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The most fundamental computation in numerical linear algebra is the factor-
ization of a matrix as a product of two or more matrices with simpler structure.
An important example is Gaussian elimination, in which a matrix is written as
a product of a lower triangular matrix and an upper triangular matrix. The
factorization is accomplished by elementary operations in which two or more
rows (columns) are combined together to transform the matrix to the desired
form. In Gaussian elimination, the desired form is an upper triangular ma-
trix, in which nonzero elements below the diagonal have been transformed to
be equal to zero. We say that the subdiagonal elements have been eliminated.
(The transformations that accomplish the elimination yield a lower triangular
matrix.)

The input matrix is usually sparse, i.e., only a few of the matrix elements
are nonzero to begin with; in this situation, row operations constructed to elim-
inate nonzero elements in some locations might create new nonzero elements,
called fill, in other locations, as a side-effect. Data structures that predict fill
from graph models of the numerical algorithm, and algorithms that attempt to
minimize fill, are key ingredients of efficient sparse matrix algorithms.

This chapter surveys these data structures, known as elimination structures,
and the algorithms that construct and use them. We begin with the elimination
tree, a data structure associated with symmetric Gaussian elimination, and we
then describe its most important applications. Next we describe other data
structures associated with symmetric Gaussian elimination, the clique tree, the
clique cover, and the quotient graph. We then consider data structures that are
associated with unsymmetric Gaussian elimination, the column elimination tree
and the elimination directed acyclic graph.

This survey has been written with two purposes in mind. First, we intro-
duce the algorithms community to these data structures and algorithms from
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combinatorial scientific computing; the initial subsections should be accessible
to the non-expert. Second, we wish to briefly survey the current state of the art,
and the subsections dealing with the advanced topics move rapidly. A collection
of articles describing developments in the field circa 1991 may be found in [?];
Duff provides a survey as of 1996 in [?].

1.1 The elimination tree

1.1.1 The elimination game

Gaussian elimination of a symmetric positive definite matrix A, which factors
the matrix A into the product of a lower triangular matrix L and its transpose
LT , A = LLT , is one of the fundamental algorithms in scientific computing.
It is also known as Cholesky factorization. We begin by considering the graph
model of this computation performed on a symmetric matrix A that is sparse,
i.e., few of its matrix elements are nonzero. The number of nonzeros in L and
the work needed to compute L depend strongly on the (symmetric) ordering of
the rows and columns of A. The graph model of sparse Gaussian elimination
was introduced by Parter [?], and has been called the elimination game by
Tarjan [?]. The goal of the elimination game is to symmetrically order the rows
and columns of A to minimize the number of nonzeros in the factor L.

We consider a sparse, symmetric positive definite matrix A with n rows and
n columns, and its adjacency graph G(A) = (V,E) on n vertices. Each vertex in
v ∈ V corresponds to the v-th row of A (and by symmetry, the v-th column); an
edge (v, w) ∈ E corresponds to the nonzero avw (and by symmetry, the nonzero
awv). Since A is positive definite, its diagonal elements are positive; however,
by convention, we do not explicitly represent a diagonal element avv by a loop
(v, v) in the graph G(A). (We use v, w, . . . to indicate unnumbered vertices,
and i, j, k, . . . to indicate numbered vertices in a graph.)

We view the vertices of the graph G(A) as being initially unnumbered, and
number them from 1 to n, as a consequence of the elimination game. To number
a vertex v with the next available number, add new fill edges to the current graph
to make all currently unnumbered neighbors of v pairwise adjacent. (Note that
the vertex v itself does not acquire any new neighbors in this step, and that v
plays no further role in generating fill edges in future numbering steps.)

The graph that results at the end of the elimination game, which includes
both the edges in the edge set E of the initial graph G(A) and the set of fill
edges, F , is called the filled graph. We denote it by G+(A) = (V,E ∪ F ). The
numbering of the vertices is called an elimination ordering, and corresponds
to the order in which the columns are factored. An example of a filled graph
resulting from the elimination game on a graph is shown in Fig. ??. We will
use this graph to illustrate various concepts throughout this paper.

The goal of the elimination game is to number the vertices to minimize the
fill since it would reduce the storage needed to perform the factorization, and
also controls the work in the factorization. Unfortunately, this is an NP-hard
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Figure 1.1: A filled graph G+(A) resulting from the elimination game on a
graph G(A). The solid edges belong to G(A), and the broken edges are filled
edges generated by the elimination game when vertices are eliminated in the
order shown.

problem [?]. However, for classes of graphs that have small separators, it is pos-
sible to establish upper bounds on the number of edges in the filled graph, when
the graph is ordered by a nested dissection algorithm that recursively computes
separators. Planar graphs, graphs of ‘well-shaped’ finite element meshes (aspect
ratios bounded away from small values), and overlap graphs possess elimination
orderings with bounded fill. Conversely, the fill is large for graphs that do not
have good separators.

Approximation algorithms that incur fill within a polylog factor of the op-
timum fill have been designed by Agrawal, Klein and Ravi [?]; but since it
involves finding approximate concurrent flows with uniform capacities, it is an
impractical approach for large problems. A more recent approximation algo-
rithm, due to Natanzon, Shamir and Sharan [?], limits fill to within the square
of the optimal value; this approximation ratio is better than that of the former
algorithm only for dense graphs.

The elimination game produces sets of cliques in the graph. Let hadj+(v)
(ladj+(v)) denote the higher-numbered (lower-numbered) neighbors of a vertex v
in the graph G+(A); in the elimination game, hadj+(v) is the set of unnumbered
neighbors of v immediately prior to the step in which v is numbered. When a
vertex v is numbered, the set {v} ∪ hadj+(v) becomes a clique by the rules of
the elimination game. Future numbering steps and consequent fill edges added
do not change the adjacency set (in the filled graph) of the vertex v. (We will
use hadj(v) and ladj(v) to refer to higher and lower adjacency sets of a vertex
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Figure 1.2: The elimination tree of the example graph.

v in the original graph G(A).)

1.1.2 The elimination tree data structure

We define a forest from the filled graph by defining the parent of a vertex v to
be the lowest numbered vertex in hadj+(v). It is clear that this definition of
parent yields a forest since the parent of each vertex is numbered higher than
itself. If the initial graph G(A) is connected, then indeed we have a tree, the
elimination tree; if not we have an elimination forest.

In terms of the Cholesky factor L, the elimination tree is obtained by looking
down each column below the diagonal element, and choosing the row index of
the first subdiagonal nonzero to be the parent of a column. It will turn out that
we can compute the elimination tree corresponding to a matrix and a given
ordering without first computing the filled graph or the Cholesky factor.

The elimination tree of the graph in Fig. ?? with the elimination ordering
given there is shown in Fig. ??.

A fill path joining vertices i and j is a path in the original graph G(A)
between vertices i and j, all of whose interior vertices are numbered lower than
both i and j. The following theorem offers a static characterization of what
causes fill in the elimination game.

[?] The edge (i, j) is an edge in the filled graph if and only if a fill path joins
the vertices i and j in the original graph G(A).

In the example graph in Fig. ??, vertices 9 and 10 are joined a fill path
consisting of the interior vertices 7 and 8; thus (9, 10) is a fill edge. The next
theorem shows that an edge in the filled graph represents a dependence relation
between its end points.
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[?] If (i, j) is an edge in the filled graph and i < j, then j is an ancestor of
the vertex i in the elimination tree T (A).This theorem suggests that the elimination tree represents the information
flow in the elimination game (and hence sparse symmetric Gaussian elimina-
tion). Each vertex i influences only its higher numbered neighbors (the nu-
merical values in the column i affect only those columns in hadj+(i)). The
elimination tree represents the information flow in a minimal way in that we
need consider only how the information flows from i to its parent in the elim-
ination tree. If j is the parent of i and ` is another higher neighbor of i, then
since the higher neighbors of i form a clique, we have an edge (j, `) that joins j
and `; since by Theorem ??, ` is an ancestor of j, the information from i that
affects ` can be viewed as being passed from i first to j, and then indirectly
from j through its ancestors on the path in the elimination tree to `.

