Classifying Immunophenotypes With Templates
From Flow Cytometry

Ariful Azad
Computer Science
Purdue University

aazad@purdue.edu

Saumyadipta Pyne
C.R. Rao Advanced Institute
of Mathematics, Statistics and
Computer Science
Hyderabad, India

spyne@crraoaimscs.res.in

ABSTRACT

We describe an algorithm to dynamically classify flow cy-
tometry data samples into several classes based on their im-
munophenotypes. Flow cytometry data consists of fluores-
cence measurements of several proteins that characterize dif-
ferent cell types in blood or cultured cell lines. Each sample
is initially clustered to identify the cell populations present
in it. Using a combinatorial dissimilarity measure between
cell populations in samples, we compute meta-clusters that
correspond to the same cell population across samples. The
collection of meta-clusters in a class of samples then de-
scribes a template for that class. We organize the samples
into a template tree, and use it to classify new samples into
existing classes or create a new class if needed. We dynam-
ically update the templates and their statistical parameters
as new samples are classified, so that the new information
is reflected in the classes. We use our dynamic classifica-
tion algorithm to classify T cells that on stimulation with
an antibody show increased abundance of the proteins SLP-
76 and ZAP-70. These proteins are involved in a platform
that assembles signaling proteins in the immune response.
We also use the algorithm to show that variation in an im-
mune subsystem between individuals is a larger effect than
variation in multiple samples from one individual.

Categories and Subject Descriptors

J.3 [Computer Applications]: Life and Medical Sciences—
Biology and Genetics; G.2 [Discrete Mathematics|: Graph
Algorithms

General Terms

Flow Cytometry, Immunology, Classification, Clustering, Tem-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

BCB 13, September 22 - 25, 2013, Washington, DC, USA

Copyright 2013 ACM 978-1-4503-2434-2/13/09 ...$15.00.

Arif Khan
Computer Science
Purdue University

khan58@purdue.edu

Bartek Rajwa
Bindley Bioscience Center
Purdue University
brajwa@purdue.edu

Alex Pothen
Computer Science
Purdue University

apothen@purdue.edu

plates, Template Tree

1. INTRODUCTION

We describe an algorithm to dynamically classify flow cy-
tometry samples into several classes based on the cell popu-
lations present in the samples. Since we expect that most of
the readers of this paper are unfamiliar with flow cytome-
try, we begin with a brief discussion of this technology before
describing our contributions in more detail.

Flow cytometry (FC) is a platform for profiling the changes
in the phenotype, functional response, or physiology, of cells
due to various stimuli. The phenotype is measured in FC by
quantifying the abundances of multiple protein complexes
(called Clusters of Differentiation, CD). Antibodies conju-
gated with fluorophores are used to target marker proteins
on the surface of or within cells. The fluorescence intensi-
ties due to binding of specific antibodies convey information
about the type and levels of expression of each of the protein
markers per cell [23], and thus identify different cell types
in the sample. Recent advances in FC technology allow us
to measure the abundance of fifteen to twenty proteins si-
multaneously in each cell from a sample containing millions
of cells [16]. This technology is now routinely used to un-
derstand how different kinds of immune cells develop [19], to
study how the immune system responds at multiple levels to
the presence of a pathogen, to clinically diagnose diseases of
the immune system [20], and to develop vaccines (e.g., HIV)
[22].

In conventional FC practice, cell populations are identified
by visualizing cells by a collection of two-dimensional scat-
ter plots as shown in Fig. 8 (in Section 5). The reader will
find it helpful to refer to this Figure now to follow the rest
of the discussion. Fig. 8 shows how four types of immune
cells are identified using five CD protein complexes. (In FC
terminology, ‘+’ and ‘high’ both indicate higher abundances
of a marker, and ‘=’ and ‘low’ indicate lower levels of it.)
This approach of using a collection of biaxial plots assumes
that the axes are orthogonal to each other; however, often
there are correlations between these protein markers, and
these are difficult to analyze using biaxial projections. To
address this problem, many automated data clustering algo-
rithms to identify cell populations in multi-dimensional FC

samples have been described by a number of researchers,
and [1] provides a state-of-the-art summary of the field.

We extend this work to register cell populations in a large
collection of samples, and to classify samples according to
the presence, location in marker space, and shape of cell
populations. The cell populations with their statistical de-
scriptions in each sample are identified with a clustering
algorithm, and we organize samples into a few classes us-
ing these descriptions. Mathematically each cell population
in a sample is represented by a normal distribution, and a
sample is represented by a mixture of normal distributions
corresponding to different cell populations.

Samples belonging to the same class are summarized by
a template, which is a summary of the sample’s expression
pattern [3, 11, 21]. The concept of cell populations in a
sample can be extended to meta-clusters in a collection of
similar samples, representing generic cell populations that
appear in each sample with some sample-specific variation.
Each meta-cluster is formed by combining cell populations
expressing similar phenotypes in different samples. Hence
mathematically a meta-cluster is characterized by a normal
distribution, with parameters computed from the distribu-
tions of the clusters included in it. Clusters in a meta-cluster
represent the same type of cells and thus have overlapping
distributions in the marker space.

A template is a collection of relatively homogeneous meta-
clusters commonly shared across samples of a given class,
thus describing the key immune-phenotypes of an overall
class of samples in a formal, yet robust, manner. Mathe-
matically a template is characterized by a finite mixture of
normal distributions.

We summarize these concepts in Table 1. Given the inter-
sample variations due to innate biological variability among
individuals or Poisson and Gaussian noise from the FC mea-
surements, a few templates can concisely represent a large
cohort of samples by emphasizing their major characteris-
tics while hiding statistical noise and unnecessary details.
Thereby, overall changes across multiple conditions can be
determined rigorously by comparing the cleaner and fewer
class templates rather than the large number of noisy sam-
ples themselves [3, 21]. We show that the use of templates
leads to efficient classification algorithms.

