� � W� � W� � 
 for Class 
 problems� W� � 
�
W� � W� � � for Class � problems�� When we refer to the Sloan algorithmwith�
out mentioning the weights� we mean the algorithmwith normalized weights� We
have compared the quality and time requirements of these algorithms on eigh�
teen problems 
see Table ��� The problems are chosen to represent a variety of
application areas� structural analysis� �uid dynamics� and linear programs from
stochastic optimization and multicommodity �ows� The complete set of results
for RCM are shown in Table �� for other algorithms� results normalized with
respect to RCM are presented in Tables �� �� �� � and ��
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Problem SLOAN NSLOAN SPECTRAL HYBRID
BARTH ���� ���� ���� ����
BARTH� ���� ���� ���� ����
BARTH� ���� ���� ���� ����
SHUTTLE ���� ���� 
�� ����
COPTER
 ���� ���� ���� ����
COPTER� ���� ���� ���� ����
FORD
 ���� ���� ���� ����
FORD� ���� ���� ���
 ����
SKIRT ���� ���� ���� ����
NASARB ���� ���
 
�� ����
COMMANCHE�DUAL ���� ���� ���� ����
TANDEM�VTX ���� ���� ���� ����
TANDEM�DUAL ���� ���� ���� ����
ONERA�DUAL ���� ���� ���� ����
BCSSTK�� ���� ���� ���� ����
PDS
� ���� ���� 
�� ����
FINANCE��� ���� ���� ���� ���

FINANCE�
� ���� ���� ���� ����
COMP�SKIRT ���� ���� ����
COMP�NASARB ���
 ��� ����
COMP�BCSSTK�� ���� ���� ����

Table ���� Maximum wavefront sizes relative to the RCM algorithm�

A comparison of the mean performance of the various algorithms is included
in Table �� The CPU time for only one of the Sloan algorithms is shown because
the two algorithms have identical running times since they di	er only in the
choice of weights� The values in this table are computed by taking arithmetic
means of the 
unnormalized� values of each metric over the problems in the test
collection� Values normalized with respect to the RCM algorithm 
reported in
Tables � through �� should not be used to compute the arithmetic mean� since
the arithmetic mean of normalized data is inconsistent in the sense that the
rankings of the algorithms could depend on the algorithm chosen as the reference
algorithm� This is because the larger ratios in the normalized data strongly
in�uence the arithmetic mean� The reader can compute the unnormalized data
from the results for RCM included in Table � and the tables with the normalized
data�
Initially we discuss the results on the uncompressed graphs� since most of

the graphs in our test collection did not gain much from compression� We
discuss later in this section the three problems that exhibited good gains from
compression�
The envelope parameters and times reported in the tables are normalized with

respect to the values obtained from RCM� For the Sloan algorithm� two sets of
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Problem SLOAN NSLOAN SPECTRAL HYBRID
BARTH ���� ���� ���� ����
BARTH� ���� ���� ���� ����
BARTH� ���� ���� ���� ����
SHUTTLE ���
 ���� 
�� ����
COPTER
 ���� ���� ���� ����
COPTER� ���� ���� ���� ����
FORD
 ���
 ���� ���� ���

FORD� ���
 ���
 ���� ����
SKIRT ���� ���� ���� ����
NASARB ���� ���� ���� ����
COMMANCHE�DUAL ���� ���� ���
 ����
TANDEM�VTX ���� ���� ���� ����
TANDEM�DUAL ���� ���� ���� ����
ONERA�DUAL ���� ���� ���
 ����
BCSSTK�� ���� ���� ���� ����
PDS
� ���
 ���� ���� ����
FINANCE��� ���� ���� ���� ����
FINANCE�
� ���
 ���� ���� ����
COMP�SKIRT ���� ���� ����
COMP�NASARB ���� 
�
 ����
COMP�BCSSTK�� ���� ���� ����

Table ���� Envelope sizes relative to RCM�

values are reported� the �rst is from the unnormalized weights W� � �� W� � 
�
and the second from the normalized weights for Class 
 and Class � problems�
The normalized Sloan algorithm is labeled by the column NSLOAN in Table ��
and the number in the parenthesis 
i� indicates the class to which a problem
belongs to� The results for the compressed problems are indicated by the last
three rows�
The Sloan algorithm with the normalized weights reduces the mean�square

wavefront on average to ��� of that of RCM� when unnormalized weights are
used in the Sloan algorithm� the mean square wavefront is ��� of that of RCM�

Henceforth� a performance �gure should be interpreted to be the average value
for the problems in the test collection� we shall not state this explicitly�� The
hybrid reduces mean�square wavefront to 
�� of that of RCM� and to ���
of that of 
normalized� Sloan� The hybrid algorithm computes the smallest
mean square wavefront for all but three of the eighteen problems� Note that
even for the problems where the spectral algorithm does poorly relative to the
Sloan algorithm� the post�processing enables the hybrid algorithm to compute
relatively small wavefronts� In general� the spectral and Sloan algorithms tend
to vie for second place with RCM �nishing fourth�
These algorithms also yield smaller maximumwavefront sizes than RCM� The



ALGORITHMS FOR WAVEFRONT REDUCTION ��

Problem SLOAN NSLOAN SPECTRAL HYBRID
BARTH ���� ���� 
��� ��
�
BARTH� ���� ���� ���� ����
BARTH� ���� ���
 
��� ��
�
SHUTTLE ���� ���� ���� ����
COPTER
 ���� ���� 
��� ����
COPTER� ���� 

�� 
��� ����
FORD
 ���� ���
 
��� 
���
FORD� ���� 
��
 ���� ����
SKIRT ���� ���� ��
� ��
�
NASARB ���� ���� ��
� ����
COMMANCHE�DUAL ���� 
��� ���� ��
�
TANDEM�VTX ���� ���� 
��� ����
TANDEM�DUAL ���� ���� ���� ����
ONERA�DUAL ���� 

�� ���� ��
�
BCSSTK�� ���� ��

 
��
 ����
PDS
� ���� ���� 
��� ����
FINANCE��� ���
 ��

 ���� ����
FINANCE�
� ���� ���� ���� ����
COMP�SKIRT ���� ��
� ��
�
COMP�NASARB ���
 ���� ����
COMP�BCSSTK�� ���� ���� ����

Table ���� Bandwidths relative to RCM�

normalized Sloan algorithm yields values about ��� of RCM� while the hybrid
computes values about ��� of RCM� Thus these algorithms lead to reduced
storage requirements for frontal factorization methods�
The results for the envelope size are similar� The hybrid� on average� reduces

the envelope size to ��� of that of the RCM ordering� and to ��� of that of the
normalized Sloan algorithm�
The Sloan� spectral� and the hybrid algorithms all reduce the wavefront size

and envelope size at the expense of increased bandwidth� This is expected for
the Sloan algorithm since Figures ��� and ��� show that the weights yielding
small wavefront sizes are quite di	erent from the weights for small bandwidth�
It is also not surprising for the spectral and the hybrid algorithms since their
objective functions� ��sum 
for spectral� see �
��� and wave front size 
for the
hybrid� di	er from the bandwidth�
On these test problems� our e�cient implementation of the Sloan algorithm

requires on average only ��
 times that of the time taken by the RCM algo�
rithm� The hybrid algorithm requires about ��� times the time taken by the
Sloan algorithm on the average� This ratio is always greater than one� since the
hybrid algorithm uses second step of the Sloan algorithm 
numbering the ver�
tices� to re�ne the spectral ordering� and the eigenvector computation is much
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Problem SLOAN SPECTRAL HYBRID
BARTH 
�� 
�� 

�
BARTH� ��� 
�� ���
BARTH� ��� 
�� �
�
SHUTTLE ��� 
�� 
��
COPTER
 ��� ��� ���
COPTER� ��� 
�� ���
FORD
 
�� 
�� 
��
FORD� ��� 
�� �
�
SKIRT 
�� ��� ���
NASARB ��� ��� ���
COMMANCHE�DUAL ��
 
�� 
��
TANDEM�VTX ��� 
�� 
��
TANDEM�DUAL ��� 
�� 
��
ONERA�DUAL ��� 
�� 
��
BCSSTK�� 
�� ��� ���
PDS
� ��
 ��� ���
FINANCE��� ��� 
�� 
��
FINANCE�
� ��� 
�� 
��
COMP�SKIRT ���� ���� ���

COMP�NASARB ���� 
�� ���
COMP�BCSSTK�� ���� ���� ����

Table ���� CPU times relative to the RCM algorithm�

Metric Units RCM SLOAN NSLOAN SPECTRAL HYBRID
mswf 
e� 
�� ��� ��� ��
 
��
maxwf 
e� 
�� ��� ��� ��� ���
Esize 
e� ��� ��� 
�� 
�� 
��
bw 
e� 
�� ��� 
�� ��� ���
CPUTime secs� 
�
 ��� 
�� 