An immediate consequence of the Theorem ?? is the following result.If vertices i and j belong to vertex-disjoint subtrees of the elimination tree,
then no edge can join i and j in the filled graph.Viewing the dependence relationships in sparse Cholesky factorization by
means of the elimination tree, we see that any topological reordering of the elim-
ination tree would be an elimination ordering with the same fill, since it would
not violate the dependence relationships. Such reorderings would not change
the fill or arithmetic operations needed in the factorization, but would change
the schedule of operations in the factorization (i.e., when a specific operation is
performed). This observation has been used in sparse matrix factorizations to
schedule the computations for optimal performance on various computational
platforms: multiprocessors, hierarchical memory machines, external memory al-
gorithms, etc. A postordering of the elimination tree is typically used to improve
the spatial and temporal data locality, and thereby the cache performance of
sparse matrix factorizations.

There are two other perspectives from which we can view the elimination
tree.

Consider directing each edge of the filled graph from its lower numbered
endpoint to its higher numbered endpoint to obtain a directed acyclic graph
(DAG). Now form the transitive reduction of the directed filled graph; i.e.,
delete an edge (i, k) whenever there is a directed path from i to k that does not
use the edge (i, k) (this path necessarily consists of at least two edges since we
do not admit multiple edges in the elimination game). The minimal graph that
remains when all such edges have been deleted is unique, and is the elimination
tree.

One could also obtain the elimination tree by performing a depth-first search
(DFS) in the filled graph with the vertex numbered n as the initial vertex for the
DFS, and choosing the highest numbered vertex in ladj+(i) as the next vertex
to search from a vertex i.

1.1.3 An algorithm

We begin with a consequence of the repeated application of the following fact:
If a vertex i is adjacent to a higher numbered neighbor k in the filled graph, and
k is not the parent of i, pi, in the elimination tree, then i is adjacent to both k
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for k := 1 to n →
pk := 0;
for j ∈ ladj(k) (in increasing order) →

find the root r of the tree containing j;
if (k 6= r) then k := pr; fi

rof
rof

Figure 1.3: An algorithm for computing an elimination tree. Initially each
vertex is in a subtree with it as the root.

and pi in the filled graph; when i is eliminated, by the rules of the elimination
game, a fill edge joins pi and k.If (i, k) is an edge in the filled graph and i < k, then for every vertex j on
an elimination tree path from i to k, (j, k) is also an edge in the filled graph.This theorem leads to a characterization of ladj+(k), the set of lower num-
bered neighbors of a vertex k in the filled graph, which will be useful in designing
an efficient algorithm for computing the elimination tree. The set ladj+(k) cor-
responds to the column indices of nonzeros in the k-th row of the Cholesky
factor L, and ladj(k) corresponds to the column indices of nonzeros in the lower
triangle of the k-th row of the initial matrix A.[?] Every vertex in the set ladj+(k) is a vertex reachable by paths in the
elimination tree from a set of leaves to k; each leaf l corresponds to a vertex
in the set ladj(k) such that no proper descendant d of l in the elimination tree
belongs to the set ladj(k).Theorem ?? characterizes the k-th row of the Cholesky factor L as a row
subtree Tr(k) of the elimination subtree rooted at the vertex k, and pruned at
each leaf l. The leaves of the pruned subtree are contained among ladj(k), the
column indices of the nonzeros in (the lower triangle of) the k-th row of A. In
the elimination tree in Fig. ??, the pruned elimination subtree corresponding
to row 11 has two leaves, vertices 5 and 7; it includes all vertices on the etree
path from these leaves to the vertex 11.

The observation above leads to an algorithm, shown in Fig. ??, for computing
the elimination tree from the row structures of A, due to Liu [?].

This algorithm can be implemented efficiently using the union-find data
structure for disjoint sets. A height compressed version of the p. array, ancestor,
makes it possible to compute the root fast; and union by rank in merging sub-
trees helps to keep the merged tree shallow. The time complexity of the algo-
rithm is O(eα(e, n) +n), where n is the number of vertices and e is the number
of edges in G(A), and α(e, n) is a functional inverse of Ackermann’s function.
Liu [?] shows experimentally that path compression alone is more efficient than
path compression and union by rank, although the asymptotic complexity of the
former is higher. Zmijewski and Gilbert [?] have designed a parallel algorithm
for computing the elimination tree on distributed memory multiprocessors.

The concept of the elimination tree was implicit in many papers before it
was formally identified. The term elimination tree was first used by Duff [?],
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Figure 1.4: The skeleton graph G−(A) of the example graph.

although he studied a slightly different data structure; Schreiber [?] first formally
defined the elimination tree, and its properties were established and used in
several articles by Liu. Liu [?] also wrote an influential survey that delineated
its importance in sparse matrix computations; we refer the reader to this survey
for a more detailed discussion of the elimination tree current as of 1990.

1.1.4 A skeleton graph

The filled graph represents a supergraph of the initial graphG(A), and a skeleton
graph represents a subgraph of the latter. Many sparse matrix algorithms can be
made more efficient by implicitly identifying the edges of a skeleton graphG−(A)
from the graph G(A) and an elimination ordering, and performing computations
only on these edges. A skeleton graph includes only the edges that correspond
to the leaves in each row subtree in Theorem ??. The other edges in the initial
graph G(A) can be discarded, since they will be generated as fill edges during
the elimination game. Since each leaf of a row subtree corresponds to an edge
in G(A), the skeleton graph G−(A) is indeed a subgraph of the former. The
skeleton graph of the example graph is shown in Fig. ??.

The leaves in a row subtree can be identified from the set ladj(j) when the
elimination tree is numbered in a postordering. The subtree T (i) is the subtree
of the elimination tree rooted at a vertex i, and |T (i)| is the number of vertices
in that subtree. (It should not be confused with the row subtree Tr(i), which is
a pruned subtree of the elimination tree.)[?] Let ladj(j) = {i1 < i2 < . . . < is}, and let the vertices of a filled
graph be numbered in a postordering of its elimination tree T . Then vertex
iq is a leaf of the row subtree Tr(j) if and only if either q = 1, or for q ≥ 2,
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iq−1 < iq − |T (iq)|+ 1.

1.1.5 Supernodes

A supernode is a subset of vertices S of the filled graph that form a clique and
have the same higher neighbors outside S. Supernodes play an important role
in numerical algorithms since loops corresponding to columns in a supernode
can be blocked to obtain high performance on modern computer architectures.
We now proceed to define a supernode formally.

A maximal clique in a graph is a set of vertices that induces a complete
subgraph, but adding any other vertex to the set does not induce a complete
subgraph. A supernode is a maximal clique {is, is+1, . . . , is+t−1} in a filled
graph G+(A) such that for each 1 ≤ j ≤ t− 1,

hadj+(is) = {is+1, . . . , is+j} ∪ hadj+(is+j).

Let hd+(is) ≡ |hadj+(is)|; since hadj+(is) ⊆ {is+1, . . . , is+j} ∪ hadj+(is+j), the
relationship between the higher adjacency sets can be replaced by the equivalent
test on higher degrees: hd+(is) = hd+(is+j) + j.

In practice, fundamental supernodes, rather than the maximal supernodes
defined above, are used, since the former are easier to work with in the numer-
ical factorization. A fundamental supernode is a clique but not necessarily a
maximal clique, and satisfies two additional conditions: (1) is+j−1 is the only
child of the vertex is+j in the elimination tree, for each 1 ≤ j ≤ t − 1; (2) the
vertices in a supernode are ordered consecutively, usually by post-ordering the
elimination tree. Thus vertices in a fundamental supernode form a path in the
elimination tree; each of the non-terminal vertices in this path has only one
child, and the child belongs to the supernode.

The fundamental supernodes corresponding to the example graph are: {1, 2};
{3, 4}; {5, 6}; {7, 8, 9}; and {10, 11}.

Just as we could compute the elimination tree directly from G(A) without
first computing G+(A), we can compute fundamental supernodes without com-
puting the latter graph, using the theorem given below. Once the elimination
tree is computed, this algorithm can be implemented in O(n + e) time, where
e ≡ |E| is the number of edges in the original graph G(A).[?] A vertex i is the first node of a fundamental supernode if and only if i
has two or more children in the elimination tree T , or i is a leaf of some row
subtree of T .