Terms meaning

Cell population a group of cells expressing similar fea-
(cluster) tures, e.g., helper T cells, B cells

a collection of cell populations within
a single biological sample

Sample

Meta-cluster a set of biologically similar cell clus-

ters from different samples

a collection of meta-clusters from
samples of same class

Template

Table 1: Summary of terminology used in this paper.

We build templates from a collection of samples by a hier-
archical algorithm that repeatedly merges the most similar
pair of samples or partial templates obtained by the algo-
rithm thus far. The algorithm builds a binary tree called the
template tree denoting the hierarchical relationships among
the samples. A leaf node of the template tree represents

a sample and an internal (non-leaf) node represents a tem-
plate created from the samples. Fig. 1 shows an example
of a template tree created from four hypothetical samples,
S1,S52,53, and Ss. An internal node in the template tree is
created by matching similar cell clusters across the two chil-
dren and merging the matched clusters into meta-clusters.
For example, the internal node T'(S1,S2) in Fig. 1 denotes
the template from samples S1 and S2. The mean vector and
covariance matrix of a meta-cluster are computed from the
means and covariance matrices of the clusters participating
in the meta-cluster.

Template

Intermediate Intermediate
Template Template
T(Sla SZ) T(SSaS4)

()] Q é % @ @
S, S, S S,

Figure 1: An example of a hierarchical template tree
created from four hypothetical samples Si, 52, S3 and
Si. A leaf node of the template tree represents a
sample and an internal node represents a template
created from its children.

Besides their use in high-level visualization and cross-class
comparisons, templates can be employed to classify new
samples with unknown status. In this paper we use this
approach to classify samples in terms of their expression of
markers of the immune system. In the static classification
approach, we build a fixed number of templates, each repre-
senting samples from a particular class, and organize them
into a template tree data structure. A new sample is then
predicted to come from a class whose template it is most sim-
ilar to. In the dynamic classification approach, we update
the templates and also the template tree, as new samples
are classified.

We demonstrate the use of template-based classification
on two different datasets in this paper. The first dataset
measures the differences in phosphorylation events before
and after stimulating T cells in human whole blood with an
anti-CD3 antibody. By creating pre-stimulation and post-
stimulation templates we are able to classify samples accord-
ing to their stimulation status. The second dataset studies
the natural variations among different subsets of immune
cells in five healthy individuals. Five technical replicates
were created from each subject, and we show that these
replicates are correctly classified to the corresponding tem-
plate for the individual, and that technical variations are
relatively small when compared with the biological varia-
tion across individuals.

Template-based classification has been used in several ar-
eas such as face recognition, speech recognition, character
recognition, etc. In face recognition [6], a template library
is created with one or more digital images from each person.
An unclassified image is compared to each database image
by computing correlations of different features (eyes, nose,

mouth etc.) and is classified as the one giving the highest
cumulative score. In speech recognition [8, 9], a template is
created for each speaker by a sequence of consecutive acous-
tic feature vectors and an incoming signal is classified by
comparing it with the templates using the Dynamic Time
Warping algorithm. In character recognition [7], representa-
tive prototypes for each character are created from different
writing styles and an incoming character is classified by com-
paring it to existing prototypes using a feature matching al-
gorithm. Our approach has similarities to these methods in
principle but differs from them significantly in how the tem-
plates are created, represented, and compared with incom-
ing samples. In contrast to these approaches, we maintain
a hierarchy of the training samples in order to use their re-
lationships in future classification. We represent a template
with the shared features of all samples in a class whereas the
methods discussed above use representatives from the train-
ing set. Furthermore, with the dynamic template algorithm
we continuously update templates as new samples are clas-
sified, which improves the accuracy of future classification.

FC data is continuous, high-dimensional (each column
corresponds to a fluorescence from a protein being mea-
sured), perturbed by Poisson and Gaussian noise, and pro-
vides information at the single cell level for millions of intact
cells in a sample. Although microarray data is similar in
that it is continuous and based on fluorescence, we cannot
analyze FC data using established methods for analyzing mi-
croarray data. Microarray data measures the expression of
a large number of genes under different conditions, whereas
FC data measures a smaller number of proteins character-
istic of a few immunophenotypes across a large number of
samples due to its lower cost and widespread clinical use.
In microarrays, the expression data is the average of a large
number of cells in a population, whereas in FC, each cell is
measured individually, and a distribution of the expression
profile within a cellular population is observed. Hence the
nature of the data, its pre-processing, statistical treatment,
and algorithms for downstream analysis, are all substantially
different for the two technologies.

2. BACKGROUND
2.1 Identifying cell populations

An FC sample measuring the abundances of p (protein)
markers for n cells is represented by an n x p matrix A. The
matrix element A(3, j) represents the abundance of the j*
marker in the i** cell. This data needs to be pre-processed by
spectral unmixing, gating to identify cell populations of in-
terest (e.g., lymphocytes), and a variance-stabilizing trans-
formation (commonly a generalized logarithm). Unmixing
recovers the correct abundances of a protein marker by re-
moving the contributions of other markers at the observed
frequency of the fluorescence [18]. Stabilizing the variances
of the cell populations, i.e., making the variance indepen-
dent of the value of the mean, is a step needed for correct
statistical analysis using ANOVA methods, but this will be
discussed in another publication [4].

Each sample consists of several clusters of cells, with each
cluster of cells expressing a single phenotype in the measured
marker space. We model this collection of clusters with a
finite mixture model of multivariate normal distributions.
In the mixture model, each cell population is characterized
by a multi-dimensional normal distribution, represented by

two parameters p, the p-dimensional mean vector, and 3,
the p X p covariance matrix [14].

