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We explore the interplay between architectures and algorithm design in the context of
shared-memory platforms and a specific graph problem of central importance in scientific
and high-performance computing, distance-1 graph coloring. We introduce two different
kinds of multithreaded heuristic algorithms for the stated, NP-hard, problem. The first
algorithm relies on speculation and iteration, and is suitable for any shared-memory system.
The second algorithm uses dataflow principles, and is targeted at the non-conventional,
massively multithreaded Cray XMT system. We study the performance of the algorithms
on the Cray XMT and two multi-core systems, Sun Niagara 2 and Intel Nehalem. Together,
the three systems represent a spectrum of multithreading capabilities and memory struc-
ture. As testbed, we use synthetically generated large-scale graphs carefully chosen to
cover a wide range of input types. The results show that the algorithms have scalable run-
time performance and use nearly the same number of colors as the underlying serial algo-
rithm, which in turn is effective in practice. The study provides insight into the design of
high performance algorithms for irregular problems on many-core architectures.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Graph problems frequently arise in many practical applications, including computational science and engineering, data
mining, and data analysis. When the applications are large-scale, solutions need to be obtained on parallel computing plat-
forms. High performance and good scalability are hard-to-achieve on graph algorithms, for a number of well-recognized rea-
sons [1]: runtime is dominated by memory latency rather than processor speed, and typically there is little (or no)
computation involved to hide memory access costs. Access patterns are irregular and are determined by the structure of
the input graph, rendering prefetching techniques inapplicable. Data locality is poor, making it difficult to obtain good mem-
ory system performance. While concurrency can be abundant, it is often fine-grained, requiring concurrent processes to syn-
chronize at individual vertices or edges.

For these reasons, graph algorithms that perform and scale well on distributed memory machines are relatively small in
number and kind. More success stories have been reported on shared memory platforms, and interest in these platforms is
growing with the increasing preponderance, popularity, and sophistication of multi-core architectures [2–4].
. All rights reserved.
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The primary mechanism for tolerating memory latencies on most shared memory systems is the use of caches, but caches
have been found rather ineffective for many graph algorithms. A more effective mechanism is multithreading. By maintaining
multiple threads per core and switching among them in the event of a long latency operation, a multithreaded processor uses
parallelism to hide latencies. Whereas caches ‘‘hide’’ only memory latencies, thread parallelism can hide both memory and
synchronization overheads. Thus, multithreaded, shared memory systems are more suitable platforms for many graph algo-
rithms than either distributed memory machines or single-threaded, multi-core shared memory systems.

We explore in this paper the interplay between architectures and algorithm design in the context of shared-memory mul-
tithreaded systems and a specific graph problem, distance-1 graph coloring.

Graph coloring in a generic sense is an abstraction for partitioning a set of binary-related objects into subsets of indepen-
dent objects. A need for such a partitioning arises in many situations where there is a scarce resource that needs to be uti-
lized optimally. One example of a broad area of application is in discovering concurrency in parallel computing, where
coloring is used to identify subtasks that can be carried out or data elements that can be updated simultaneously [5–7].
On emerging heterogenous architectures, coloring algorithms on certain ‘‘interface-graphs’’ are used at runtime to decom-
pose computation into concurrent tasks that can be mapped to different processing units [8]. Another example of a broad
application area of coloring is the efficient computation of sparse derivative matrices [9–11].

Distance-1 coloring is known to be NP-hard not only to solve optimally but also in an approximate sense [12]. However,
greedy algorithms, which run in linear time in the size of the graph, often yield near optimal solutions on graphs that arise in
practice, especially when the greedy algorithm is initialized with careful vertex ordering techniques [9,13]. In contexts where
coloring is used as a step to enable some overarching computation, rather than being an end in itself, greedy coloring algo-
rithms are attractive alternatives to slower, local-improvement type heuristics because they yield sufficiently small number
of colors while using run times that are much shorter than the computations they enable.

Contributions. This paper is concerned with the effective parallelization of greedy distance-1 coloring algorithms on mul-
tithreaded architectures. To that end, we introduce two different kinds of multithreaded algorithms targeted at two different
classes of architectures.