1.2 Applications of etrees

1.2.1 Efficient symbolic factorization

Symbolic factorization (or symbolic elimination) is a process that computes the
nonzero structure of the factors of a matrix without computing the numerical
values of the nonzeros.

The symbolic Cholesky factor of a matrix has several uses. It is used to
allocate the data structure for the numeric factor and annotate it with all the
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row/column indices, which enables the removal of most of the non-numeric op-
erations from the inner-most loop of the subsequent numeric factorization [?, ?].
It is also used to compute relaxed supernode (or amalgamated node) partitions,
which group columns into supernodes even if they only have approximately the
same structure [?, ?]. Symbolic factors can also be used in algorithms that con-
struct approximate Cholesky factors by dropping nonzeros from a matrix A and
factoring the resulting, sparser matrix B [?, ?]. In such algorithms, elements of
A that are dropped from B but which appear in the symbolic factor of B can can
be added to the matrix B; this improves the approximation without increasing
the cost of factoring B. In all of these applications a supernodal symbolic factor
(but not a relaxed one) is sufficient; there is no reason to explicitly represent
columns that are known to be identical.

The following algorithm for symbolically factoring a symmetric matrix A is
due to George and Liu [?] (and in a more graph-oriented form due to [?]; see
also [?, Section 5.4.3] and [?, Section 8]).

The algorithm uses the elimination tree implicitly, but does not require it as
input; the algorithm can actually compute the elimination tree on the fly. The
algorithm uses the observation that

hadj+(j) = hadj(j)
⋃
∪i,pi=j hadj+(i) .

That is, the structure of a column of L is the union of the structure of its
children in the elimination tree and the structure of the same column in the
lower triangular part of A. Identifying the children can be done using a given
elimination tree, or the elimination tree can be constructed on the fly by adding
column i to the list of children of pi when the structure of i is computed (pi
is the row index of the first subdiagonal nonzero in column i of L). The union
of a set of column structures is computed using a boolean array P of size n
(whose elements are all initialized to false), and an integer stack to hold the
newly created structure. A row index k from a child column or from the column
of A is added to the stack only if P[k] = false. When row index k is added to
the stack, P[k] is set to true to signal that k is already in the stack. When the
computation of hadj+(j) is completed, the stack is used to clear P so that it is
ready for the next union operation. The total work in the algorithm is Θ(|L|),
since each nonzero requires constant work to create and constant work to merge
into the parent column, if there is a parent. (Here |L| denotes the number of
nonzeros in L, or equivalently the number of edges in the filled graph G+(A);
similarly |A| denotes the number of nonzeros in A, or the number of edges in
the initial graph G(A).)

The symbolic structure of the factor can usually be represented more com-
pactly and computed more quickly by exploiting supernodes, since we essentially
only need to represent the identity of each supernode (the constituent columns)
and the structure of the first (lowest numbered) column in each supernode. The
structure of any column can be computed from this information in time pro-
portional to the size of the column. The George-Liu column-merge algorithm
presented above can compute a supernodal symbolic factorization if it is given
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as input a supernodal elimination tree; such a tree can be computed in O(|A|)
time by the Liu-Ng-Peyton algorithm [?]. In practice, this approach saves a
significant amount of work and storage.

Clearly, column-oriented symbolic factorization algorithms can also generate
the structure of rows in the same asymptotic work and storage. But a direct
symbolic factorization by rows is less obvious. Whitten [?], in an unpublished
manuscript cited by Tarjan and Yannakakis [?], proposed a row-oriented sym-
bolic factorization algorithm (see also [?] and [?, Sections 3.2 and 8.2]). The
algorithm uses the characterization of the structure of row i in L as the row
subtree Tr(i). Given the elimination tree and the structure of A by rows, it is
trivial to traverse the ith row subtree in time proportional to the number of
nonzeros in row i of L. Hence, the elimination tree along with a row-oriented
representation of A is an effective implicit symbolic row-oriented representation
of L; an explicit representation is usually not needed, but it can be generated
in work and space O(|L|) from this implicit representation.

1.2.2 Predicting row and column nonzero counts

In some applications the explicit structure of columns of L is not required, only
the number of nonzeros in each column or each row. Gilbert, Ng, and Peyton [?]
describe an almost-linear-time algorithm for determining the number of nonze-
ros in each row and column of L. Applications for computing these counts fast
include comparisons of fill in alternative matrix orderings, preallocation of stor-
age for a symbolic factorization, finding relaxed supernode partitions quickly,
determining the load balance in parallel factorizations, and determining syn-
chronization events in parallel factorizations.

The algorithm to compute row counts is based on Whitten’s characteriza-
tion [?]. We are trying to compute |Li∗| = |Tr(i)|. The column indices j < i
in row i of A define a subset of the vertices in the subtree of the elimination
tree rooted at the vertex i, T [i]. The difficulty, of course, is counting the ver-
tices in Tr(i) without enumerating them. The Gilbert-Ng-Peyton algorithm
counts these vertices using three relatively simple mechanisms: (1) processing
the column indices j < i in row i of A in postorder of the etree, (2) computing
the distance of each vertex in the etree from the root, and (3) setting up a
data structure to compute the least-common ancestor (LCA) of pairs of etree
vertices. It is not hard to show that the once these preprocessing steps are
completed, |Tr(i)| can be computed using |Ai∗| LCA computations. The total
cost of the preprocessing and the LCA computations is almost linear in |A|.

Gilbert, Ng, and Peyton show how to further reduce the number of LCA com-
putations. They exploit the fact that the leaves of Tr(i) are exactly the indices
j that cause the creation of new supernodes in the Liu-Ng-Peyton supernode-
finding algorithm [?]. This observation limits the LCA computations to leaves of
row subtrees, i.e., edges in the skeleton graph G−(A). This significantly reduces
the running time in practice.

Efficiently computing the column counts in L is more difficult. The Gilbert-
Ng-Peyton algorithm assigns a weight w(j) to each etree vertex j, such that
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|L∗j | =
∑

k∈T [j] w(k). Therefore, the column-count of a vertex is the sum
of the column counts of its children, plus its own weight. Hence, wj must
compensate for (1) the diagonal elements of the children, which are not included
in the column count for j, (2) for rows that are nonzero in column j but not
in its children, and (3) for duplicate counting stemming from rows that appear
in more than one child. The main difficulty lies in accounting for duplicates,
which is done using least-common-ancestor computations, as in the row-counts
algorithm. This algorithm, too, benefits from handling only skeleton-graph
edges.

Gilbert, Ng, and Peyton [?] also show in their paper how to optimize these
algorithms, so that a single pass over the nonzero structure of A suffices to
compute the row counts, the column counts, and the fundamental supernodes.

1.2.3 Three classes of factorization algorithms

There are three classes of algorithms used to implement sparse direct solvers:
left-looking, right-looking, and multifrontal; all of them use the elimination
tree to guide the computation of the factors. The major difference between
the first two of these algorithms is in how they schedule the computations they
perform; the multifrontal algorithm organizes computations differently from the
other two, and we explain this after introducing some concepts.

The computations on the sparse matrix are decomposed into subtasks involv-
ing computations among dense submatrices (supernodes), and the precedence
relations among them are captured by the supernodal elimination tree. The
computation at each node of the elimination tree (subtask) involves the partial
factorization of the dense submatrix associated with it.

The right-looking algorithm is an eager updating scheme: Updates gener-
ated by the submatrix of the current subtask are applied immediately to future
subtasks that it is linked to by edges in the filled graph of the sparse matrix.
The left-looking algorithm is a lazy updating scheme: Updates generated by
previous subtasks linked to the current subtask by edges in the filled adjacency
graph of the sparse matrix are applied just prior to the factorization of the cur-
rent submatrix. In both cases, updates always join a subtask to some ancestor
subtask in the elimination tree. In the multifrontal scheme, updates always go
from a child task to its parent in the elimination tree; an update that needs to be
applied to some ancestor subtask is passed incrementally through a succession
of vertices on the elimination tree path from the subtask to the ancestor.

Thus the major difference among these three algorithms is how the data
accesses and the computations are organized and scheduled, while satisfying
the precedence relations captured by the elimination tree. An illustration of
these is shown in Fig. ??.