We identify the cell populations in a sample and estimate
their distribution parameters by applying a two step clus-
tering algorithm. In the first step, we identify the optimal
number of cell clusters, k*, by applying the k-means clus-
tering algorithm for a wide range of values for k, and se-
lect the optimal number of clusters by optimizing both the
Calinski-Harabasz and S_Dbw cluster validation criteria [13].
The distribution parameters for each cluster are then esti-
mated using the Expectation-Maximization (EM) algorithm
[15] (with software obtained from Dr. Tsung-I Lin from Na-
tional Chung Hsing University, Taiwan, personal commu-
nication). We have used other clustering algorithms such
as the Dirichlet Process Mixture (DPM) model, and have
obtained similar results.

2.2 Dissimilarity between cell populations

We can calculate the dissimilarity between a pair of cell
populations by any measure that computes the dissimilarity
between a pair of multivariate probability distributions. In
this study, we used the symmetrized Kullback-Leibler (KL)
divergence, also known as the relative entropy in information
theory. Let c¢1(p1,X1) and ca(p2,X2) be the mean vector
and covariance matrix of two cell clusters modeled by normal
distributions. The dissimilarity d(c1,c2) between the pair
of clusters ¢; and ¢z is the symmetrized KL-divergence for
normal distributions:

1 _ _
d(er,e2) = S(p— pa) (S0 + 5 (e — pa)
1 oo _
+5 (S 'Sy 4+ 3518 —20). (1)

The symmetrized KL divergence is not a metric because
it does not satisfy the triangle inequality. Nevertheless, it
enables our goal of computing the dissimilarity between two
probability distributions.

2.3 Dissimilarity between a pair of samples

In the model described in Section 2.1, a sample is char-
acterized by a mixture of cell populations. We compute
the dissimilarity between a pair of samples by optimally
matching (in a graph-theoretic model) similar cell clusters
and summing up the dissimilarities of the matched clusters.
However, it is possible for a cell population from one sample
either to be absent from another sample or to split into two
or more cell populations in the second sample. These can
happen due to biological reasons or due to errors in cluster-
ing. Thus it should be possible to match a cluster in one
sample to zero, one, or more clusters in a second sample to
compute the dissimilarity between the samples. We have
developed a robust variant of a graph matching algorithm
called the Mixed Edge Cover (MEC) algorithm that allows
a cluster to be matched with zero or more clusters in the
paired sample [2].

More formally, let Si and S2 be two FC samples char-
acterized by mixtures of m1 and nz2 cell populations such
that S1 = {ci,ch,...,ch, }, and Sz = {ci,¢3, ...,ch, }, where
¢l (p?,¥7) is the it" cluster from the j* sample (here j=1 or
2). The mixed edge cover computes a correspondence mec,
of clusters across S; and Sz such that mec(c}) € P(S2) and
mec(c;) € P(S1), where P(S1) (P(S2)) is the power set of

clusters in S7 (S2). When a cluster cg remains unmatched,

i.e., mec(c!) = 0, we set d(c!,—) = A where the cost A is a
penalty for leaving a vertex unmatched in the mixed edge
cover, and is set to a value such that the number of such
clusters remains small. We select A empirically by plot-
ting the total number of unmatched clusters in all pairwise
matchings of samples against A, and finding a “knee” in the
curve [2]. The cost of mec is the sum of the dissimilarities
of all pairs of matched clusters and the penalties due to the
unmatched clusters. A minimum weight mixed edge cover is
a mixed edge cover with the minimum cost. We use the cost
of a minimum weight mixed edge cover as the dissimilarity
D(S1, S2) between a pair of samples S1 and Sa:

_ . 1 1 2
D(Sh SQ) - mixrer(liugdge 5(Z d(Cj7 Ck)

covers, mec ci emec(c;)

1<j<ny

+ > dg,a)),)
cyl- Emec(ci)
1<k<ng

where d(c}, c;) is computed from Equation (1).

Our dissimilarity measure between a pair of samples can
be compared with the partition distance (also called R-metric
or transfer distance) that computes the minimum number
of augmentations and removals of elements needed to trans-
form one partition of a sample into another [12]. However,
the partition distance compares two partitions (clusterings)
of the same sample whereas our measure can work with
partitions from the same or different samples. In contrast
to partition distance that matches a cluster to at most one
cluster, MEC is able to match a cluster to zero or more
clusters. Partition distance does not accommodate the dis-
similarities between elements in a natural way.

A mixed edge cover can be computed by a modified mini-
mum weight perfect matching algorithm in O(k®log k) time
where k is the maximum number of clusters in a sample [2].
The number of cell clusters k is typically small (fewer than
fifty in experiments), and the dissimilarity between a pair of
samples can be computed in seconds on a desktop computer.

3. CLASSIFYING SAMPLES WITH STATIC
TEMPLATES

3.1 Algorithm to construct a template tree

We designed a hierarchical matching-and-merging (HM& M)
algorithm that builds a binary template tree [3] from a given
fixed set of n samples. A node in the tree represents either
a sample (leaf node) or a template (internal node). In both
cases a node is characterized by a finite mixture of multi-
variate normal distributions each component of which is a
cluster or meta-cluster. Therefore, the dissimilarity of a pair
of nodes can be computed by the mixed edge cover discussed
in Section 2.3.

During the construction of a template-tree, a node is called
an “orphan” if it does not have a parent. Such an orphan
node could be one of the samples or one of the current tem-
plates. At each stage of the algorithm, the dissimilarity be-
tween each pair of orphan nodes is either computed with the
MEC algorithm, or it is unchanged from the previous stage,
and a pair of nodes (v;,v;) with the minimum dissimilarity
is merged to form a new node vi. The newly created node
v, represents a template and is the parent of v; and v;.

Let a node v; consist of n; clusters or meta-clusters cﬁ, cé,
<+, Ch.. The HM&M algorithm consists of the three steps:

1. Initialization: Create a node v; for each of the n
samples S;. Define the set of orphan nodes, Orphan =
{v1,v2,...,un}. Then repeat the matching and merging steps
until a single orphan node remains.

2. Matching: Compute the dissimilarity D(v;,v;) between
every pair of nodes v; and v; in the current Orphan set with
the mixed edge cover procedure described in Section 2.3.

3. Merging: Find a pair of orphan nodes (v;,v;) with
minimum dissimilarity D(v;,v;). Create a new node v, =
{ck,ck, ...,cﬁk} where each meta-cluster ¢, 1 < z < ny, is
formed by merging a group of matched clusters or meta-
clusters, {ct,Umec(ck)}; here z ranges over the meta-clusters
in sample S; or subtemplate represented by node v;. The dis-
tribution parameters, (MI;, %), of each of the newly formed
meta-clusters ¢ are estimated by the EM algorithm. The
height of vy, is set to D(v;,v;). The node vi then becomes
the parent of v; and v;, and the set of orphan nodes is up-
dated by deleting v; and v; from it and including vy. If there
are orphan nodes remaining, then we return to the matching
step, and otherwise, we terminate.

3.2 Computational complexity of a template-
tree

Initially we need to compute O(n?) dissimilarities for each
pair of samples. Then the algorithm iterates n — 1 times
in order to create n — 1 internal nodes. Let |Orphan,| be
the number of orphan nodes at the ‘" iteration. Then we
need to compute |Orphan,| dissimilarity computations and
a merge operation at the " iteration. Therefore totally
we need O(n?) dissimilarity computations and O(n) merge
operations. Let k& be the maximum number of clusters or
meta-clusters in any of the nodes of the template-tree. Then
a dissimilarity computation takes O(/c3 log k) time whereas
the merge operation takes O(kp) time when distribution pa-
rameters of the meta-clusters are computed by maximum
likelihood estimation. Hence the time complexity of the al-
gorithm is O(n?k?® log k), which is O(n?) for bounded k.

3.3 Creating static templates from a template-
tree

The height of an internal node in the template-tree is mea-
sured by the dissimilarity between its left and right children.
By recursion, a template denoted by a relatively lower in-
ternal node represents a relatively homogeneous collection
of samples and vice versa. Let a collection of samples be-
long to m classes. After building a template tree, we can cut
the tree at a suitable height so that m disjoint subtrees are
produced. The root of each subtree represents a template of
the samples placed in the leaves of that subtree. The class
(label) of a template is determined by the label of the ma-
jority of the samples in the subtree rooted at the template.
In the special case of all samples belonging to the same class,
a single template is generated from the root of the template
tree. However, if the number of classes m is not known a pri-
ori, we select m by the number of well-separated branches
based on the relative heights of the subtrees. The roots of
these well-separated subtrees represent the class templates,
where within-class variations (heights of the subtrees) are
small relative to the between-class variations (heights of the
ancestors of the subtrees).

3.4 Classifying new samples with static tem-
plates

When the data set consists of samples belonging to m
classes, we build m templates, Th, 15, ..., Tm, where the
it" template T; represents samples of the " class. When
we obtain a new sample S, we compute the dissimilarity
D(S,T;) between S and every template T;. The new sample
is predicted to belong to the class whose template it is most
similar (least dissimilar) to:

i* = argmin D(S,T;), class(S) = class(T;+). (3)

1<i<m

If the sample’s dissimilarity with the closest template is
above a threshold, then it is not similar to any of the class
templates, and we need to create a new class for this sample.
We address this issue in the next subsection. The template-
based classification is fast because we need to compare a
new sample only with m templates instead of all the other
samples. The time complexity of a classification is therefore
O(mk®log k), which is O(m) for bounded k. This is faster
than classifying the sample from scratch, since the n? factor
from the number of samples in the complexity is reduced to
the number of templates m.

4. BUILDING DYNAMIC TEMPLATES
4.1 The algorithm

The static template-based classification method works well
in practice, but it has two limitations. First, the algorithm
needs to see all the samples in the training set before con-
structing the templates. However, frequently samples arrive
sequentially or in batches, as for instance in a longitudi-
nal study of an epidemic. Second and more important, the
algorithm builds static templates since it does not update
templates as new samples are classified. Therefore, future
classification can not use the information gained from sam-
ples classified after the building of the static template tree.

To address the aforementioned limitations we update the
templates dynamically. When a new sample arrives, we clas-
sify it and insert it into the current template tree so that
future samples can be classified on the updated templates.
This approach also works when we do not have any training
dataset to start with. In that case we build the template tree
as the samples are available in a dynamic fashion starting
with empty templates. Consider an existing template tree
TT (possibly empty) with r as the root node. Note that r can
be considered as the template of all samples in the leaves of
the tree. In order to insert a new sample S in TT, we first
create a singleton node v from S. If TT is an empty tree
we make v the root of the template tree, and otherwise, we
insert v into the tree TT by invoking the procedure insert
shown in Fig. 2 with r and v as the parameters.

The procedure insert works in a recursive fashion. It
follows a path from the root to a node (a leaf or internal
node), to be identified by the algorithm, where the new node
v is inserted. The procedure then backtracks by updating
the mixtures of the internal nodes found in the return path
back to the root. We consider four cases while inserting v in
a subtree rooted at u. The cases are illustrated in Fig. 3. In
the first case u is a leaf node, and we create a new node w
and make u and v the children of w. We create a template
from the samples in the leaves u and v and save it in node
w. In the other cases u is an internal node. Let w; and w.

be the left and right children of u, respectively. We compute
dissimilarities D(u;, ur), D(u;,v) and D(u,,v) between each
pair of nodes from u;, u,, and v. If D(u;, ur) is the smallest
among the three dissimilarities, then v cannot be inserted
in a subtree rooted at u. Thus we create a new node w and
make v and v the children of w. We create a new template
from the template v and sample v, save it in node w and
return. When D (uy, v) is the smallest dissimilarity, we insert
v in a subtree rooted at u; by calling the procedure insert
with u;,v as parameters. In this case the left subtree of u
gets updated. Similarly, if D(ur,v) is the smallest then v is
inserted in the right subtree rooted at u,.