The first multithreaded algorithm is suitable for any shared memory system, including the emerging and rapidly evolving
multi-core platforms. The algorithm relies on speculation and iteration, and is derived from the parallelization framework for
graph coloring on distributed memory architectures developed in Bozdağ et al. [14,15]. We study the performance of the
algorithm on three different platforms, an Intel Nehalem, a Sun Niagara 2, and a Cray XMT. These three systems employ mul-
tithreading—in varying degrees—to hide latencies; the former two additionally rely on cache hierarchies to hide latency. The
amount of concurrency explored in the study ranges from small (16 threads on the Nehalem) to medium (128 threads on the
Niagara) to massive (16,384 threads on the XMT). We find that the limited parallelism and coarse synchronization of the
iterative algorithm fit well with the limited mulithreading capabilities of the Intel and Sun systems.

The iterative algorithm runs equally well on the XMT, but it does not take advantage of the system’s massively multi-
threaded processors and hardware support for fast synchronization. To better exploit the XMT’s unique hardware features,
we developed a fine-grained, dataflow algorithm making use of the single-word synchronization mechanisms available on
the XMT. The dataflow algorithm is the second algorithm presented in this paper.

The performance study is conducted using a set of carefully chosen synthetic graphs representing a wide spectrum of in-
put types. The results show that the algorithms perform and scale well on massive graphs containing as many as a billion
edges. This is true of the dataflow algorithm on the Cray XMT and of the iterative algorithm on all three of the platforms
considered; on the XMT, the dataflow algorithm runs faster and scales better than the iterative algorithm. The number of
colors the algorithms use is nearly the same as that used by the underlying serial algorithm.

In the remainder of this section, we briefly discuss related work. The rest of the paper is organized as follows. To establish
background, especially for the design of the dataflow algorithm, we review in Section 2 basic architectural features of the
three platforms used in the study. We describe the coloring algorithms in detail and discuss their relationship with previous
work in Section 3. In Section 4, we discuss the rationale for, the generation of, and the characteristics of the synthetic graphs
used in the study. The experimental results are presented and analyzed in detail in Section 5. We end by drawing broader
conclusions in Section 6.

Related work. Graph coloring has a vast literature, and various approaches have been taken to solve coloring problems on
computers. Exact algorithms include those based on integer programming, semidefinite programming, and constraint pro-
gramming. Heuristic approaches include the greedy algorithms mentioned earlier, local search algorithms, population-based
methods, and methods based on successively finding independent sets in the graph [16]. There have been two DIMACS
implementation challenges on coloring [17], where the focus was on obtaining the smallest number of colors possible for
any problem instance; algorithms merely focused on this objective typically have large running times, and as a result they
can handle only small instances of graphs, often with at most a thousand vertices.

A different approach has been taken by Turner [18], who analyzes a heuristic algorithm due to Brélaz [19]. Turner con-
siders random graphs that have the property that they can be colored with k colors, where k is a constant, and shows that
Brélaz’s algorithm colors such graphs with high probability using k colors. Further analysis of this phenomenon is provided
by Coja-Oghlan et al. [20]. An experimental study we conducted in a related work [13] has shown that on many graphs from
various application areas, a greedy coloring algorithm, initialized with appropriate vertex ordering techniques, yields fewer
colors than Brélaz’s algorithm, while running faster. A survey of several graph coloring problems (e.g., distance-1, distance-2,
star, and acyclic coloring on general graphs; and partial distance-2 coloring on bipartite graphs) as they arise in the context
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of automatic differentiation is provided in Gebremedhin et al. [11]. Effective heuristic algorithms for the star and acyclic col-
oring problems and case studies demonstrating the use of those coloring algorithms in sparse Hessian computation have
been presented in subsequent works [21,22].

2. Architectures

The three platforms considered in this study—an Intel Nehalem, a Sun Niagara 2, and a Cray XMT—represent a broad spec-
trum of multithreading capabilities and memory structure. The Intel Nehalem relies primarily on a cache-based hierarchical
memory system as a means for hiding latencies, supporting just two threads per core. The Cray XMT has a flat, cache-less
memory system and uses massive multithreading as the sole mechanism for tolerating latencies in data access. The Sun
Niagara 2 offers a middle path by using a moderate number of hardware-threads along with a hierarchical memory system.
We review in the remainder of this section some of the specific architectural features and programming abstractions avail-
able in the three systems, focusing on aspects relevant to our work on algorithm design and performance evaluation.