�

Table ���� Average performance of the algorithms� The arithmetic means of
each metric is calculated from the unnormalized values of that metric for the
test problems�
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more expensive than the �rst step of the Sloan algorithm 
the pseudo�diameter
computation�� We believe that these time requirements are small for the appli�
cations that we consider� preconditioned iterative methods and frontal solvers�
Gains from Compressed Graphs� As discussed in Subsection ��
� the use

of the supervariable connectivity graph �

� 
called the compressed graph by
Ashcraft ���� can lead to further gain in the execution times of the algorithms�
Only three of the problems� SKIRT� NASARB� BCSSTK��� compressed well� This is
because many of the multicomponent �nite element problems in our test set had
only one node representing the multiple degrees of freedom at that node� The
compression feature is an important part of many software packages for solving
PDE�s� since it results in reduced running times and storage overheads� and our
results also show impressive gains from compression�
Three problems in our test set compressed well� SKIRT� NASARB� and BCSSTK���

Results for these problems are shown in the last three rows of each table� The
numbers of multivertices and edges in the compressed graphs are also shown� For
these three problems� compression speeds up the Sloan algorithm on average by
a factor of nearly �� and the hybrid algorithm by a factor of ����
Compression improves the quality of the Sloan algorithm for these three prob�

lems� and does not have much impact on the hybrid algorithm� This improved
quality of the compressed Sloan algorithm follows from our choice of parame�
ters in the compressed algorithm to correspond exactly to their values in the
uncompressed graph� However� on NASARB� the spectral envelope parameters de�
teriorate upon compression� We do not know the reason for this� but it could be
due to the poorer quality of the eigenvector computed for the weighted problem�
In any case� the compressed hybrid algorithm recoups most of this deterioration�

� Applications

This section discusses preliminary evidence demonstrating the applicability
of the orderings we generated� In Section ��
 we describe how a reduction in
mean square wavefront directly translates into a greater reduction in cpu�time
in a frontal factorization� We also discuss the impact of these orderings on
incomplete Cholesky 
IC� preconditioned iterative solvers in Section ����

��� Frontal Methods

The work in a frontal Cholesky factorization algorithm is

work
A� �



�

nX
i��

jwfi
A�j
	
jwfi
A�j� �



�

Hence a reduction in the mean�square wavefront leads to fewer �ops during
Cholesky factorization� Du	� Reid� and Scott �

� have reported that Sloan or�
derings lead to faster frontal factorization times than RCM orderings� Barnard�
Pothen and Simon ��� have reported similar results when spectral orderings are
used�
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Sun SPARC�	 Cray
J�	

Ordering Frontal Solve
Time Time Flops

Initial � 

�� ���e�
�
RCM ��� 
��� 
��e�



bcsstk�	 Sloan ��
 ��� ���e�
�
Spectral 

�� 
�� 
�
e�
�
Hybrid 
��� ��� 
�
e�
�
Initial � ���� ��
e�


RCM ��� ���� 
��e�



skirt Sloan ��� 
��� 
��e�


Spectral 
��� ��� ���e�
�
Hybrid ���� ��� ���e�
�

Table ��
� Results of two problems on a CRAY�J�� using MA��� Times reported
are in seconds�

Two problems were run by Dr� Jennifer Scott on a single processor of a
Cray�J�� using the Harwell frontal factorization code MA��� The matrix values
were generated randomly� 
The orderings used were obtained earlier than the
results reported in Appendix A� however� these results su�ce to show the general
trends�� The results in Table ��
 show a general correlation between mean square
wavefronts 
proportional to �ops� and factorization times� The spectral ordering
enables the factorization to be computed about ��� times faster than the Sloan
ordering for the BCSSTK�� problem� this ratio is 
�� for the SKIRT problem� The
hybrid does not improve factorization times over the spectral ordering for these
problems�

��� Incomplete Cholesky Preconditioning

In this section we report preliminary experiments on the in�uence of our or�
derings on preconditioned conjugate gradients 
CG�� We precondition CG with
an Incomplete Cholesky factorization 
IC
k�� that controls k� the level of the �ll
introduced�
Since the envelope is small� we con�ne �ll to a limited number of positions�

and hope to capture more of the character of the problem with fewer levels of �ll�
However� a tighter envelope is only one of the factors that a	ect convergence�
For instance� orderings must respect numerical anisotropy for fast convergence�
Our preliminary results have been mixed� In Table ��� we show information

pertaining to two problems that are representative of our data� It is worth
noting how strongly the norm of the remainder matrix for a given ordering is
a predictor of iteration counts� The BODY
Y�� problem shows that the Sloan
ordering can be very e	ective in reducing the iteration count� This problem
is a ��dimensional mesh with an aspect ratio of 
���� In the case of poor
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Ordering
RCM Sloan Spectral Hybrid

body�y�� kRkF ��

� 	���� ���

 ��	�

jV j � ������ nnz�L� ����	� ����	� ����	� ����	�
jEj � �����	 iteration count ��
 ��� ��	
� ��

�

Level 
 cpu time ���
� �	
 ����� ���
�
�ops 
��e�
� ���e�
� ���e�
� ���e�
�

Level 	 kRkF ����
 ��� ��� �
�
nnz�L� �	����� �	
���� �	���	� �	
����

iteration count ��� 	�� ��
 	
�
cpu time �	
 ��
 �
� �		
�ops ���e�
� 	�
e�
� ��
e�
� 	��e�
�

bcsstk�� kRkF 
��e�
� 
��e�
� ���e�
� ���e�
�
jV j � �
���� nnz�L� ��
��
� ����
�� ��
��	� �������
jEj � 	
����� iteration count �		 �	� �	
 ���

Level 	 cpu time ���� ��� ��� �
�
�ops ���e�
� ���e�
� ���e�
� ��	e�
�

Table ���� Convergence of preconditioned CG on body
y�� and bcsstk���

aspect ratios� a weighted Laplacian should be more appropriate for computing
the spectral ordering� but we defer this topic for future research� Du	 and
Meurant ��� indicate that ordering becomes more signi�cant when the problem
becomes more di�cult 
discontinuous coe�cients� anisotropy� etc���
Another problem from the Harwell�Boeing collection BCSSTK�� did not con�

verge quickly for levels of �ll below two� indicating that it is a di�cult problem�
The rate of convergence at two levels of �ll shows that the new ordering reduces
the iteration count by almost half that of its closest competitor� Since envelope
reduction concentrates �ll� it is possible that the bene�ts of the hybrid ordering
are maximized when more than one level of �ll is allowed�

� Conclusions

We have observed that problems fall into two distinct classes when we examine
how envelope parameters vary asymptotically as a function of the weights in the
Sloan algorithm� Small wavefronts are obtained for the �rst class of problems
when the the �local� term in the priority function is weighted large relative to
the �global� term� for the second class of problems� the �global� term should be
weighted to be more important� The bandwidth behaves contrary to the other
envelope parameters for the �rst class� but its behavior is similar to the others
for the second class� This is understandable since the bandwidth is a global
property of an ordering of a graph�
A new normalized scheme for choosing weights according to the problem class

improves the quality of the orderings computed by the Sloan algorithm� Our
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e�cient implementation of the Sloan algorithm on the average required only ��

times the time taken by RCM� while producing mean square wavefronts about
three times smaller than those obtained from RCM� Since the cost of the RCM
algorithm is a few breadth��rst�searches through the graph� these results imply
that the Sloan algorithm is an e	ective combinatorial algorithm for computing
envelope and wavefront reducing orderings�
Our modi�ed Sloan algorithm for compressed graphs is very fast on problems

that exhibit good compression� Since this algorithm mimics the computations
that would be performed on the original unweighted graph� the faster algorithm
does not sacri�ce the quality of the orderings�
We have also described a hybrid algorithm that combines a spectral algorithm

with a re�nement step using a modi�ed Sloan algorithm� The hybrid algorithm
further improves the good envelope and wavefront reducing properties of the
spectral algorithm� It produces orderings of better quality 
about ��� of the
normalized Sloan� but at a cost greater by factor of �ve than the HeapSloan
algorithm� In applications such as frontal factorization schemes� where the time
taken to compute an ordering is insigni�cant relative to the subsequent fac�
torization step� or for nonlinear problems where the cost of the ordering can be
amortized over several linear solves� the hybrid algorithm is an attractive choice�
However� in other applications where the tradeo	 between the quality of the or�
dering versus the time required for computing the ordering favors fast ordering
algorithms� the HeapSloan is attractive�
In this work we have primarily focused on improving the quality and time

requirements of the Sloan algorithm� With similar attention to the eigencom�
putation of the spectral algorithm we believe that the time requirements of the
spectral algorithm could be reduced� and thereby the hybrid algorithm could be
made more competitive� An interesting question is whether one can design al�
gorithms that compute orderings with the same quality as the hybrid but at the
cost of the Sloan algorithm� Boman and Hendrickson ��� have recently described
an attempt in this direction� a multilevel algorithm for wavefront reduction�
Much more work is needed to understand the in�uence of these orderings on

the convergence behavior of preconditioned iterative solvers�
Our software implementing these algorithms is available with three di	erent

interfaces� a stand�alone code� a code that can be called within Matlab� and
another callable within PETSc� These codes are available from us upon request
by electronic mail�
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A Time Complexity