4.2 Computational complexity

To insert a new sample, we need to traverse a path start-
ing from the root to a leaf or an internal node in a template
tree. In the worst case the length of the traversed path
is the height of the template tree. Let n be the number
of samples and h be the height of a template tree where
(n—=1) < h < logy(n). The former equality holds when
the tree is completely unbalanced (a chain) whereas the lat-
ter equality is satisfied when the tree is balanced. At each
node in the traversed path we need to compute three dissim-
ilarities and one update operation (when backtracking). A
dissimilarity computation takes O(k> log k) time whereas an
update operation takes O(k® log k)+O(kp) time when distri-
bution parameters of the meta-clusters are computed by the
maximum likelihood estimation. Thus the time complexity
of inserting a sample in a template tree is O(hk3 log k).

4.3 Classifying a sample

To classify a new sample S, we first insert it into the cur-
rent template tree. The class of S is predicted to be the
class of the template created from the subtree where S is
inserted. At the time of insertion the template tree is dy-
namically updated to reflect the information gained from the
new sample. The dynamic template approach is especially
useful in unsupervised classification where the class labels
of the samples are not known in advance. In that case, the
class templates are created from the well-separated subtrees
such that within-class variations (heights of the subtrees) are
small relative to the between-class variations (heights of the
ancestors of the subtrees). In this context, the algorithm is
similar to the spirit of the hierarchical clustering algorithm
UPGMA, with significant differences in the distance compu-
tation and management of the internal nodes. Furthermore,
when a new sample is highly dissimilar to every existing tem-
plate, the algorithm automatically creates a new branch in
the tree indicating a new class. This approach therefore has
the ability to discover unknown classes from the incoming
samples, which, for example, is very useful in detecting new
strains of a disease.

How sensitive is the template tree to the order in which the
samples are inserted? Recall that we compute the template
tree by merging the most similar samples or sub-templates
from the samples available in the training set. We find that
if the between-class variation is significantly higher than the
within-class variation (as is the case in the two datasets stud-
ied in this paper), the classification accuracy is unaffected
by the small differences in the subtrees of the template tree.
We omit the results due to space limitations.

S. RESULTS

1: procedure insert(u,v) > Insert leaf node v in the subtree rooted at w
2: if v is a empty then > Inserting in an empty tree
3: return v

4: end if

5: if u is a leaf then > Case 1
6: w <— empty node, w; < U, Wy <V, T4 W

T else

8: D <+ min{D(ui,u,), D(ur,v), D(ur,v)}

9: if D(u;,ur) = D then > Case 2
10: w < empty node, w; < u, Wy <V, T W
11: else if D(u;,v) = D then > Case 3
12: w; + insert(u;,v), T + u
13: else > when D(u,,v) = D, Case 4
14: Uy < insert(u,,v), T < u
15: end if
16: end if
17: update node x by matching and merging meta-clusters from x; and z, > Update node

18: height(z) = D(zy, zr)
19: return =
20: end procedure

> Going up in the tree

Figure 2: Inserting a leaf node (sample) v in a subtree rooted at u (template or sample)

(a) case 1 (b) case 2

'\UIIV= '\Ur,Vn
Do
"' PN ,"' :‘"
P SRR
(c) case 3 (d) case 4

Figure 3: Four cases to consider when inserting a leaf node v into the subtree rooted at u. (a) case 1 (u is also
a leaf): a new internal node w is created and is made the parent of v and v, (b) case 2 (u is a non-leaf and
the left and right children of u are more similar to each other than to v): a new internal node w is created
and is made the parent of u and v, (c) case 3 (u is a non-leaf and the left child u; of u is more similar to v
than to the right child u,): insert v into the subtree rooted at u; by calling insert(u;,v), and (d) case 4 (u is
a non-leaf and the right child u, of u is more similar to v than to the left child u;): insert v into the subtree
rooted at u, by calling insert(u,,v). The dotted parts in Subfigure (c) and (d) are determined by the insert

function in a recursive fashion.

5.1 Classifying stimulation status of T cells

We analyze a T cell phosphorylation (TCP) data set from
Maier et al. [17] to determine differences in phosphorylation
events downstream of T cell receptor activation in naive and
memory T cells. For each of the 29 subjects in this study,
whole blood was stained using labeled antibodies against
CD4, CD45RA, SLP-76 (pY128), and ZAP-70 (pY292) pro-
tein markers before stimulation with an anti-CD3 antibody,
and another aliquot underwent the same staining procedure
five minutes after stimulation. During the stimulation anti-
CD3 antibody binds with T cell receptors (TCR) and acti-
vates the T cells, initiating the adaptive immune response.
The binding with TCR induces dramatic changes in gene
expression and cell morphology, and induces the formation
of a phosphorylation-dependent signaling network via multi-
protein complexes. ZAP-70 is a kinase that phosphorylates
tyrosine in a trans-membrane protein called LAT, and LAT

and SLP-76 are part of a platform that assembles the sig-
naling proteins [5].

By using the clustering algorithm we have identified four
cell populations in each of the 58 samples (29 pairs). Two
of these populations represent memory (CD4T CD45RAY)
and naive (CD4" CD45RAM#") T cell subsets. (Recall that
‘4’ and ‘high’ indicate higher abundances of a marker, and
‘—’ and ‘low’ indicate lower levels of it.) Cell populations are
then matched across stimulation using the MEC algorithm
to register the same cell type. The stimulated cells show
increased levels of SLP-76 as expected. For visualization
purposes, we plot a three dimensional projection of a pair
of samples in Fig. 4 where four cell clusters are shown in
different colors. We used the same color to denote matched
cell populations. By comparing the matched clusters we can
clearly see increased levels of SLP-76 (and ZAP-70, although
this is not included in the Fig.)

0.0 0.0

(a) Before Stimulation

0.0 0.0
(b) After Stimulation

Figure 4: Three dimensional projections of marker
expressions for a pair of samples from (a) before
anti-CD3 stimulation and (b) after anti-CD3 stim-
ulation. Each sample is clustered independently
to identify cell populations. The clusters are then
matched to show the effect of stimulation on differ-
ent cell subsets. Clusters of one color indicate cell
populations matched to each other.

The 58 samples in this study group nicely into two distinct
classes: pre-stimulation and post-stimulation. For a pair of
samples from the i*” subject, we denote the unstimulated
sample by i— and the stimulated sample by i+. We first ap-
ply the static template-based classification to demonstrate
how the classification works for this dataset. We divide the
samples into a training set and a test set. By using the
HM&M algorithm, we build a template-tree from the train-
ing set and create two class templates from the left and right
children of the root. An example is shown in Fig. 5 where
the training set contains six pairs of samples. (The plots of
the three proteins are shown for visualization only; classifi-
cation is performed using all of the protein markers.)

We cut the tree beneath the root (based on the relative
heights of the subtrees) and create two templates Thefore and
Tatter for the two classes of samples. The ith sample S; in
the test set is predicted to come from the pre-stimulation
class when S; is more similar to Thefore than to Tager (i-€.,
D(S;, Toefore) < D(Ss, Tatter)), and otherwise, from the post-
stimulation class. In Fig. 5, we show a sample from the
test set above the two templates. The algorithm correctly
classifies it as a pre-stimulation sample, and the correctness
of the classification can be seen from the visual inspection
of the sample, since it looks similar to the pre-stimulation
template and does not show a phosphorylation shift in SLP-
76.

We study the accuracy of the template-based classifier by
using cross-validation for this dataset. At each stage of the
cross-validation, we create a test set from ten samples and a
training set from the remaining 48 samples. After creating
templates from the training set, we predict the class of each
sample in the test set by comparing it with the templates. A
sample is considered to be misclassified when the predicted
class is different from the actual class. We repeat this pro-
cess 58 times for different collections of training and test sets
and compute the fraction of misclassified samples. We ob-
served that three pre-stimulation samples, 9-, 10- and, 11-,
were consistently classified with the after-stimulation class
whenever they were present in the test set. No other sample

20 25

15

0000

10

Thefore

Dissimilarity Between Samples (Templates)

o J I I I 1] l_

| [| | | | + + + + + +
S ¥ &N M 1 © ~H &N Mm 1n < ©

Samples before stimulation Samples after stimulation

Figure 5: Sample classification based on static tem-
plates. The HM&M algorithm creates two tem-
plates, Tvefore for before-stimulation and Taster for
after stimulation classes, from six pairs of samples
in the TCP dataset. A new sample is compared with
the templates, and is classified with the template it
is most similar to.

is classified into a different class in the cross-validation. We
consider these three samples as outliers, show that they are
likely to have been stimulated before the experiment, and
discuss their properties further in Sec. 5.1.2.

5.1.1 Classification with dynamic templates

In order to demonstrate our classification approach based
on dynamic templates, we build a template-tree incremen-
tally from the samples in the TCP dataset. We start with an
empty tree and insert the samples one after another into the
current tree by using the procedure described in Sec. 4. The
complete template tree after inserting all samples is shown in
Fig. 6. In this tree, we draw a subtree consisting of samples
from pre-stimulation in blue and from post-stimulation in
red. Aside from three outlying samples, all samples create
two well-separated branches of the root denoting the pre-
and post-stimulation templates. The height of an internal
node in a template-tree is measured by the dissimilarity be-
tween the pair of samples (templates) denoted by the left
and right children of the internal node. The height of the
root in Fig. 6 is more than twice of the height of any other
node. Hence the algorithm successfully identifies two tem-
plates with small within-template deviation while maintain-
ing a clear separation between them.

A new sample S is inserted into the existing template-tree
by following the procedure described in Fig. 2. At the time
of insertion the template-tree is dynamically updated to re-
flect the information gained from the new sample. After
insertion, the position of S in the tree determines its pre-
dicted class. We classify S as a pre-stimulation sample when
it is placed in the left (blue) subtree and otherwise, classify
it as a post-stimulation sample. Similar to the classification

40

. Before Stimulation S—)
After Stimulation (+

20

10

Dissimilarity Between Samples (Templates)

odlmTF 1T r= I Tl P]
LA ON bt SOt O L b DD AD Ly od b bbb
-
TrrrrrArANNNNNN NN TNOON0O -

I +
+ o+ttt
Cramt~owoY

99—

a4

10+
19+
15+
21+
25+
22+
27+
13+
17+
20+

++ + + + +
DT OO0 &
NANNANAN

—————

Figure 6: A dynamic template tree created incrementally by adding the samples in the TCP dataset one after
another. Minus and plus signs are appended to the subject number to indicate pre- and post-stimulation
samples. Pre-stimulation samples are in blue, and post-stimulation samples are red. The height of a node
measures the dissimilarity between its left and right children, whereas the horizontal placement of a sample

is arbitrary.

with static templates, we observe that all samples except 9-,
10- and 11-, are correctly classified.

Outlying samples (9,10,11)

0.6-

= Normal samples

0.5-

0.4+

0.3+

0.2+

Expression levels of ZAP —70 protein

0.1

T T
Before Stimulation After Stimulation
Stimulation status

Figure 7: Levels of SLP-76 expression in each pair
of samples (joined by a line) from the TCP dataset.
For most samples, SLP-76 levels increase after the
anti-CD3 stimulation. However, the three samples
{9,10, 11} have high levels of SLP-76 protein in their
pre-stimulation states, and do not show the usual
increase after stimulation.

5.1.2 Outlying samples

Now we discuss the three outlying pre-stimulation sam-
ples, 9-, 10- and 11-, which are consistently classified with
the post-stimulation samples by both the static and dynamic
classification algorithms. We can explain this anomaly by
plotting the average expression levels of SLP-76 protein for

each pair of samples in Figure 7. The three outlying sam-
ples {9,10,11} have much higher levels of SLP-76 than the
remaining samples in their pre-stimulation states. On stimu-
lation, two of these samples have decreased levels of SLP-76,
while one shows an increase. Consequently these samples are
classified with the post-stimulations samples by the dynamic
templates-based classification algorithm presented here.

5.2 Classifying replicated samples from indi-
viduals

We further validated our approach by a “biological simu-
lation” where peripheral blood mononuclear cells (PBMC)
were collected from five healthy subjects, and each sam-
ple was divided into five parts and analyzed through a flow
cytometer at Purdue’s Bindley Biosciences Center. Thus
we have five technical replicates for each subject, and each
replicate was stained using labeled antibodies against CD45,
CD3, CD4, CDS8, and CD19 protein markers. Each sample
was unmixed in the pre-processing step, and lymphocytes
(CD45%) were identified using forward and side scatter data
in the gating step. We then identified cell populations in
each sample using the k-means algorithm, and identified four
cell types denoting (a) helper T cells (CD3TCD4"), (b) cy-
totoxic T cells (CD3TCD8"), (c) B cells (CD3~CD19™"),
and (d) natural killer cells (CD37CD197). Fig. 8 shows
the bivariate projections of the four clusters in a represen-
tative sample where different colors are used to denote the
cell types. Note that every one of these cell types is CD45"
because we pre-selected lymphocytes.

After clustering each sample, we build a template tree
from the 25 samples in this dataset. We start with an empty
tree and insert the samples sequentially into the current tree
by using the procedure described in Sec. 4. The complete
template tree is shown in Fig. 9, where we see that samples
from the five subjects create five well-separated branches.
We can therefore construct five templates from the roots of

> Helper T cells
CD45 | (cD3* cD4%)

Cytotoxic T cells

CD4 |™ (cD3* cDs*)

NK cells

CD8 | cpa-cp19y)

__________‘______v

=
1
1

B cells
CD3 | (cp3 cb19h)

1234

& o

-1

S 1
* g, I [

CD19

| B! - | B B
01234

012234

L

Figure 8: Bivariate projections of four clusters in a
sample from the healthy donor dataset. Each cell
cluster is CD45" since we pre-selected lymphocytes
on the forward and side scatter channels. Four cell
types are shown in red (helper T cells), green (cy-
totoxic T cells), blue (natural killer cells) and black
(B cells).

the five branches.

Intuitively we expect samples from each subject to be clas-
sified together. Here, the within-subject variations among
five replicates of a subject come from the technical varia-
tions in flow cytometry sample preparation and measure-
ment, whereas between-subject variations come from the in-
nate biological variability in the healthy subjects. In this
dataset we observe more natural biological variation than
the technical and instrumental variations. We can visual-
ize these variations with a heatplot shown in Fig. 10. Here
the color of a square indicates the dissimilarity of a pair of
samples, with a square drawn in a lighter shade when a pair
of samples is similar, and in a darker shade when they are
highly dissimilar. We observe that samples from a subject
are always more similar to each other (5 x5 squares along the
diagonal with light colors) than they are across subjects (off
diagonal squares). For this reason, samples from a subject
stay together in the template-tree in Fig. 9.

We observe a gradual increase of color intensity from left
to right and from top to bottom in the off diagonal squares.
Such a color pattern suggests that subjects located further
away from each other (for example, A and B) have more
dissimilar immune profiles than subjects adjacent to each
other (for example, A and D).

The observations from the healthy donor dataset confirm
that we can build immune profiles for individuals despite
within-subject variations from technical replicates. Addi-
tionally, the five templates from the five subjects create an-
other level of hierarchy and the root of the tree in Fig. 9 can
be considered as a template for healthy individuals. This
combined template represents a healthy immune profile by
preserving the common features of healthy individuals and
by removing between subject variations. This template can
be compared against templates created from diseased sam-

ples in order to diagnose diseases and to perform compara-
tive study of healthy and diseased immune profiles.

o
—

Dissimilarity Between Samples (Templates)

o_ﬁ_ﬁ@ﬁgﬂﬂ—_ﬁﬂ

HANMSNANMNMTODANOSTNANMT N AT NM
CCCC<CO0O0O0 QW WWWWOLOLOLLUOOOmOm

Subject A Subject D Subject E Subject C Subject B

Figure 9: A dynamic template tree created incre-
mentally from samples in the healthy donor dataset.
The algorithm identifies five well separated branches
denoting templates for the five subjects. Subtrees
consisting of replicates from each of the five subjects
are shown in five different colors.

Subject B Subject C Subject E Subject D Subjec

(SRR o} N ™o
Oo0oo0o o mom

o P
Subject C Subject B

- oMY W
ooooo

- aq o
<< <<

b o
Subject A Subject D Subject

[V IR el
w oW ow w
E

Figure 10: Heat plot showing the dissimilarity of
samples in the healthy donor dataset.

6. CONCLUSIONS

We developed template-based classification methods for
flow cytometry samples displaying a combination of differ-
ent immunophenotypes. A template built from samples of
a class provides a concise description of the class by em-
phasizing the key characteristics while masking statistical
noise and low-level details, and thus helps to measure over-
all changes in cell populations across different conditions.

By moving beyond sample-specific variations, the templates
act as the blueprints for different classes, and can be used
to classify future samples to different classes in a more rel-
evant parameter space. It is also more efficient to classify
a sample using templates rather than all of the previously
seen samples. We maintain a hierarchy of the samples in a
template tree such that samples can be analyzed in higher
resolution as needed.