2.1. The Intel Nehalem

The Intel system we considered, Nehalem EP (Xeon E5540), consists of two quad-core Gainestown processors running at
2.53 GHz base core frequency. See Fig. 1 for a block diagram. Each core supports two threads and has one instruction pipe-
line. The multithreading variant on this platform is simultaneous, which means multiple instructions from ready threads are
executed in a given cycle.

The system has 24 GB total memory. The memory system per core consists of: 32 kB, 2-way associative I1 (Instruction)
cache; 32 kB, 8-way associative L1 cache; 2� 6 MB, 8-way associative L2 cache; and 8 MB L3 cache shared by the four cores.
The maximum memory bandwidth of the system is 25.6 GB/s, the on-chip latency is 65 cycles, and the latency between pro-
cessors is 106 cycles.

On Nehalem, the quest for good performance is addressed not only via caching, that is, exploitation of spatial and tem-
poral locality, but also through various advanced architectural features. The advanced features include: loop stream detec-
tion (recognizing instructions belonging to loops and avoiding branch prediction in this context); a new MESIF cache
coherency protocol that reduces coherency control traffic; two branch-target buffers for improved branch prediction; and
out-of-order execution. In MESIF, the states are Modified, Exclusive, Shared, Invalid, and a new Forward state; only one in-
stance of a cache line can be in the Forward state, and it is responsible for responding to read requests for the cache line,
while the cache lines in the Shared state remain silent, reducing coherency traffic. For further architectural details on the
Nehalem, see, for example, the paper [23].

2.2. The Sun Niagara 2

The Sun UltraSPARC T2 platform, Niagara 2, has two 8-core sockets with each core supporting eight hardware threads.
Fig. 2 shows a block diagram. Similar to the Nehalem, multithreading on the Niagara 2 is simultaneous. The system has a
Fig. 1. Block diagram of the Intel Nehalem.



Fig. 2. Block diagram of the Sun UltraSparc T2 (Niagara 2).
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shallow instruction pipeline (in contrast to the XMT), and each core has two integer execution units, a load/store unit, and a
floating-point unit. The pipeline is capable of issuing two instructions per cycle, either from the same thread or from differ-
ent threads. Threads are divided into two groups of four, and one instruction from each group may be selected based on the
least-recently fetched policy on ready threads. The clock frequency of the processor is 1.165 GHz.

The total size of the memory system is 32 GB. Each core has an 8 kB, 4-way associative L1 cache for data and a 16 kB, 8-
way associative I1 cache for instructions. Unlike Nehalem, where L2 cache is private, Niagara 2 has a shared, 16-way asso-
ciative L2 cache of size 4 MB. The cache is arranged in 8 banks and is shared using a crossbar switch between CPUs. The la-
tency is 129 cycles for local memory accesses and 193 cycles for remote memory accesses. The peak memory bandwidth is
50 GB/s for reads and 26 GB/s for writes. See [24] for additional details.
2.3. The Cray XMT

The Cray XMT platform used in this study is comprised of 128 Cray Threadstorm (MTA-2) processors interconnected via a
3D torus. Fig. 3 shows a block diagram of the platform from a programmer’s point of view. Each processor has 128 hardware
thread-streams and one instruction pipeline. Each thread-stream is equipped with 32 general purpose registers, 8 target reg-
isters, a status word, and a program counter. Consequently, each processor can maintain up to 128 separate software
threads. In every cycle, a processor context switches among threads with ready instructions in a fair manner choosing
one of the threads to issue its next instruction. In other words, the multithreading variant on the XMT, in contrast to Neha-
lem and Niagara 2, is interleaved. A processor stalls only if no thread has a ready instruction. There are three functional units,
M, A, and C for executing the instructions. On every cycle, the M-unit can issue a read or write operation, the A-unit can exe-
cute a fused multiply-add, and the C-unit can execute either a control or an add operation. Instruction execution on the XMT
is deeply pipelined, with a 21-stage pipeline. The clock frequency is 500 MHz.
2.3.1. Memory system
The memory system of the XMT is cache-less, and is globally accessible by all processors. The system supports a shared

memory programming model. The global address space is built from physically distributed memory modules of 8 GB per
processor, yielding a total memory size of 1 TB. Further, the address space is built using a hardware hashing mechanism that
maps the data randomly to the memory modules, in blocks of size 64 bytes, to minimize conflicts and hot-spots. All memory
words are 8 bytes wide and the memory is byte-addressable. The worst-case memory latency is approximately 1000 cycles,
and the average value is around 600 cycles. The sustainable minimum remote memory reference rate is 0.52 GB/s per pro-
cessor for random reads and 0.26 GB/s per processor for random writes. Memory access rates scale with the number of
processors.
2.3.2. Fine-grained synchronization
Associated with every word are several additional bits—a full/empty bit, a pointer forwarding bit, and two trap bits. These

are used for fine-grained synchronization. The XMT provides many efficient extended memory semantic operations for