In this Appendix we analyze the computational complexity of the two Sloan
implementations� The analysis has the interesting feature that the time com�
plexity depends on the maximumwavefront size� a quantity related to the mean
square wavefront that the algorithm is seeking to reduce� Nevertheless� it is pos�
sible to get a priori complexity bounds for problems with good separators� The
results clearly show the overwhelming superiority of the heap implementation�
an analysis of the complexity of the Sloan algorithm is not available in earlier
published work�
The major computational di	erence lies in the implementation of the priority

queue 
see Section ����� We call these two implementations ArraySloan and
HeapSloan according to the data structure used to implement the queue�
For the array implementation� the queue operations delete
�� insert
�� and

increment	priority
� are all O

� operations� but the max	priority
� op�
eration 
�nding the vertex with the maximum priority� is O
m�� where m is
the size of the queue� All operations on the binary heap are O
logm� except
max	priority
�� which is O

��
To continue with our analysis� we will refer to the algorithm as shown in Fig�

ure ��
� It is immediately clear that the function far	neighbors
� 
lines ���
��� is O
deg
j�� for ArraySloan� We can bound this by ! � max��i�n
deg
i���
Similarly� far	neighbors
� for HeapSloan is O
! 	 logm�� where m is the max�
imum size of the priority queue�
The Sloan function 
lines 
"��� has three loops� the initialization loop 
lines


"��� the outer ordering loop 
lines �"���� and the inner ordering loop 
lines �"
���� The initialization loop is the same for either implementation� and is easily
seen to require O
jEj� time�
Consider now the ArraySloan implementation� For each step of the outermost

loop starting at line �� it must �nd and remove the vertex of maximum priority�
requiringO
m� time� The inner loop is executed at most ! times� The worst case
for the inner loop is when the priority is incremented and the far	neighbors

routine is called� and this requires O
!� time� Thus the worst case running
time for the ordering loop is O
jV j 	 
m �!���� For the entire algorithm it is
O
jV j 	 
m �!�� � jEj��
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For the HeapSloan implementation� at each step of the outermost loop starting
at line �� the algorithm must delete the vertex of maximum priority� and then
rebuild the heap� this takes O
logm� time� The inner loop is executed at most !
times� The worst case for the inner loop is when the priority is incremented and
the far	neighbors function is called� This time is O
! 	 logm�� The worst case
time complexity for the ordering loop of HeapSloan is thus O
V j 	!� 	 logm��
For the entire algorithm it is O
jV j 	!� 	 logm � jEj��
These bounds can be simpli�ed further� The maximum size of the queue can

be bounded by the smaller of 

� the product of the maximum wavefront of
the reordered graph and the maximumdegree� and 
�� the number of vertices n�
Then the complexity of ArraySloan is O
jV j	!	maxwf�� while the complexity of
HeapSloan is O
jV j	!�	log
maxwf	!��� If we consider degree�bounded graphs�
as �nite element or �nite di	erence meshes tend to be� then the ArraySloan
implementation has time complexity O
jV j 	maxwf� jEj�� while the HeapSloan
implementation has O
jV j 	 log
maxwf� � jEj��
These bounds have the unsatisfactory property that they depend on the max�

imum wavefront� a quantity that the algorithm seeks to compute and to reduce�
However� it is possible to remove this dependence from the bounds for important
classes of �nite element meshes� as we illustrate now�
The class of d�dimensional overlap graphs 
where d � �� whose degrees are

bounded includes �nite element graphs with bounded aspect ratios embedded
in d dimensions and all planar graphs ����� Overlap graphs have O
n�d����d�
separators that split the graph into two parts with the ratio of their sizes at most

d� 
��
d� ��� Hence the maximumwavefront can be bounded by O
n�d����d�
for a modi�ed nested dissection ordering that orders one part �rst� then the
separator� and �nally the second part� The Sloan and other envelope�reducing
algorithms tend to do better than this modi�ed nested dissection ordering� so we
can assume that the maximumwavefront for the Sloan algorithm is also bounded
by this bound�
With the above assumption� we can conclude that the HeapSloan implemen�

tation requires O
n logn� time while the ArraySloan implementation requires
O
n��d����d� time for a d�dimensional overlap graph� For a planar mesh 
d � ���
the ArraySloan implementation requires O
n�����time� while for a three dimen�
sional mesh with bounded aspect ratios 
d � ��� its time complexity is O
n�����


