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matrix with the given matrix and then sorting the components of a speci�ed eigenvec�
tor of the Laplacian� This Laplacian eigenvector solves a continuous relaxation of a
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Laplacian eigenvector� Numerical results show that the new reordering algorithm usu�
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�� Introduction� Although envelope�reducing orderings of sparse matrices were

developed for envelope schemes for matrix factorization� recently these orderings have
found applications in several other contexts� as a preordering for computing incom�
plete factorization preconditioners �	� 
�� in parallel sparse matrix�vector multiplication
and in tridiagonalization of symmetric matrices� The wider applicability of envelope�

reducing orderings justi�es a fresh look at the currently available algorithms �these were
developed �fteen to twenty years ago�� and the development of new algorithms� In this
paper we present a new spectral algorithm for computing an envelope�reducing ordering
of a sparse� symmetric matrix�

The spectral ordering algorithm uses an eigenvector corresponding to the smallest
positive eigenvalue of the discrete Laplacian matrix associated with the given symmetric
matrix� �If the matrix is irreducible� or equivalently if its adjacency graph is connected�

then this eigenvector corresponds to the second smallest eigenvalue� Hence we call
this a second Laplacian eigenvector or a Fiedler vector� This eigenvector may not be
uniquely determined since the second eigenvalue could be a multiple eigenvalue�� The
ordering is computed by permuting the components of a second Laplacian eigenvector in

nonincreasing �or nondecreasing� order� For large matrices� the eigenvector computation
is performed by a �multilevel� approach described in ����

Earlier� we had used a second eigenvector of the Laplacian matrix for computing
a spectral nested dissection ordering� and for partitioning computations on �nite ele�

ment meshes on a distributed�memory multiprocessor ���� ��� ���� The eigenvector of
the adjacency matrix corresponding to the largest eigenvalue has been used to �nd a
pseudoperipheral node by Grimes et al� �����

A companion paper ���� provides stronger theoretical justi�cation for the spectral

envelope�reduction algorithm �than the results provided here� by considering a closely
related problem called the ��sum problem� �This problem is de�ned in the next sec�
tion�� It is shown there that this problem can be formulated as a quadratic assignment

problem involving the Laplacian matrix� Lower bounds for the ��sum are obtained in
terms of the smallest positive Laplacian eigenvalue� These bounds appear to be reason�
ably tight for many problems� and thus indicate how close computed orderings are to
optimality� Further� permuting the matrix in nonincreasing �or nondecreasing� order of

the components of a second Laplacian eigenvector is shown to yield a feasible solution
to the ��sum problem that is closest to an infeasible solution that attains the lower
bound�

Fiedler ��� ��� studied the properties of the second Laplacian eigenvalue� a corre�

sponding eigenvector� and their relationship to the connectivity of a graph� he also ob�
served ���� that the di�erences in the components of this eigenvector is an approximate
measure of the distance between the vertices� Juvan and Mohar ���� have advocated
the use of this eigenvector to compute bandwidth and p�sum reducing orderings� Mohar

and Poljak ��	� have recently provided a comprehensive survey of the applications of
Laplacian spectra to combinatorial problems�

The spectral envelope�reduction algorithm has several features which set it apart

from earlier reordering algorithms such as the reverse Cuthill�McKee �RCM�� Gibbs�
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Poole�Stockmeyer �GPS�� and Gibbs�King �GK� algorithms �
� ��� �
� ���� These al�

gorithms �nd a pseudo�diameter in the graph by generating a long level�structure by
breadth��rst�search beginning from a suitable �peudo�peripheral� vertex� These types
of algorithms generally do not vectorize� and there is no obvious way to implement
them in parallel� In contrast the new algorithm proposed here is based on the compu�

tation of an eigenvector of a special matrix� and hence involves standard �oating point
operations� such as matrix vector multiplications and dot products� The algorithms for
these operations not only vectorize easily� but can be implemented in parallel with little
e�ort� �Parallel implementation of the basic spectral method� which uses the Lanczos

algorithm to �nd eigenvectors� is straightforward� Parallel implementation of the �mul�
tilevel� enhancements described in Section � is more di�cult� but possible in principle��
The algorithm is also iterative in nature� in the same sense that SOR or the Lanczos

methods are iterative� It allows a user to terminate the reordering process based on a
stopping criterion� thus permitting trade�o�s in ordering time versus storage e�ciency�

After we had written this paper� Paulino et al� ��
�� who have also used Laplacian
eigenvectors for pro�le reduction� have sent us their paper�

Before we end this introduction� some comments are in order about the applicability
of these results to envelope factorization schemes� Frontal methods based on envelope
storage schemes are still the method of choice for solving large�scale systems of linear
equations in many structural engineering applications� for example in the computational

structural mechanics testbed �CSM� at NASA Langley ����� Implementations of these
methods are widely distributed in most of the �nite element software packages such as
MSC�NASTRAN or ANSYS� Parallel algorithms for the actual numerical factorization
of a matrix in envelope format have also been investigated ���� �
��

Very high levels of performance are attainable with general sparse algorithms on
supercomputers ��� �� ��� ���� and hence envelope schemes for sparse matrix factoriza�
tions are used primarily because of the simplicity of implementing them� It has long

been known that general sparse methods are considerably more e�cient with respect to
storage ����� Ashcraft et al� ��� have presented numerical evidence that general sparse
methods outperform envelope methods with respect to performance and storage� How�
ever� envelope methods and related methods such as frontal or skyline methods continue

to be the standard solution option in many commercial structural analysis packages�
Thus demonstrating the e�ciency of the new spectral algorithm o�ers potential per�
formance improvements in these packages without making substantial changes to the
underlying data structures� Furthermore� Liu ���� has described a generalized envelope

algorithm for computing the numerical factorization by rows� and his results show that
such a scheme could be competitive with general sparse algorithms� E�cient algorithms
for row�oriented symbolic factorization need to be designed for this scheme to become
practical�

The following is an outline of the rest of this paper� In Section � we formulate
the problems associated with the minimization of envelope parameters and describe
related problems called the ��sum and ��sum problems� We describe some theoretical

results to justify the proposed new algorithm� We show that the second Laplacian
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eigenvector solves a continuous relaxation of a discrete problem related to the envelope

problem� viz� the ��sum problem� Further� it is proved that the permutation vector
computed by the spectral algorithm is a closest �in the ��norm sense� permutation
vector to a second Laplacian eigenvector� In Section � we discuss the spectral algorithm
and its numerical implementation� The multilevel algorithm� which uses coarsening

of the underlying graph combined with Rayleigh Quotient iteration ���� to compute
the eigenvector is described� Numerical results and comparisons with the GPS� GK�
and RCM algorithms are presented in Section �� These results indicate that the new
algorithm is often considerably more e�cient in reducing the storage requirements�

The spectral algorithm does require greater execution time for computing the ordering�
but the new ordering often yields greatly reduced factorization times for the spectrally
reordered matrices�

�� The envelope reduction problem�

���� The envelope of a matrix� Let A be an n � n symmetric matrix with

elements denoted by aij� whose diagonal elements are nonzero� We consider various
parameters of the matrix A associated with its envelope in the following discussion�

Denote the column indices of the nonzeros in the lower triangular part of the i�th
row by row�i� � fj � aij �� �� and � � j � ig� For the i�th row of A we de�ne

fi�A� � minfj � j � row�i�g� and�����

ri�A� � i� fi�A�������

Here fi�A� is the column index of the �rst nonzero in the i�th row of A �by our assump�
tion of nonzero diagonals� � � fi � i�� and the parameter ri�A� is the row�width of the

i�th row of A� The bandwidth of A is the maximum row�width

bw�A� � maxfri�A� � i � �� � � � � ng�

The envelope of A is the set of column indices that lie between the �rst nonzero
column index and the diagonal in each row�

Env�A� � f�i� j� � fi�A� � j � i� and i � �� � � � � ng�

We denote the size of the envelope by Esize�A� � jEnv�A�j� The work in the Cholesky
factorization of A that makes use of an envelope storage scheme can be bounded from

above by �����
Pn

i�� ri�ri���� Hence hereafter we will denote Wbound�A� �
Pn

i�� r
�
i as

a measure of the work in such a factorization� We stress that this is an upper bound on
the work in an envelope factorization scheme� though for degree�bounded �nite element
meshes �the class of problems that we are primarily interested in� these bounds appear

to be close to the actual work�
The values of these parameters strongly depend on the choice of an ordering of the

rows and columns� and thus we consider how these parameters vary for a symmetrically

permuted matrix P TAP � where P is a permutation matrix� We de�ne Esizemin�A��
the minimum envelope�size of A� to be the minimum size among the envelopes of all
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permuted matrices P TAP � The quantities Wboundmin�A� and bwmin�A� are de�ned in

similar fashion� In general the minima for these three quantities will not be attained
by the same permutation�

The envelope parameters can also be de�ned with respect to the adjacency graph
G � �V�E� of A� Here V is the set of vertices �corresponding to the columns�� and

E is the set of edges of G �corresponding to the set of nonzeros�� The set adj�v� �the
adjacency set of v� is the set of vertices distinct from v that are joined to a vertex v by
an edge� The set of neighbors of v is nbr�v� � fvg � adj�v�� In terms of the graph G

and an ordering � of its vertices� we can de�ne

r�v� �� � maxf��v�� ��w� � w � nbr�v�� ��w� � ��v�g�

Hence we can write the envelope�size and work associated with an ordering � as

Esize�G��� �
X
v�V

r�v� �
X
v�V

maxf��v�� ��w� � w � nbr�v�� ��w� � ��v�g

Wbound�G��� �
X
v�V

r��v� �
X
v�V

maxf���v�� ��w��� � w � nbr�v�� ��w� � ��v�g�

The goal is to choose a vertex ordering � � V �� f�� � � � � ng to minimize one of the
parameters described above� We denote by Esizemin�G� �Wboundmin�G�� the minimum

value of Esize�G��� �Wboundmin�G���� over all orderings �� We will use the de�nitions
in terms of matrices throughout the rest of the paper�

It will be helpful to consider quantities related to the envelope�size and envelope�
work� the ��sum� ���A�� and the ��sum� ����A�� We write the envelope�size and ��sum�

and the envelope�work and the ��sum in a way that shows their relationships�

Esize�A� �
nX
i��

max
j�row�i�

�i� j��

���A� �
nX
i��

X
j�row�i�

�i� j��

Wbound�A� �
nX
i��

max
j�row�i�

�i� j���

����A� �
nX
i��

X
j�row�i�

�i� j���

The parameters ���min�A� and ����min�A� are the minimum values of these parameters
over all permuted matrices P TAP �

It is known that minimizing the bandwidth and the ��sum are NP�complete prob�
lems� the former even for trees with degree bounded by three� Minimizing the envelope�

size has been recently proved to be NP�complete ����� The ��sum minimization problem
is likely to be NP�complete as well� though we do not know of a published proof� Hence
one has to settle for heuristic orderings to reduce these quantities�

Recently it has been shown that the envelope�size problem is intimately related
to the ��sum problem� and that the envelope�work problem is related to the ��sum
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problem ����� Let  denote the maximum number of o��diagonal nonzeros in a row of

A� �This is the maximum vertex degree in the adjacency graph of A��
Theorem ��� ����	
� Let � �A� denote the number of nonzeros in the strict lower

triangle �i�e�� not including the diagonal elements� of a symmetric matrix A� The min�
imum values of the envelope�size� the upper bound on the envelope�work in the Cholesky

factorization� ��sum� and ��sum of A are related by the following inequalities	

Esizemin�A� � ���min�A� �  Esizemin�A�������

Wboundmin�A� � ����min�A� �  Wboundmin�A�������

���min�A� � ���min�A� �
q
� �A����min�A�����
�

���� The Laplacian matrix and bounds on envelope parameters� The Lapla�

cian matrix Q�G� of an undirected graph G is the n � n matrix D � B� where D is
the diagonal degree matrix and B is the adjacency matrix of G� If G is the adjacency
graph of a symmetric matrix A� then we could de�ne the Laplacian matrix Q directly�

qij �

����
���

�� if i �� j and aij �� ��

� if i �� j and aij � ��
�
Pn

j��

j ��i
qij if i � j�

The eigenvalues of Q�G� are the Laplacian eigenvalues of G� and we list them as

	� � 	� � � � � � 	n� An eigenvector corresponding to 	k will be denoted by xk� and will
be called a kth eigenvector of Q� It is well�known that Q is a singular M �matrix� and
hence its eigenvalues are nonnegative� Thus 	� � �� and the corresponding eigenvector
is any nonzero constant vector c� If G is connected� then Q is irreducible� and 	� 
 ��

The smallest nonzero eigenvalues and the corresponding eigenvectors have important
properties that make them useful in the solution of various partitioning and ordering
problems� These properties were �rst investigated by Fiedler ��� ���� more recently

several authors have studied their application to such problems�
Juvan and Mohar ���� have obtained bounds for bandwidth and p�sums in terms

of Laplacian eigenvalues� They have also suggested the use of a second eigenvector to
compute orderings to reduce bandwidth� ��sum� and ��sum� Helmberg� Mohar� Poljak�

and Rendl ��
� have obtained additional lower bounds on the bandwidth� The ��sum
and ��sum problems have been recently formulated as quadratic assignment problems
and thus bounds have been obtained for the envelope�size and envelope�work ����� The
following result describes two of the simpler bounds�

Theorem ��� ����	
� The envelope�size of a symmetric matrix A can be bounded
in terms of its second and largest Laplacian eigenvalues as

	��Q�

	 
�n� � �� � Esizemin�A� �

	n�Q�

	
�n� � ���

�



The upper bound on the work in an envelope Cholesky factorization of A can be bounded

as

	��Q�

�� 
n�n� � �� � Wboundmin�A� �

	n�Q�

��
n�n� � ���

���� Approximate minimization of envelope	work� We now o�er some jus�

ti�cation for the spectral envelope�reduction algorithm� which computes an ordering by
sorting the components of a second Laplacian eigenvector� The idea is to consider the
related ��sum problem� and then to show that a second Laplacian eigenvector x� solves
a continuous relaxation of the problem� We then prove that the permutation vector

computed by the spectral algorithm is a closest vector �in the ��norm sense� among the
permutation vectors to the eigenvector x��

For odd n� let P denote the set of n�vectors p whose components are permutations
of f��n � ����� � � � ���� �� �� � � � � �n � ����g� For even n� let P denote vectors that

are permutations of f�n��� � � � ������� � � � � n��g� We denote the i�th component of a
vector x by xi� We consider the ��sum of a symmetric matrix A� de�ned with respect
to vectors in P�

min
x�P

nX
i��

X
j�row�i�

�xi � xj�
� �

�

�
min
x�P

X
aij ���

�xi � xj�
��

A strategy to approach this hard discrete problem is to relax the condition that x must
belong to the set of permutation vectors to obtain an easier continuous problem�

Note that any p � P satis�es pTu � �� and � 	 pTp � �n�����n���� for odd n� and
� � �n�����n � ���n � �� for even n� where u � ��� �� � � � ��T � Given a vector x � 
n�
we can de�ne a permutation vector p induced by x by the rule pi � pj if and only if

xi � xj� Note that p is unique except when two or more components have the same
value xi� To obtain a continuous relaxation of the discrete problem� we consider the set
X of vectors x � 
n satisfying x �� �� xTu � �� and xTx � �� This is now a continuous
optimization problem�

�

�
min
x�X

X
aij ���

�xi � xj�
�

� min
x�X

�
BB�

nX
i��

dix
�
i � �

X
j�i

aij ���

xixj�

�
CCA

� min
x�X

xTDx � xTBx � min
x�X

xTQx

� 	�x�
Tx� � 	���

Hence a second Laplacian eigenvector x� solves the continuous approximation to
the ��sum problem� Now we prove that a permutation vector p

m
induced by x� is a
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closest vector in P to x�� Earlier a similar result was obtained by Chan and Szeto ���

for the graph bisection problem�
Theorem ���� The vector p

m
induced by a second Laplacian eigenvector x� is a

closest �in the ��norm� permutation vector to x�� In other words�

p
m
� arg min

p�P
kp � x�k��

We require the following lemma to prove the theorem�
Lemma ���� If a� � a�� b� � b� are real numbers�

r � �a� � b��
� � �a� � b��

�� and s � �a� � b��
� � �a� � b��

��

then r 
 s�

Proof� Suppose that r � s� Then

�a� � b��
� � �a� � b��

� � �a� � b��
� � �a� � b��

�

� a��b� � b�� � a��b� � b���

Since a� � a�� it follows that b� � b�� which is a contradiction�
Proof of Theorem 
��� For convenience of notation� let x 	 x� in this proof� Let

y �� p
m
be a permutation vector such that there exists a pair of vertices u�v satisfying

x�u� � x�v� and y�u� 
 y�v�� Let z be the permutation vector such that z�u� � y�v��

z�v� � y�u�� and z�w� � y�w� for all other vertices� Then

ky � xk�
� � kz � xk�

�

� �y�u�� x�u��� � �y�v�� x�v��� � �y�v�� x�u��� � �y�u�� x�v���


 ��

where the last inequality follows from the previous lemma� By the swapping of com�

ponents� we have obtained a vector z that is closer than y to the eigenvector x� By
repeating this swapping procedure� we �nd that p

m
is a closest vector in P to the vector

x�

The vector �x� is also a Laplacian eigenvector� and the permutation vector induced
by it would di�er from the permutation vector induce d by x�� The two permutations
could lead to two di�erent envelope�sizes� and hence a spectral reordering algorithm
could choose the permutation leading to the smaller value�

Earlier Juvan and Mohar ���� had shown that p
m
maximized the value of the fol�

lowing inner product over all permutation vectors p�

j�x�� pm�j � j�x�� p�j�

Stronger justi�cation of the spectral algorithm for reducing the ��sum is obtained
in the companion paper ���� by considering a quadratic assignment formulation of the

problem� This formulation leads to a lower bound for the ��sum in terms of the second
Laplacian eigenvalue� and the orthogonal matrix attaining this lower bound can be
characterized� It can be shown that a closest permutation matrix �de�ned in a suitable

sense� to this orthogonal matrix is obtained by sorting the components of a second
Laplacian eigenvector in nondecreasing �nonincreasing� order�
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��
� Adjacency orderings� We now consider the concept of an adjacency order�

ing of a graph G� Let G be the adjacency graph of a matrix A� and suppose that
the vertices of G are ordered in some ordering as fv�� � � � � vng �i�e�� ��vj� � j�� and let
Vj � fv�� � � � � vjg� For Y 
 V � de�ne adj�Y � to be the set of vertices in V n Y that are
adjacent to some vertex in Y � We will say that an ordering is an adjacency ordering if

vj�� � adj�Vj�� for j � �� � � �� n� ��
The size jadj�Vj�j has been called the jth frontwidth ��
�� and corresponds to cj�

the number of elements in the jth column of the envelope of A�

cj�A� � jfk � k 
 j� and �� � j � ak� �� �gj�

Hence an alternative expression for the envelope�size is

Esize�A� �
nX

j��

cj �
nX

j��

jadj�Vj�j�

This expression for the envelope�size shows the rationale for considering adjacency or�

derings for envelope�reduction� The idea is to locally reduce the jth frontwidth by
choosing vj to be a vertex of low degree belonging to adj�Vj���� The Cuthill�McKee
ordering is an adjacency ordering� but RCM is not an adjacency ordering� The GPS
and GK algorithms attempt to number vertices in the level structures to obtain an

adjacency ordering� as far as is possible�
The ordering induced by a second Laplacian eigenvector is not an adjacency order�

ing� but comes close in the sense described by the following theorem� due to Fiedler �����

Theorem ���� Let G be a connected graph� and x � �x�� x�� � � � xn� be a second
Laplacian eigenvector of G� For any real � � �� de�ne S��� � fvj � V � xj � �g� Then
the subgraph induced on S��� is connected� Similarly� if � � �� then S���� � fvj � V �
xj � �g induces a connected subgraph�

In the notation of the theorem� let the vertices vj � V be ordered such that j � k

if and only if xj � xk� Consider three subsets of vertices corresponding to positive�
zero� and negative entries in the second eigenvector� i�e�� de�ne P � fvj � xj 
 �g�
Z � fvj � xj � �g� and N � fvj � xj � �g� Let the vertices in N be numbered

by j � �� � � � � k� the vertices in Z by j � k � �� � � �� p � �� and the vertices in P by
j � p� � � �� n� We have k � p� Then Theorem ��
 implies that for j � p � �� � � �� n�
we have vj�� � adj�Vj�� Thus the order implied by a second Laplacian eigenvector has
the property of an adjacency ordering if vertices with positive components are added in

increasing order to N �Z� or� by similar reasoning� if vertices with negative components
are added in decreasing order to P � Z� However� there exist simple examples� even
trees� for which the spectral ordering is not an adjacency ordering�

�� The Spectral algorithm for envelope reduction� Based on the theorems
in Section � the following new spectral algorithm for reducing the envelope of a sparse
matrix can be formulated� We assume throughout this section that the adjacency graph

of the given matrix is connected� or equivalently that the matrix is irreducible�
Algorithm �� Spectral Algorithm

�




� Given the sparsity structure of a symmetric matrix A� form the Laplacian ma�

trix L�

� Compute a second eigenvector x� of L�
�� Sort the components of the eigenvector in nondecreasing order� and reorder the

matrix A using the corresponding permutation vector� Also sort the components

in nonincreasing order� and compute the corresponding reordering of the matrix
A� Choose the permutation that leads to the smaller envelope�size�

Since the Laplacian eigenvector x� is determined only to within a scalar multiple�
permutations computed by sorting the components of �x� in nondecreasing order also

yield an appropriate permutation of A� In general the envelope�size is not invariant with
respect to the reversal of a permutation �unlike the ��sum� ��sum� or bandwidth�� and
hence we compute both permutations and choose the one with the smaller envelope�size�

The implementation of steps � and � are relatively straightforward� The formation
of the Laplacian matrix requires the computation of the degree of the vertices vi� Step
� involves sorting the entries of x�� and recording the resulting permutation of indices�
This can be done quickly by any e�cient sorting algorithm such as quicksort� The

computationally intensive part is step ��
The standard algorithm for computing a few eigenvalues and eigenvectors of large

sparse symmetric matrices is the Lanczos algorithm� Since the Lanczos algorithm is
discussed extensively in the textbook literature ��	� ���� we do not describe it here� A

second Laplacian eigenvector can be computed by selective orthogonalization against
the vector of all ones� the eigenvector corresponding to the zero eigenvalue� Recently� we
have developed a much more e�cient multilevel method for �nding a second eigenvector
���� The multilevelmethod requires three elements in addition to the Lanczos algorithm�

� Contraction� Construct a series of smaller graphs that in some sense retain
the global structure of the original large graph�

� Interpolation� Given a second eigenvector of a contracted graph� interpolate

this vector to the next larger graph in a way that provides a good approximation
to an eigenvector of the larger graph�

� Re�nement� Given an approximate eigenvector for a graph� compute a more
accurate vector e�ciently�

Graph contraction is accomplished by �rst �nding a maximal independent set of ver�
tices� which are to be the vertices of the contracted graph� The edges of the contracted
graph are determined by growing domains from the selected vertices in a breadth��rst
manner� adding an edge to the contracted graph when two domains intersect� A series

of smaller contracted graphs is constructed until the size of the vertex set is less than
some number �typically ����� The Lanczos algorithm can then be used to �nd the
eigenvector of the smallest graph very quickly� This eigenvector is then interpolated
to a vector corresponding to the next larger graph� This interpolated vector yields a

very good approximation to the eigenvector of the larger graph� The approximation
is then re�ned using the Rayleigh Quotient Iteration algorithm� which� because of its
cubic convergence� usually requires only a few iterations to obtain an acceptable result�

This process of interpolation and re�nement is continued until the eigenvector of the