1.2.4 Scheduling parallel factorizations

In a parallel factorization algorithm, dependences between nonzeros in L deter-
mine the set of admissible schedules. A diagonal nonzero can only be factored
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left−looking right−looking multifrontal

Figure 1.5: Patterns of data access in the left-looking, right-looking, and multi-
frontal algorithms. A subtree of the elimination tree is shown, and the circled
node corresponds to the current submatrix being factored.

after all updates to it from previous columns have been applied, a subdiagonal
nonzero can be scaled only after updates to it have been applied (and after the
diagonal element has been factored), and two subdiagonal nonzeros can update
elements in the reduced system only after they have been scaled.

The elimination tree represents very compactly and conveniently a super-
set of these dependences. More specifically, the etree represents dependences
between columns of L. A column can be completely factored only after all its
descendants have been factored, and two columns that are not in an ancestor-
descendant relationship can be factored in any order. Note that this is a super-
set of the element dependences, since a partially factored column can already
perform some of the updates to its ancestors. But most sparse elimination al-
gorithms treat column operations (or row operations) as atomic operations that
are always performed by a single processor sequentially and with no interruption.
For such algorithms, the etree represents exactly the relevant dependences.

In essence, parallel column-oriented factorizations can factor the columns
associated with different children of an etree vertex simultaneously, but columns
in an ancestor-descendant relationship must be processed in postorder. Different
algorithms differ mainly in how updates are represented and scheduled.

By computing the number of nonzeros in each column, a parallel factorization
algorithm can determine the amount of computation and storage associated with
each subtree in the elimination tree. This information can be used to assign tasks
to processors in a load-balanced way.

Duff was the first to observe that the column dependences represented by
the elimination tree can guide a parallel factorization [?]. In that paper Duff
proposed a parallel multifrontal factorization. The paper also proposed a way
to deal with indefinite and unsymmetric systems, similar to Duff and Reid’s
sequential multifrontal approach [?]. For further references up to about 1997,
see Heath’s survey [?]. Several implementations described in papers published
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after 1997 include PaStiX [?], PARADISO [?], WSSMP [?], and MUMPS [?],
which also includes indefinite and unsymmetric factorizations. All four are
message-passing codes.

1.2.5 Scheduling out-of-core factorizations

In an out-of-core factorization at least some of the data structures are stored
on external-memory devices (today almost exclusively magnetic disks). This
allows such factorization algorithms to factor matrices that are too large to
factor in main memory. The factor, which is usually the largest data structure
in the factorization, is the most obvious candidate for storing on disks, but
other data structures, for example the stack of update matrices in a multifrontal
factorization, may also be stored on disks.

Planning and optimizing out-of-core factorization schedules require infor-
mation about data dependences in the factorization and about the number of
nonzeros in each column of the factor. The etree describes the required depen-
dence information, and as explained above, it is also used to compute nonzero
counts.

Following Rothberg and Schreiber [?], we classify out-of-core algorithms into
robust algorithms and non-robust algorithms. Robust algorithms adapt the fac-
torization to complete with the core memory available by performing the data
movement and computations at a smaller granularity when necessary. They
partition the submatrices corresponding to the supernodes and stacks used in
the factorization into smaller units called panels to ensure that the factorization
completes with the available memory. Non-robust algorithms assume that the
stack or a submatrix corresponding to a supernode fits within the core memory
provided. In general, non-robust algorithms read elements of the input matrix
only once, read from disk nothing else, and they only write the factor elements
to disk; Dobrian and Pothen refer to such algorithms as read-once-write-once,
and to robust ones as read-many-write-many [?].

Liu proposed [?] a non-robust method that works as long as for all j =
1, . . . , n, all the nonzeros in the submatrix Lj:n,1:j of the factor fit simultaneously
in main memory. Liu also shows in that paper how to reduce the amount of main
memory required to factor a given matrix using this technique by reordering the
children of vertices in the etree.

Rothberg and Schreiber [?, ?] proposed a number of robust out-of-core fac-
torization algorithms. They proposed multifrontal, left-looking, and hybrid
multifrontal/left-looking methods. Rotkin and Toledo [?] proposed two ad-
ditional robust methods, a more efficient left-looking method, and a hybrid
right/left-looking method. All of these methods use the etree together with
column-nonzero counts to organize the out-of-core factorization process.

Dobrian and Pothen [?] analyzed the amount of main memory required for
read-once-write-once factorizations of matrices with several regular etree struc-
tures, and the amount of I/O that read-many-write-many factorizations perform
on these matrices. They also provided simulations on problems with irregular
elimination tree structures. These studies led them to conclude that an exter-
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nal memory sparse solver library needs to provide at least two of the factor-
ization methods, since each method can out-perform the others on problems
with different characteristics. They have provided implementations of out-of-
core algorithms for all three of the multifrontal, left-looking, and right-looking
factorization methods; these algorithms are included in the direct solver library
OBLIO [?].

In addition to out-of-core techniques, there exist techniques that reduce the
amount of main memory required to factor a matrix without using disks. Liu [?]
showed how to minimize the size of the stack of update matrices in the multi-
frontal method by reordering the children of vertices in the etree; this method
is closely related to [?]. Another approach, first proposed by Eisenstat, Schultz
and Sherman [?] uses a block factorization of the coefficient matrix, but drops
some of the off-diagonal blocks. Dropping these blocks reduces the amount of
main memory required for storing the partial factor, but requires recomputation
of these blocks when linear systems are solved using the partial factor. George
and Liu [?, Chapter 6] proposed a general algorithm to partition matrices into
blocks for this technique. Their algorithm uses quotient graphs, data structures
that we describe later in this chapter.

1.3 The clique tree

1.3.1 Chordal graphs and clique trees

The filled graph G+(A) that results from the elimination game on the matrix A
(the adjacency graph of the Cholesky factor L) is a chordal graph, i.e., a graph
in which every cycle on four or more vertices has an edge joining two non-
consecutive vertices on the cycle [?]. (The latter edge is called a chord, whence
the name chordal graph. This class of graphs has also been called triangulated
or rigid circuit graphs.)

A vertex v in a graph G is simplicial if its neighbors adj(v) form a clique.
Every chordal graph is either a clique, or it has two non-adjacent simplicial
vertices. (The simplicial vertices in the filled graph in Fig. ?? are 1, 2, 3, 4,
7, 8, and 9.) We can eliminate a simplicial vertex v without causing any fill
by the rules of the elimination game, since adj(v) is already a clique, and no
fill edge needs to be added. A chordal graph from which a simplicial vertex
is eliminated continues to be a chordal graph. A perfect elimination ordering
of a chordal graph is an ordering in which simplicial vertices are eliminated
successively without causing any fill during the elimination game. A graph is
chordal if and only if it has a perfect elimination ordering.

Suppose that the vertices of the adjacency graph G(A) of a sparse, symmetric
matrix A have been re-numbered in an elimination ordering, and that G+(A)
corresponds to the filled graph obtained by the elimination game on G(A) with
that ordering. This elimination ordering is a perfect elimination ordering of
the filled graph G+(A). Many other perfect elimination orderings possible for
G+(A), since there are at least two simplicial vertices that can be chosen for
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elimination at each step, until the graph has one uneliminated vertex.

It is possible to design efficient algorithms on chordal graphs whose time
complexity is much less than O(|E ∪ F |), where E ∪ F denotes the set of edges
in the chordal filled graph. This is accomplished by representing chordal graphs
by tree data structures defined on the maximal cliques of the graph. (Recall
that a clique K is maximal if K ∪ {v} is not a clique for any vertex v 6∈ K.)Every maximal clique of a chordal filled graph G+(A) is of the form K(v) =
{v} ∪ hadj+(v), with the vertices ordered in a perfect elimination ordering.The vertex v is the lowest-numbered vertex in the maximal clique K(v), and
is called the representative vertex of the clique. Since there can be at most
n ≡ |V | representative vertices, a chordal graph can have at most n maximal
cliques. The maximal cliques of the filled graph in Fig. ?? are: K1 = {1, 2, 5, 10};
K2 = {3, 4, 5, 6}; K3 = {5, 6, 10, 11}; and K4 = {7, 8, 9, 10, 11}. The lowest-
numbered vertex in each maximal clique is its representative; note that in our
notation K2 = K(3), K1 = K(1), K3 = K(5), and K4 = K(7).

Let KG = {K1,K2, . . . ,Km} denote the set of maximal cliques of a chordal
graph G. Define a clique intersection graph with the maximal cliques as its
vertices, with two maximal cliques Ki and Kj joined by an edge (Ki,Kj) of
weight |Ki∩Kj |. A clique tree corresponds to a maximum weight spanning tree
(MST) of the clique intersection graph. Since the MST of a weighted graph
need not be unique, a clique tree of a chordal graph is not necessarily unique
either.

In practice, a rooted clique tree is used in sparse matrix computations. Lewis,
Peyton, and Pothen [?] and Pothen and Sun [?] have designed algorithms for
computing rooted clique trees. The former algorithm uses the adjacency lists
of the filled graph as input, while the latter uses the elimination tree. Both
algorithms identify representative vertices by a simple degree test. We will
discuss the latter algorithm.

First, to define the concepts needed for the algorithm, consider that the the
maximal cliques are ordered according to their representative vertices. This
ordering partitions each maximal clique K(v) with representative vertex v into
two subsets: new(K(v)) consists of vertices in the clique K(v) whose higher
adjacency sets are contained in it but not in any earlier ordered maximal clique.
The residual vertices in K(v)\new(K(v)) form the ancestor set anc(K(v)). If a
vertex w ∈ anc(K(v)), by definition of the ancestor set, w has a higher neighbor
that is not adjacent to v; then by the rules of the elimination game, any higher-
numbered vertex x ∈ K(v) also belongs to anc(K(v)). Thus the partition of
a maximal clique into new and ancestor sets is an ordered partition: vertices
in new(K(v)) are ordered before vertices in anc(K(v)). We denote the lowest
numbered vertex f in anc(K(v)) the first ancestor of the clique K(v). A rooted
clique tree may be defined as follows: the parent of a clique K(v) is the clique
P in which the first ancestor vertex f of K appears as a vertex in new(P ).

The reason for calling these subsets ‘new’ and ‘ancestor’ sets can be explained
with respect to a rooted clique tree. We can build the chordal graph beginning
with the root clique of the clique tree, successively adding one maximal clique
at a time, proceeding down the clique tree in in-order. When a maximal clique
K(v) is added, vertices in anc(K(v)) also belong to some ancestor clique(s) of
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for v := 1 to n →
if v has a child u in etree with hd+(v) + 1 = hd+(u) then

let Ku be the clique in which u is a new vertex;
add v to the set new(Ku);

else
make v the representative vertex of a maximal clique K(v);
add v to the set new(K(v));

fi
for each child s of v in etree such that v and s are new vertices in different cliques →

let Ks be the clique in which s is a new vertex;
make Ks a child of the clique Kv in which v is a new vertex;

rof
rof

Figure 1.6: An algorithm for computing a clique tree from an elimination tree,
whose vertices are numbered in postorder. The variable hd+(v) is the higher
degree of a vertex v in the filled graph.

K(v), while vertices in new(K(v)) appear for the first time. A rooted clique
tree, with vertices in new(K) and anc(K) identified for each clique K, is shown
in Fig. ??.

This clique tree algorithm can be implemented in O(n) time, once the elimi-
nation tree and the higher degrees have been computed. The rooted clique tree
shown in Fig. ??, is computed from the example elimination tree and higher de-
grees of the vertices in the example filled graph, using the clique tree algorithm
described above. The clique tree obtained from this algorithm is not unique. A
second clique tree that could be obtained has the clique K(5) as the root clique,
and the other cliques as leaves.

A comprehensive review of clique trees and chordal graphs in sparse matrix
computations, current as of 1991, is provided by Blair and Peyton [?].

1.3.2 Design of efficient algorithms with clique trees

Shortest Elimination Trees. Jess and Kees [?] introduced the problem of
modifying a fill-reducing elimination ordering to enhance concurrency in a par-
allel factorization algorithm. Their approach was to generate a chordal filled
graph from the elimination ordering, and then to eliminate a maximum indepen-
dent set of simplicial vertices at each step, until all the vertices are eliminated.
(This is a greedy algorithm in which the largest number of pairwise independent
columns that do not cause fill are eliminated in one step.) Liu and Mirzaian [?]
showed that this approach computed a shortest elimination tree over all perfect
elimination orderings for a chordal graph, and provided an implementation lin-
ear in the number of edges of the filled graph. Lewis, Peyton, and Pothen [?]
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Figure 1.7: A clique tree of the example filled graph, computed from its elimi-
nation tree. Within each clique K in the clique tree, the vertices in new(K) are
listed below the bar, and the vertices in anc(K) are listed above the bar.

used the clique tree to provide a faster algorithm; their algorithm runs in time
proportional to the size of the clique tree: the sum of the sizes of the maximal
cliques of the chordal graph.

A vertex is simplicial if and only if it belongs to exactly one maximal clique in
the chordal graph; a maximum independent set of simplicial vertices is obtained
by choosing one such vertex from each maximal clique that contains simplicial
vertices, and thus the clique tree is a natural data structure for this problem.
The challenging aspect of the algorithm is to update the rooted clique tree
when simplicial vertices are eliminated and cliques that become non-maximal
are absorbed by other maximal cliques.

Parallel Triangular Solution. In solving systems of linear equations by
factorization methods, usually the work involved in the factorization step domi-
nates the work involved in the triangular solution step (although the communi-
cation costs and synchronization overheads of both steps are comparable). How-
ever, in some situations, many linear systems with the same coefficient matrix
but with different right-hand-side vectors need to be solved. In such situations,
it is tempting to replace the triangular solution step involving the factor matrix
L by explicitly computing an inverse L−1 of the factor. Unfortunately L−1 can
be much less sparse than the factor, and so a more space efficient ‘product-form
inverse’ needs to be employed. In this latter form, the inverse is represented
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as a product of triangular matrices such that all the matrices in the product
together require exactly as much space as the original factor.

The computation of the product form inverse leads to some interesting
chordal graph partitioning problems that can be solved efficiently by using a
clique tree data structure.

We begin by directing each edge in the chordal filled graph G+(A) from
its lower to its higher numbered end point to obtain a directed acyclic graph
(DAG). We will denote this DAG by G(L). Given an edge (i, j) directed from i
to j, we will call i the predecessor of j, and j the successor of i. The elimination
ordering must eliminate vertices in a topological ordering of the DAG such that
all predecessors of a vertex must be eliminated before it can be eliminated. The
requirement that each matrix in the product form of the inverse must have the
same nonzero structure as the corresponding columns in the factor is expressed
by the fact that the subgraph corresponding to the matrix should be transitively
closed. (A directed graph is transitively closed if whenever there is a directed
path from a vertex i to a vertex j, there is an edge directed from i to j in the
graph.) Given a set of vertices Pi, the column subgraph of Pi includes all the
vertices in Pi and vertices reached by directed edges leaving vertices in Pi; the
edges in this subgraph include all edges with one or both endpoints in Pi.

The simpler of the graph partitioning problems is the following:
Find an ordered partition P1 ≺ P2 ≺ . . . Pm of the vertices of a directed acyclic
filled graph G(L) such that
1. every v ∈ Pi has all of its predecessors included in P1, . . ., Pi;
2. the column subgraph of Pi is transitively closed; and
3. the number of subgraphs m is minimum over all topological orderings of
G(L).

Pothen and Alvarado [?] designed a greedy algorithm that runs in O(n) time
to solve this partitioning problem by using the elimination tree.

A more challenging variant of the problem minimizes the number of tran-
sitively closed subgraphs in G(L) over all perfect elimination orderings of the
undirected chordal filled graph G+(A). This variant could change the edges in
the DAG G(L), (but not the edges in G+(A)) since the initial ordering of the
vertices is changed by the perfect elimination ordering, and after the reordering,
edges are directed from the lower numbered end point to its higher numbered
end point.