The major contribution in this paper is a dynamic algo-
rithm to construct and update the templates, and build and
maintain the template tree, when the samples arrive con-
tinuously over a period of time. As new samples come in,
the templates are dynamically updated to reflect the infor-
mation gained from them. This is a desirable property in
dynamic situations, as in the course of an epidemic, when
new samples are being collected and analyzed. Another con-
text where the dynamic classification approach is useful is
when the samples are collected at a large number of hospi-
tals or labs; the data at each hospital can be analyzed in
situ, and only the summaries need to be shared among the
hospitals to create a global profile of the immune system,
thus avoiding issues with privacy of clinical data.

In continuing work, we plan to investigate the use of net-
works instead of trees to organize the templates, similar in
spirit to the use of networks rather than trees in phylogenet-
ics [10]. Another issue is that the combinatorial dissimilarity
measure between two samples is not a metric, and when the
dissimilarity is extended to two templates, this value does
not monotonically increase in the hierarchical matching and
merging algorithm. Finally, dynamic classification is a crit-
ical step towards characterizing diverse states of the human
immune system from big datasets of samples collected at
geographically distributed laboratories, e.g., the Human Im-
munology Project Consortium (www. immuneprofiling.org).
Our work makes it possible to summarize the data from each
laboratory using templates for each class, and then to merge
the templates and template trees across various laboratories,
as the data is being continuously collected and analyzed.

Acknowledgments

This work was partially supported by NIH grant 1IR21EB015707-

01, NSF grant CCF-1218916, DOE grant FC02-08ER25864,
and an IBM Fellowship. SP thanks DBT, MoS&PI and
DST, India, for support.

7. REFERENCES

[1] N. Aghaeepour, G. Finak, H. Hoos, et al. Critical
assessment of automated flow cytometry data analysis
techniques. Nat. Meth., 10(3):228-238, 2013.

[2] A. Azad, J. Langguth, Y. Fang, A. Qi, and A. Pothen.
Identifying rare cell populations in comparative flow
cytometry. LNCS, 6293:162-175, 2010, (WABI 2010).

[3] A. Azad, S. Pyne, and A. Pothen. Matching
phosphorylation response patterns of antigen-receptor
stimulated T cells via flow cytometry. BMC
Bioinformatics, 13(Suppl 2):S10, 2012.

[4] A. Azad, B. Rajwa, and A. Pothen. Homogeneous
meta-clustering in flow cytometry by variance
stabilization. In preparation, 2013.

[5] C. Brockmeyer, W. Paster, D. Pepper, et al. T Cell
Receptor (TCR)-induced Tyrosine phosphorylation
dynamics identifies THEMIS as a new TCR

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

signalosome component. J. Biol. Chem.,
286(9):7535-7547, 2011.

R. Brunelli and T. Poggio. Face recognition: Features
versus templates. IEEE Trans. Patt. Anal. Mach.
Intell., 15(10):1042-1052, 1993.

S. D. Connell and A. K. Jain. Template-based online
character recognition. Patt. Recog., 34(1):1-14, 2001.
M. De Wachter, M. Matton, K. Demuynck,

P. Wambacq, R. Cools, and D. Van Compernolle.
Template-based continuous speech recognition. IEEE
Trans. Audio Speech Lang. Proc., 15(4):1377-1390,
2007.

L. Deng, H. Strik, et al. Structure-based and
template-based automatic speech recognition:
comparing parametric and nonparametric approaches.
In Proc. Interspeech, pp. 898-901, 2007.

A. Dress, K. T. Huber, J. Koolen, V. Moulton, and
A. Spillner. Basic Phylogenetic Combinatorics.
Cambridge University Press, 2012.

G. Finak, J. Perez, A. Weng, and R. Gottardo.
Optimizing transformations for automated, high
throughput analysis of flow cytometry data. BMC
Bioinformatics, 11(1):546, 2010.

D. Gusfield. Partition-distance: A problem and class
of perfect graphs arising in clustering. Inf. Proc. Lelt.,
82(3):159-164, 2002.

M. Halkidi and M. Vazirgiannis. Clustering validity
assessment: Finding the optimal partitioning of a data
set. In ICDM 2001, pp. 187-194, 2001.

T. Lin. Robust mixture modeling using multivariate
skew t distributions. Stat. Comput., 20(3):343-356,
2010.

K. Lo, R. Brinkman, and R. Gottardo. Automated
gating of flow cytometry data via robust model-based
clustering. Cytometry Part A, 73(4):321-332, 2008.
E. Lugli, M. Roederer, and A. Cossarizza. Data
analysis in flow cytometry: The future just started.
Cytometry Part A, 77(7):705-713, 2010.

L. Maier, D. Anderson, P. De Jager, L. Wicker, and
D. Hafler. Allelic variant in ctlad alters T cell
phosphorylation patterns. PNAS,
104(47):18607-18612, 2007.

D. Novo, G. Gregori, and B. Rajwa. Generalized
unmixing model for multispectral flow cytometry
utilizing nonsquare compensation matrices. Cytometry
Part A, 83:508-520, 2013.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer.
Seventeen-colour flow cytometry: unravelling the
immune system. Nat. Rev. Imm., 4(8):648-655, 2004.
J. M. Peters and M. Q. Ansari. Multiparameter flow
cytometry in the diagnosis and management of acute
leukemia. Arch. Path. Lab. Med., 135(1):44-54, 2011.
S. Pyne, X. Hu, K. Wang, et al. Automated
high-dimensional flow cytometric data analysis.
PNAS, 106(21):8519-8524, 2009.

R. A. Seder, P. A. Darrah, and M. Roederer. T-cell
quality in memory and protection: implications for
vaccine design. Nat. Rev. Imm., 8(4):247-258, 2008.
H. M. Shapiro. Practical Flow Cytometry. Wiley-Liss,
2005.