Table 1
Overview of architectural features of the platforms Nehalem, Niagara 2 and XMT.

Nehalem Niagara 2 Cray XMT

Clock (GHz) 2.53 1.165 0.5
Sockets 2 2 128
Cores/socket 4 8 –
Threads/core 2 8 128
Threads total 16 128 16,384
Multithreading Simultaneous Simultaneous Interleaved
Memory (GB) 24 32 1024
Cache L1/L2, shared L3 L1, shared L2 Cache-less, flat
Bandwidth Max Peak Remote

25.6 GB/s 50 GB/s (read), 0.52 GB/s/proc (read),
26 GB/s (write) 0.26 GB/s/proc (write)

Latency 65 cycles (on-chip), 129 cycles (local), 600 cycles (average),
106 cycles (b/n proc) 193 cycles (remote) 1000 cycles (worst-case)

Fig. 3. Block diagram of the Cray XMT.
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manipulating the full/empty bits in one clock cycle. Listed below are examples of functions effecting such semantic opera-
tions—many of these functions are used in the XMT-specific coloring algorithms we have developed:

purge sets the full/empty bit to empty and assigns a zero value to the memory location of the associated word.
readff reads a memory location only when the full/empty bit is full and leaves the bit full when the read completes.
readfe reads a memory location only when the full/empty bit is full and leaves the bit empty when the read

completes.
writeef writes to a variable only if the full/empty bit is empty and leaves the bit full when the write completes.

If any extended memory semantic operation finds the full/empty bit in the wrong state, the operation waits. The request
returns to the issuing processor and is placed in a queue to be retried. Note that the instruction is issued only once, and while
the instruction is being retried, the processor continues to issue instructions from other threads. See [25,26] for further de-
tails about the XMT platform.
2.4. Quick comparison

Table 1 provides a quick comparative summary of some of the key architectural features of the three platforms discussed
in Sections 2.1–2.3. Note that the bandwidth and latency numbers listed in Table 1 are peak values. With quick experiments
on the Nehalem and Niagara 2 systems using the benchmarking tool libmicro, the bandwidth and latency numbers we ob-
served were roughly about a factor of two worse than those listed in Table 1.
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3. The algorithms

We describe in this section the multithreaded distance-1 coloring algorithms we developed for architectures such as
those discussed in Section 2. We begin the section with a quick review of the problem, the underlying serial algorithm
we use to solve it, and prior work on parallelization.

3.1. Background

3.1.1. The problem
Graph coloring problems come in several variations [11]. The variant considered in this paper is distance-1 coloring, an

assignment of positive integers (called colors) to vertices such that adjacent vertices receive different colors. The objective
of the associated problem is to minimize the number of colors used. The problem has long been known to be NP-hard to
solve optimally. Recently, it has been shown that, for all � > 0, the problem remains NP-hard to approximate to within
n1��, where n is the number of vertices in the graph [12].
Algorithm 1. A sequential greedy coloring algorithm
1: procedure GREEDYðGðV ; EÞÞ

2: Initialize data structures

3: for each v 2 V do

4: for each w 2 adjðvÞ do

5: forbiddenColors[color[w]] v
 . mark color of w as forbidden to v

6: c minfi > 0 : forbiddenColors½i�– vg
 . smallest permissible color

7: color[v] c
3.1.2. An effective algorithm
Despite these pessimistic theoretical results, for many graphs or classes of graphs that occur in practice, solutions that are

provably optimal or near-optimal can be obtained using a greedy (aka sequential) algorithm. The greedy algorithm runs
through the set of vertices in some order, at each step assigning a vertex the smallest permissible color. We give a formal
presentation of an efficient formulation of the greedy algorithm in procedure GREEDY (Algorithm 1). The formal presentation
is needed since the procedure forms the foundation for the parallel algorithms presented in this paper.

In Algorithm 1, and in other algorithms specified later in this paper, adjðvÞ denotes the set of vertices adjacent to the vertex
v, color is a vertex-indexed array that stores the color of each vertex, and forbiddenColors is a color-indexed array used to mark
the colors that are impermissible to a particular vertex. The array color is initialized at the beginning of the procedure with
each entry color[w] set to zero, to indicate that vertex w is not yet colored. Each entry of the array forbiddenColors is initialized
once at the beginning of the procedure with some value a R V . By the end of the inner for-loop in Algorithm 1, all of the colors
that are impermissible to the vertex v are recorded in the array forbiddenColors. In line 6, the array forbiddenColors is scanned
from left to right in search of the lowest positive index i at which a value different from v, the vertex being colored, is encoun-
tered; this index corresponds to the smallest permissible color c to the vertex v. The color assignment is done in line 7.

Note that since the colors impermissible to the vertex v are marked in the array forbiddenColors using v as a label, rather
than say a boolean flag, the array forbiddenColors does not need to be re-initialized in every iteration of the loop over the ver-
tex set V. Further, the search for color in line 6 terminates after at most dðvÞ þ 1 attempts, where dðvÞ ¼ jadjðvÞj is the degree
of vertex v. Therefore, the work done while coloring a vertex v is proportional to its degree, independent of the size of the
array forbiddenColors. Thus the time complexity of GREEDY is OðjV j þ jEjÞ, or simply OðjEjÞ if the graph is connected. It can also be
seen that the number of colors used by the algorithm is never larger—and often significantly smaller—than Dþ 1, where D is
the maximum degree in the graph. With good vertex ordering techniques, the number of colors used by GREEDY is in fact often
near-optimal for practical graph structures and always bounded by Bþ 1, where B 6 D is the maximum back degree—number
of already colored neighbors of a vertex—in the vertex ordering used by GREEDY [13]. A consequence of the fact that the num-
ber of colors used by GREEDY is bounded by Dþ 1 is that the array forbiddenColors need not be of size larger than that bound.

3.1.3. Parallelizing the greedy algorithm
Because of its sequential nature, GREEDY is challenging to parallelize, when one also wants to keep the number of colors

used close to the serial case. A number of approaches have been investigated in the past to tackle this issue. One class of the
investigated approaches relies on iteratively finding a maximal independent set of vertices in a progressively shrinking graph
and coloring the vertices in the independent set in parallel. In many of the methods in this class, the independent set itself is
computed in parallel using some variant of Luby’s algorithm [27]. An example of a method developed along this direction is
the work of Jones and Plassmann [28]. Finocchi et al. [29] also follow this direction, but enhance their algorithm in many
other ways as well.

Gebremedhin and Manne [30] proposed speculation as an alternative strategy for coping with the inherent sequentiality
of the greedy algorithm. The idea here is to abandon the requirement that vertices that are colored concurrently form an
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independent set, and instead color as many vertices as possible concurrently, tentatively tolerating potential conflicts, and
detect and resolve conflicts afterwards. A basic shared-memory algorithm based on this strategy is given in [30]. The main
steps of the algorithm are to distribute the vertex set equally among the available processors, let each processor specula-
tively color its vertices using information about already colored vertices (Phase 1), detect eventual conflicts in parallel (Phase
2), and finally re-color vertices involved in conflicts sequentially (Phase 3).

Bozdağ et al. [14] extended the algorithm in [30] in a variety of ways to make it suitable for and well-performing on distrib-
uted memory architectures. One of the extensions is replacing the sequential re-coloring phase with a parallel iterative proce-
dure. Many of the other extensions are driven by performance needs in a distributed-memory setting: the graph needs to be
partitioned among processors in a manner that minimizes communication cost and maximizes concurrency; the speculative
coloring phase is better when organized in a bulk synchronous fashion where computation and communication are coarse-
grained; etc. In addition, they investigate a variety of techniques for choosing colors for vertices and relative ordering of interior
and boundary vertices, a distinction that arises due to the partitioning among processors. When all the ingredients are put to-
gether, it was shown that the approach based on speculation and iteration outperforms independent set-based approaches. The
framework of [14] is used for the design of a distributed-memory parallel algorithm for distance-2 coloring in [15].