This is quite a difficult problem, but two surprisingly simple greedy algo-
rithms solve it. Peyton, Pothen, and Yuan provide two different algorithms
for this problem; the first algorithm uses the elimination tree and runs in time
linear in the number of edges in the filled graph [?]. The second makes use
of the clique tree, and computes the partition in time linear in the size of the
clique tree [?]. Proving the correctness of these algorithms requires a careful
study of the properties of the minimal vertex separators (these are vertices in
the intersections of the maximal cliques) in the chordal filled graph.
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1.3.3 Compact clique trees

In analogy with skeleton graphs, we can define a space-efficient version of a
clique tree representation of a chordal graph, called the compact clique tree. If
K is the parent clique of a clique C in a clique tree, then it can be shown that
anc(C) ⊂ K. Thus trading space for computation, we can delete the vertices in
K that belong to the ancestor sets of its children, since we can recompute them
when necessary by unioning the ancestor sets of the children. The partition into
new and ancestor sets can be obtained by storing the lowest numbered ancestor
vertex for each clique. A compact clique Kc corresponding to a clique K is:

Kc = K \ ∪
C∈child(K)

anc(C).

Note that the compact clique depends on the specific clique tree from which it
is computed.

A compact clique tree is obtained from a clique tree by replacing cliques by
compact cliques for vertices. In the example clique tree, the compact cliques
of the leaves are unchanged from the corresponding cliques; and the compact
cliques of the interior cliques are Kc(5) = {11}, and Kc(7) = {7, 8, 9}.

The compact clique tree is potentially sparser (asymptotically O(n) instead
of O(n2) even) than the skeleton graph on pathological examples, but on “prac-
tical” examples, the size difference between them is small. Compact clique trees
were introduced by Pothen and Sun [?].

1.4 Clique covers and quotient graphs

Clique covers and quotient graphs are data structures that were developed for
the efficient implementation of minimum-degree reordering heuristics for sparse
matrices. In Gaussian elimination, an elimination step that uses aij as a pivot
(the elimination of the jth unknown using the ith equation) modifies every co-
efficient akl for which akj 6= 0 and ail 6= 0. Minimum-degree heuristics attempt
to select pivots for which the number of modified coefficients is small.

1.4.1 Clique covers

Recall the graph model of symmetric Gaussian elimination discussed in subsec-
tion ??. The adjacency graph of the matrix to be factored is an undirected
graph G = (V,E), V = {1, 2, . . . , n}, E = {(i, j) : aij 6= 0}. The elimination
of a row/column j corresponds to eliminating vertex j and adding edges to the
remaining graph so that the neighbors of j become a clique. If we represent
the edge set E using a clique cover, a set of cliques K = {K : K ⊆ V } such
that E = ∪K∈K{(i, j) : i, j ∈ K}, the vertex elimination process becomes a pro-
cess of merging cliques [?]: The elimination of vertex j corresponds to merging
all the cliques that j belongs to into one clique and removing j from all the
cliques. Clearly, all the old cliques that j used to belong to are now covered
by the new clique, so they can be removed from the cover. The clique-cover
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can be initialized by representing every nonzero of A by a clique of size 2. This
process corresponds exactly to symbolic elimination, which we have discussed
in Section ??, and which costs Θ(|L|) work. The cliques correspond exactly to
frontal matrices in the multifrontal factorization method.

In the sparse-matrix literature, this model of Gaussian elimination has been
sometimes called the generalized-element model or the super-element model,
due to its relationship to finite-element models and matrices.

The significance of clique covers is due to the fact that in minimum-degree
ordering codes, there is no need to store the structure of the partially computed
factor, so when one clique is merged into another, it can indeed be removed from
the cover. This implies that the total size

∑
K∈K |K| of the representation of the

clique cover, which starts at exactly |A| − n, shrinks in every elimination step,
so it is always bounded by |A| − n. Since exactly one clique is formed in every
elimination step, the total number of cliques is also bounded, by n+(|A|−n) =
|A|. In contrast, the storage required to explicitly represent the symbolic factor,
or even to just explicitly represent the edges in the reduced matrix, can grow in
every elimination step and is not bounded by O(|A|).

Some minimum-degree codes represent cliques fully explicitly [?, ?]. This
representation uses an array of cliques and an array of vertices; each clique is
represented by a linked list of vertex indices, and each vertex is represented by
a linked list of clique indices to which it belongs. The size of this data structure
never grows—linked-list elements are moved from one list to another or are
deleted during elimination steps, but new elements never need to be allocated
once the data structure is initialized.

Most codes, however, use a different representation for clique covers, which
we describe next.

1.4.2 Quotient graphs

Most minimum-degree codes represent the graphs of reduced matrices during
the elimination process using quotient graphs [?]. Given a graph G = (V,E)
and a partition S of V into disjoint sets Sj ∈ S, the quotient graph G/S is the
undirected graph (S, E) where E = {(Si,Sj) : adj(Si) ∩ Sj 6= ∅}.

The representation of a graph G after the elimination of vertices 1, 2, . . . , j−
1, but before the elimination of vertex j, uses a quotient graph G/S, where S
consists of sets Sk of eliminated vertices that form maximal connected compo-
nents in G, and sets Si = {i} of uneliminated vertices i ≥ j. We denote a set
Sk of eliminated vertices by the index k of the highest-numbered vertex in it.

This quotient graph representation of an elimination graph corresponds to a
clique cover representation as follows. Each edge in the quotient graph between
uneliminated vertices S{i1} and S{i2} corresponds to a clique of size 2; all the
neighbors of an eliminated set Sk correspond to a clique, the clique that was
created when vertex k was eliminated. Note that all the neighbors of an une-
liminated set Sk are uneliminated vertices, since uneliminated sets are maximal
with respect to connectivity in G.
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The elimination of vertex j in the quotient-graph representation corresponds
to marking Sj as eliminated and merging it with its eliminated neighbors, to
maintain the maximal connectivity invariant.

Clearly, a representation of the initial graph G using adjacency lists is also
a representation of the corresponding quotient graph. George and Liu [?] show
how to maintain the quotient graph efficiently using this representation without
allocating more storage through a series of elimination steps.

Most of the codes that implement minimum-degree ordering heuristics, such
as GENMMD [?], AMD [?], and Spindle [?, ?], use quotient graphs to represent
elimination graphs.

It appears that the only advantage of a quotient graph over an explicit clique
cover in the context of minimum-degree algorithms is a reduction by a small
constant factor in the storage requirement, and possibly in the amount of work
required. Quotient graphs, however, can also represent symmetric partitions of
symmetric matrices in applications that are not directly related to elimination
graphs. For example, George and Liu use quotient graphs to represent partitions
of symmetric matrices into block matrices that can be factored without fill in
blocks that only contain zeros [?, Chapter 6].

In [?], George and Liu showed how to implement the minimum degree al-
gorithm without modifying the representation of the input graph at all. In
essence, this approach represents the quotient graph implicitly using the input
graph and the indices of the eliminated vertices. The obvious drawback of this
approach is that vertex elimination (as well as other required operations) are
expensive.

1.4.3 The problem of degree updates

The minimum-degree algorithm works by repeatedly eliminating the vertex with
the minimum degree and turning its neighbors into a clique. If the reduced graph
is represented by a clique cover or a quotient graph, then the representation does
not reveal the degree of vertices. Therefore, when a vertex is eliminated from
a graph represented by a clique cover or a quotient graph, the degrees of its
neighbors must be recomputed. These degree updates can consume much of the
running time of minimum-degree algorithms.

Practical minimum-degree codes use several techniques to address this is-
sue. Some techniques reduce the running time while preserving the invariant
that the vertex that is eliminated always has the minimum degree. For example,
mass elimination, the elimination of all the vertices of a supernode consecutively
without recomputing degrees, can reduce the running time significantly without
violating this invariant. Other techniques, such as multiple elimination and the
use of approximate degrees, do not preserve the minimum-degree invariant. This
does not imply that the elimination orderings that such technique produce are
inferior to true minimum-degree orderings. They are often superior to them.
This is not a contradiction since the minimum-degree rule is just a heuristic
which is rarely optimal. For further details, we refer the reader to George and
Liu’s survey [?], to Amestoy, Davis, and Duff’s paper on approximate minimum-
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degree rules [?], and to Kumfert and Pothen’s work on minimum-degree vari-
ants [?, ?]. Heggernes, Eisenstat, Kumfert and Pothen prove upper bounds on
the running time of space-efficient minimum-degree variants [?].