�



original graph is determined�


� Numerical results� This section shows numerical results for the envelope�sizes
and bandwidths obtained from the spectral� RCM� GPS� and GK algorithms for three
sets of matrices� The �rst set� shown in Table ���� includes matrices for structural

analysis applications from the Boeing�Harwell data set� The next set� shown in Ta�
ble ���� consists of miscellaneous matrices from the Boeing�Harwell collection� Finally�
the third set� shown in Table ���� is a selection of structural analysis matrices used

at NASA Ames� The computations were performed on a Silicon Graphics workstation
with a �� MHZ IP� processor�

The spectral algorithm �nds the reordering with the smallest envelope in �� out of
�
 cases �as shown in the �Rank� column of the tables�� In those cases in which the re�

sult of the spectral algorithm is not the best �i�e�� BCSSTK��� BKSSTK��� SHUTTLE�
and CAN������ it is still fairly close to the best result� In several cases� however� the
spectral algorithm �nds a reordering with an envelope substantially smaller than any
of the other algorithms� sometimes by a factor of more than two� Note also that the

spectral algorithm clearly outperforms the others on the larger problems in the tables�
The run time of the spectral algorithm is usually� but not always� greater than that
of the other algorithms� We expect the di�erences in runtimes between the ordering
algorithms to be smaller on computers with vector�processing capabilities� such as the

Crays�
The GPS� GK� and RCM algorithms employ breadth��rst search from a pseudo�

peripheral vertex to generate a long rooted level structure� The RCM algorithm then

numbers the vertices by increasing level values� where the vertices in each level are num�
bered in nondecreasing order of their degrees� The �nal RCM ordering is obtained by
reversing the ordering thus obtained� The GPS and GK algorithms use more sophisti�
cated techniques to create a more general level structure by combining the information

from two rooted level structures obtained from the endpoints of a pseudo�diameter in
the RCM algorithm� They also use more re�ned numbering techniques to reduce the
size of the envelope and the bandwidth� This is why the latter two algorithms require
more time than the RCM algorithm�

Generally the GPS algorithm yields a lower bandwidth while the GK algorithm
yields a lower envelope�size ���� ���� Our results are in agreement with this conclusion�
It should be pointed out that n � �	
� was the largest order of the problems considered
in earlier work� and that the results reported here are for much larger problems�

In contrast to the above algorithms� the spectral algorithm relies on the global
information in the components of a second Laplacian eigenvector� The results show
that the bandwidths of the spectral reorderings are often much greater than those of

the other reorderings� even when the spectral envelope�sizes are much smaller� This
can be seen in Figures ��� through ��
� which show the sparse matrix structure of the
original BARTH� matrix and of the four reorderings considered here� A black dot
indicates a nonzero element� The GK� GPS� and RCM reorderings all look very similar�

whereas the SPECTRAL reordering has a quite di�erent appearance�
Juvan and Mohar ���� had suggested the use of the spectral ordering for reducing

�




Table ���

Results �Boeing�Harwell � Structural Analysis�

Title Envelope Bandwidth Run time Algorithm Rank
�equations� �sec��

�nonzeros�

BCSSTK�� 	���
	 �

 ���� SPECTRAL �
������� 

�
�� ��� ��	� GK �
�������� 
��
�� ��
 ��
� GPS �


	���� ��
 ���
 RCM �

BCSSTK�� ���	����� 

� ����
 SPECTRAL �
�������� 	���
���� ��
�
 ��
� GK �

���	����� ��������
 
	� 
��� GPS �
��������� ��� ���� RCM �

BCSSTK�� ���

���� ����� ����� SPECTRAL �

�
���
� ��
�����
 ��� 
��� GK �
��������� ��������� 
�� ���� GPS �

�������

 ��� ��
� RCM �

BCSSTK�� ����
���� ���	� �
��
 SPECTRAL �
��
����� �
�	
	��	
 �	���� �
��� GK �
�����	���
� ���������� ��
�
 	��	
 GPS �

���������� ��
�� 	��� RCM �

BCSSTK�� ���
������ ���	� 

��	 SPECTRAL �
��
�


� ��������
� ��

� ����
 GK �

�	�
�
��� �����	�
�� ����� ���� GPS �
���	������ ����	 ��	� RCM �

BCSSTK�� ���	���
�� ������ ����� SPECTRAL �

����	��� ����
���	� ���	� ������ GK �
�������	

� 
���	����� ����� ����
 GPS �


��������� ����� ��
� RCM �

��



Table ���

Results �Boeing�Harwell � Miscellaneous�

Title Envelope Bandwidth Run time Algorithm Rank
�equations� �sec��
�nonzeros�

CAN���� 

���
 ��� ��
� SPECTRAL �
������� �
�
�
 ��� ���� GK �
�	��

� ����	� �
� ���� GPS �


	��	� ��
 ���
 RCM �

POW� ������ �	� ���
 SPECTRAL �
������� 	���

 ��� ���� GK �
������� 	����	 ��	 ���� GPS �

����	� ��� ���
 RCM �

DWT�	
� ������ ��� ���
 SPECTRAL �
���	
�� �	�
�� �� ���
 GK �

����

�� �����	� 	
 ���� GPS �
�����
� 	� ���� RCM �

SSTMODEL 
	�	�
 ��
 ���� SPECTRAL �
�����
� ����
	� ��
 ���
 GK �
�������� ������	 
� ���� GPS �

��
���� 

 ���� RCM �

BLKHOLE �����	� ��	 ��
	 SPECTRAL �
������� �	����� ��� ���� GK �
�
�
��� ������� ��	 ���� GPS �

������� ��
 ���� RCM �

��



Table ���

Results �NASA�

Title Envelope Bandwidth Run time Algorithm Rank

�equations� �sec�
�nonzeros�

BARTH� ��
�	�� 
�� ��	� SPECTRAL �
�	����� 	

��
� �
� ��
� GK �

�������� 		����� ��� ���� GPS �
��
��
� ��
 ���� RCM �

SHUTTLE 
		���	 	�� ��
� SPECTRAL �
�����
� 
������ �� ���� GK �
��
��		� 
������ �� ���� GPS �


	��

� �
� ���� RCM �

SKIRT 	

���� ����� 
��� SPECTRAL �
����
�
� ��������� ��
 ���� GK �
�����

�� ������
�� ��� ���	 GPS �

���	
���� ��� ��
� RCM �

PWT 
�����
�� ��	�� ���	� SPECTRAL �
��	�
��� 
�
���	�� �
� ���	
 GK �

��
������ 
�	�
�


 ��� �
��� GPS �

�	
���
� ��� ��	� RCM �

BODY 	���	���� ����	 �	�	� SPECTRAL �
��
��
�� ���
�	���	 ���
� ���	� GK �
���
�
��� ���	

��	� 		� 
��� GPS �

���������� �
	 ���� RCM �

FLAP ��������
	 ���
� �
��� SPECTRAL �
�
��
��� ����	����� ����� ����	 GK �
�
����
�� �������	�� ��� ����
 GPS �

���
�
���
 
�� ���� RCM �

IN�C ��
������		 ��
�� ����
� SPECTRAL �
��	��	��� 
�����	���
 ���
� 
	��� GK �

�����	�


� 
�	������	� ����� �	��
 GPS �


��������
 ����	 ���

 RCM �
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Table ���

Factorization times

Title Envelope Factor time Algorithm

�sec�

BARTH� ��
�	�� 
��� SPECTRAL
��
��
� �
��� RCM

BCSSTK�� ���

���� 	�� SPECTRAL
�������

 	

 RCM

BCSSTK�� ���	����� �
� SPECTRAL

��������� ��	�� RCM

the bandwidth �and p�sums�� but our results show that the GPS algorithm is much
more e�ective than the spectral algorithm in reducing the bandwidth� A possibility is

to make limited use of a local reordering strategy based on the adjacency structure to
improve the envelope parameters obtained from the spectral method� Such reordering
strategies will be considered elsewhere�

Finally we list in Table ��� the factorization times for a few matrices� reordered with

both the spectral algorithm and with RCM� These times are for the envelope factoriza�
tion routine from SPARSPAK� and are measured on a SGI workstation� We selected one
example where the spectral algorithm is comparable in storage requirements to RCM
�BCSSTK���� and two examples where the spectral algorithm yields considerably lower

storage memory requirements� The results demonstrate that the spectral reordering
reduces the execution times by a factor quadratic in the storage improvement�
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