1.4.4 Covering the column-intersection graph and biclique
covers

Column orderings for minimizing fill in Gaussian elimination with partial pivot-
ing and in the orthogonal-triangular (QR, where Q is an orthogonal matrix, and
R is an upper triangular matrix) factorization are often based on symmetric fill
minimization in the symmetric factor of ATA, whose graph is known as the the
column intersection graph G∩(A) (we ignore the possibility of numerical cancel-
lation in ATA). To run a minimum-degree algorithm on the column intersection
graph, a clique cover or quotient graph of it must be constructed. One obvious
solution is to explicitly compute the edge-set of G∩(A), but this is inefficient,
since G∩(A) can be much denser than G(A).

A better solution is to initialize the clique cover using a clique for every row
of A; the vertices of the clique are the indices of the nonzeros in that row [?]. It
is easy to see that each row in A indeed corresponds to a clique in G∩(A). This
approach is used in the COLMMD routine in Matlab [?] and in COLAMD [?].

A space-efficient quotient-graph representation for G∩(A) can be constructed
by creating an adjacency-list representation of the symmetric 2-by-2 block ma-
trix (

I A
AT 0

)
and eliminating vertices 1 through n. The graph of the Schur complement
matrix

G(0−AT I(−1)A) = G(ATA) = G∩(A).

If we maintain a quotient-graph representation of the reduced graph through
the first n elimination steps, we obtain a space-efficient quotient graph repre-
sentation of the column-intersection graph. This is likely to be more expensive,
however, than constructing the clique-cover representation from the rows of A.
We learned of this idea from John Gilbert; we are not aware of any practical
code that uses it.

The nonzero structure of the Cholesky factor of ATA is only an upper bound
on the structure of the LU factors in Gaussian elimination with partial pivoting.
If the identities of the pivots are known, the nonzero structure of the reduced
matrices can be represented using biclique covers. The nonzero structure of A
is represented by a bipartite graph ({1, 2, . . . , n}∪ {1′, 2′, . . . , n′}, {(i, j′) : aij 6=
0}). A biclique is a complete bipartite graph on a subset of the vertices. Each
elimination step corresponds to a removal of two connected vertices from the
bipartite graph, and an addition of a new biclique. The vertices of the new
biclique are the neighbors of the two eliminated vertices, but they are not the
union of a set of bicliques. Hence, the storage requirement of this representation
may exceed the storage required for the initial representation. Still, the storage



1.5. COLUMN ELIMINATION TREES AND ELIMINATION DAGS 23

requirement is always smaller than the storage required to represent each edge
of the reduced matrix explicitly. This representation poses the same degree
update problem that symmetric clique covers pose, and the same techniques can
be used to address it. Version 4 of UMFPACK, an unsymmetric multifrontal LU
factorization code, uses this idea together with a degree approximation technique
to select pivots corresponding to relatively sparse rows in the reduced matrix [?].

1.5 Column elimination trees and elimination
DAGS

Elimination structures for unsymmetric Gaussian elimination are somewhat
more complex than the equivalent structures for symmetric elimination. The
additional complexity arises because of two issues. First, the factorization of
a sparse unsymmetric matrix A, where A is factored into a lower triangular
factor L and an upper triangular factor U , A = LU is less structured than the
sparse symmetric factorization process. In particular, the relationship between
the nonzero structure of A and the nonzero structure of the factors is much
more complex. Consequently, data structures for predicting fill and represent-
ing data-flow and control-flow dependences in elimination algorithms are more
complex and more diverse.

Second, factoring an unsymmetric matrix often requires pivoting, row and/or
column exchanges, to ensure existence of the factors and numerical stability. For
example, the 2-by-2 matrix A = [0 1; 1 0] does not have an LU factorization,
because there is no way to eliminate the first variable from the first equation:
that variable does not appear in the equation at all. But the permuted matrix
PA does have a factorization, if P is a permutation matrix that exchanges the
two rows of A. In finite precision arithmetic, row and/or column exchanges are
necessary even when a nonzero but small diagonal element is encountered. Some
sparse LU algorithms perform either row or column exchanges, but not both.
The two cases are essentially equivalent (we can view one as a factorization
of AT ), so we focus on row exchanges (partial pivoting). Other algorithms,
primarily multifrontal algorithms, perform both row and column exchanges;
these are discussed toward the end of this section.

For completeness, we note that pivoting is also required in the factorization
of sparse symmetric indefinite matrices. Such matrices are usually factored
into a product LDLT , where L is lower triangular and D is a block diagonal
matrix with 1-by-1 and 2-by-2 blocks. There has not been much research about
specialized elimination structures for these factorization algorithms; such codes
invariably use the symmetric elimination tree of A to represent dependences for
structure prediction and for scheduling the factorization.

The complexity and diversity of unsymmetric elimination arises not only due
to pivoting, but also because unsymmetric factorizations are less structured than
symmetric ones, so a rooted tree can no longer represent the factors. Instead,
directed acyclic graphs (dags) are used to represent the factors and dependences
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Figure 1.8: The directed graph G(A) of an unsymmetric matrix A. The column
intersection graph of this graph G∩(B) is exactly the graph shown in Figure ??,
so the column elimination tree of A is the elimination tree shown in Figure ??.
Note that the graph is sparser than the column intersection graph.

in the elimination process. We discuss elimination dags (edags) in Section ??.

Surprisingly, dealing with partial pivoting turns out to be simpler than deal-
ing with the unsymmetry, so we focus next on the column elimination tree, an
elimination structure for LU factorization with partial pivoting.

1.5.1 The column elimination tree

The column elimination tree (col-etree) is the elimination tree of ATA, under
the assumption that no numerical cancelation occurs in the formation of ATA.
The significance of this tree to LU with partial pivoting stems from a series
of results that relate the structure of the LU factors of PA, where P is some
permutation matrix, to the structure of the Cholesky factor of ATA.

George and Ng observed that, for any permutation matrix P , the structure
of the LU factors of PA is contained in the structure of the Cholesky factor of
ATA, as long as A does not have any zeros on its main diagonal [?]. (If there
are zeros on the diagonal of a nonsingular A, the rows can always be permuted
first to achieve a zero-free diagonal.) Figure ?? illustrates this phenomenon.
Gilbert [?] strengthened this result by showing that for every nonzero Rij in the
Cholesky factor R of ATA = RTR, where A has a zero-free diagonal and no non-
trivial block triangular form, there exists a matrix A(Uij) with the same nonzero
structure as A, such that in the LU factorization of A(Uij) = PTL(Uij)U (Uij)

with partial pivoting, U
(Uij)
ij 6= 0. This kind of result is known as a one-at-a-

time result, since it guarantees that every element of the predicted factor can



1.5. COLUMN ELIMINATION TREES AND ELIMINATION DAGS 25

fill for some choice of numerical values in A, but not that all the elements can
fill simultaneously. Gilbert and Ng [?] later generalized this result to show that
an equivalent one-at-a-time property is true for the lower-triangular factor.

These results suggest that the col-etree, which is the elimination tree of
ATA, can be used for scheduling and structure prediction in LU factorizations
with partial pivoting. Because the characterization of the nonzero structure of
the LU factors in terms of the structure of the Cholesky factor of ATA relies
on one-at-a-time results, the predicted structure and predicted dependences are
necessarily only loose upper bounds, but they are nonetheless useful.

The col-etree is indeed useful in LU with partial pivoting. If Uij 6= 0,
then by the results cited above Rij 6= 0 (recall that R is the Cholesky factor
of the matrix ATA). This, in turn, implies that j is an ancestor of i in the
col-etree. Since column i of L updates column j of L and U only if Uij 6= 0,
the col-etree can be used as a task-dependence graph in column-oriented LU
factorization codes with partial pivoting. This analysis is due to Gilbert, who
used it to schedule a parallel factorization code [?]. The same technique is used
in several current factorization codes, including SuperLU [?], SuperLU MT [?],
UMFPACK 4 [?], and TAUCS [?, ?]. Gilbert and Grigori [?] recently showed
that this characterization is tight in a strong all-at-once sense: for every strong
Hall matrix A (i.e., A has no nontrivial block-triangular form), there exists a
permutation matrix P such that every edge of the col-etree corresponds to a
nonzero in the upper-triangular factor of PA. This implies that the a-priori
symbolic column-dependence structure predicted by the col-etree is as tight as
possible.

Like the etree of a symmetric matrix, the col-etree can be computed in time
almost linear in the number of nonzeros inA [?]. This is done by an adaptation of
the symmetric etree algorithm, an adaptation that does not compute explicitly
the structure of ATA. Instead of constructingG(ATA), the algorithm constructs
a much sparser graph G′ with the same elimination tree. The main idea is that
each row of A contributes a clique to G(ATA); this means that each nonzero
index in the row must be an ancestor of the preceding nonzero index. A graph
in which this row-clique is replaced by a path has the same elimination tree, and
it has only as many edges as there are nonzeros in A. The same paper shows
not only how to compute the col-etree in almost linear time, but also how to
bound the number of nonzeros in each row and column of the factors L and U ,
using again an extension of the symmetric algorithm to compute the number of
nonzeros in the Cholesky factor of ATA. The decomposition of this Cholesky
factor into fundamental supernodes, which the algorithm also computes, can be
used to bound the extent of fundamental supernodes that will arise in L.

1.5.2 Elimination DAGS

The col-etree represents all possible column dependences for any sequence of
pivot rows. For a specific sequence of pivots, the col-etree includes dependences
that do not occur during the factorization with these pivots. There are two
typical situations in which the pivoting sequence is known. The first is when
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the matrix is known to have a stable LU factorization without pivoting. The
most common case is when AT is strictly diagonally dominant. Even if A is
not diagonally dominant, its rows can be pre-permuted to bring large elements
to the diagonal. The permuted matrix, even if its transpose is not diagonally
dominant, is fairly likely to have a relatively stable LU factorization that can be
used to accurately solve linear systems of equations. This strategy is known as
static pivoting [?]. The other situation in which the pivoting sequence is known
is when the matrix, or part of it, has already been factored. Since virtually
all sparse factorization algorithms need to collect information from the already-
factored portion of the matrix before they factor the next row and column, a
compact representation of the structure of this portion is useful.

Elimination dags (edags) are directed acyclic graphs that capture a minimal
or near minimal set of dependences in the factors. Several edags have been
proposed in the literature. There are two reasons for this diversity. First, edags
are not always as sparse and easy to compute as elimination trees, so researchers
have tried to find edags that are easy to compute, even if they represent a
superset of the actual dependences. Second, edags often contains information
only about a specific structure in the factors or a specific dependence in a specific
elimination algorithm (e.g., data dependence in a multifrontal algorithm), so
different edags are used for different applications. In other words, edags are not
as universal as etrees in their applications.

The simplest edag is the graph G(LT ) of the transpose of the lower triangular
factor, if we view every edge in this graph as directed from the lower-numbered
vertex to a higher-numbered vertex. This corresponds to orienting edges from
a row index to a column index in L. For example, if L6,3 6= 0, we view the edge
(6, 3) as a directed edge 3 → 6 in G(LT ). Let us denote by G((L(j−1))T ) the
partial lower triangular factor after j − 1 columns have been factored. Gilbert
and Peierls showed that the nonzeros in the jth rows of L and U are exactly
the vertices reachable, in G((L(j−1))T ), from the nonzero indices in the jth
column of A [?]. This observation allowed them to use a depth-first search
(DFS) to quickly find the columns in the already-factored part of the matrix
that update the jth column before it can be factored. This resulted in the first
algorithm that factored a general sparse matrix in time linear in the number of
arithmetic operations (earlier algorithms sometimes performed much more work
to manipulate the sparse data structure than the amount of work in the actual
numerical computations).

Eisenstat and Liu showed that a simple modification of the graphG((L(j−1))T )
can often eliminate many of its edges without reducing its ability to predict
fill [?]. They showed that if both Lik and Uki are nonzeros, then all the edges
i→ ` for ` > i can be safely pruned from the graph. In other words, the nonze-
ros in column k of L below row i can be pruned. This is true since if Uki 6= 0,
then column k of L updates column i, so all the pruned nonzeros appear in col-
umn i, and since the edge k → i is in the graph, they are all reachable when k is
reachable. This technique is called symmetric pruning. This edag is used in the
SuperLU codes [?, ?] to find the columns that update the next supernode (set
of consecutive columns with the same nonzero structure in L). Note that the
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Figure 1.9: The directed graph of the U factor of the matrix whose graph is
shown in Figure ??. In this particular case, the graph of LT is exactly the same
graph, only with the direction of the edges reversed. Fill is indicated by dashed
lines. Note that the fill is indeed bounded by the fill in the column-intersection
graph, which is shown in Figure ??. However, that upper bound is not realized
in this case: the edge (9, 10) fills in the column-intersection graph, but not in
the LU factors.

same codes use the col-etree to predict structure before the factorization begins,
and an edag to compactly represent the structure of the already-factored block
of A.

Gilbert and Liu went a step further and studied the minimal edags that
preserve the reachability property that is required to predict fill [?]. These
graphs, which they called the elimination dags are the transitive reductions of
the directed graphsG(LT ) andG(U). (The graph of U can be used to predict the
row structures in the factors, just as G(LT ) can predict the column structures.)
Since these graphs are acyclic, each graph has a unique transitive reduction; If A
is symmetric, the transitive reduction is the symmetric elimination tree. Gilbert
and Liu also proposed an algorithm to compute these transitive reductions row
by row. Their algorithm computes the next row i of the transitive reduction of
L by traversing the reduction of U to compute the structure of row i of L, and
then reducing it. Then the algorithm computes the structure of row i of U by
combining the structures of earlier rows whose indices are the nonzeros in row i
of L. In general, these minimal edags are often more expensive to compute than
the symmetrically-pruned edags, due to the cost of transitively reducing each
row. Gupta recently proposed a different algorithm for computing the minimal
edags [?]. His algorithm computes the minimal structure of U by rows and of
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Figure 1.10: The minimal edag of U ; this graph is the transitive reduction of
the graph shown in Figure ??.

L by columns. His algorithm essentially applies to both L and U the rule that
Gilbert and Liu apply to U . By computing the structure of U by rows and of L
by columns, Gupta’s algorithm can cheaply detect supernodes that are suitable
for unsymmetric multifrontal algorithms, where a supernode consists of a set
of consecutive indices for which both the rows of U all have the same structure
and the columns of L have the same structure (but the rows and columns may
have different structures).

1.5.3 Elimination structures for the unsymmetric multi-
frontal algorithm

Unsymmetric multifrontal LU factorization algorithms usually use both row
and column exchanges. UMFPACK, the first such algorithm, due to Davis and
Duff [?], used a pivoting strategy that factored an arbitrary row and column
permutation of A. The algorithm tried to balance numerical and degree consid-
erations in selecting the next row and column to be factored, but in principle, all
row and column permutations were possible. Under such conditions, not much
structure prediction is possible. The algorithm still used a clever elimination
structure that we described earlier, a biclique cover, to represent the structure
of the Schur complement (the remaining uneliminated equations and variables),
but it did not use etrees or edags.

Recent unsymmetric multifrontal algorithms still use pivoting strategies that
allow both row and column exchanges, but the pivoting strategies are restricted
enough that structure prediction is possible. These pivoting strategies are based
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on delayed pivoting, which was originally invented for symmetric indefinite fac-
torizations. One such code, Davis’s UMFPACK 4, uses the column elimination
tree to represent control-flow dependences, and a biclique cover to represent
data dependences [?]. Another code, Gupta’s WSMP, uses conventional mini-
mal edags to represent control-flow dependences, and specialized dags to repre-
sent data dependences [?]. More specifically, Gupta shows how to modify the
minimal edags so they exactly represent data dependences in the unsymmet-
ric multifrontal algorithm with no pivoting, and how to modify the edags to
represent dependences in an unsymmetric multifrontal algorithm that employs
delayed pivoting.
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