3.2. Iterative parallel coloring algorithm

In this paper, we adapt the distributed-memory iterative parallel coloring algorithm developed in [14] to the context of
multithreaded, shared-memory platforms. In the distributed-memory setting, the parallel coloring algorithm relies on graph
partitioning to distribute and statically map the vertices and coloring tasks to the processors, whereas in the multithreaded
case the vertex coloring tasks are scheduled on processors from a pool of threads created with appropriate programming
constructs.
Algorithm 2. An iterative parallel greedy coloring algorithm
1: procedure ITERATIVE(GðV ; EÞ)

2: Initialize data structures

3: U  V
 . U is the current set of vertices to be colored

4: while U – ; do

5: for each v 2 U in parallel do
 . Phase 1: tentative coloring

6: for each w 2 adjðvÞ do

7: forbiddenColors[color[w]] v
 . thread-private

8: c minfi > 0 : forbiddenColors½i�– vg

9: color[v] c

10: R ;
 . R is a set of vertices to be re-colored

11: for each v 2 U in parallel do
 . Phase 2: conflict detection

12: for each w 2 adjðvÞ do

13: if color[v] = color[w] and v > w then

14: R R [ fvg

15: U  R
The algorithm we use here, formally outlined in Algorithm 2, proceeds in rounds. Each round has two phases, a tentative
coloring phase and a conflict detection phase, and each phase is executed in parallel over a relevant set of vertices (see lines 5
and 11). In our implementation, the loops in lines 5 and 11 are parallelized using the OpenMP directive #pragma omp par-
allel for, and those parallel loops can be scheduled in any manner. The tentative coloring (first) phase is essentially the
same as Algorithm 1, except that it is concurrently run by multiple threads; in Algorithm 2, the array forbiddenColors is private
to each thread. In the conflict-detection (second) phase, each thread examines a relevant subset of vertices that are colored in
the current round for consistency and identifies a set of vertices that needs to be re-colored in the next round to resolve any
detected conflicts— a conflict is said to have occurred when two adjacent vertices get the same color. Given a pair of adjacent
vertices involved in a conflict, it suffices to recolor only one of the two to resolve the conflict. In Algorithm 2, as can be seen in
line 13, the vertex with the higher index value is chosen to be re-colored in the event of a conflict. Algorithm 2 terminates
when no more vertices to be re-colored are left.

Assuming that the number of rounds required by Algorithm 2 is sufficiently small, the overall work performed by the
algorithm is linear in the input size. This assumption is realistic and is supported empirically by the experimental results
to be presented in Section 5.

3.3. Cray XMT-specific algorithms

We implemented Algorithm 2 on the Cray XMT by replacing the OpenMP directive #pragma omp parallel for used to
parallelize lines 5 and 11 with the XMT directive #pragma mta assert parallel. Typically, parallel algorithms written for
conventional processors are too coarse-grained to effectively use the massive multithreading capability provided by the
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XMT; hence, we were motivated to explore the potential of an alternative algorithm that employs fine-grained synchroniza-
tion of threads and avoids the occurrence of conflicts (hence the need for re-coloring) in greedy coloring.

3.3.1. A dataflow algorithm
Algorithm 3. A dataflow algorithm for coloring
1: procedure DATAFLOW(GðV ; EÞ)

2: for each v 2 V in parallel do

3: purge(color[v])
 . Sets full/empty bit to empty and value to zero

4: for each v 2 V in parallel do

5: for each w 2 adjðvÞ where w < v do

6: c w  readff(color[w])
 . Wait until full/empty bit becomes full

7: forbiddenColors[c w] v
 . thread-private

8: c minfi > 0 : forbiddenColors½i�– vg

9: writeef(color[v], c)
 . Write color and set full/empty bit to full
Using the extended memory semantic operations of the XMT functions discussed in Section 2.3 for fine-grained synchro-
nization of threads, we developed a dataflow algorithm for coloring, which is formally outlined in DATAFLOW (Algorithm 3).
The algorithm consists of two parallel loops. The first loop purges the array used to store the color of each vertex. The sec-
ond loop runs over all vertices with thread Tv responsible for coloring vertex v. It has two steps. First, the thread Tv reads
the color chosen by the neighbors of v with higher precedence. We use the indices of the vertices to define the precedence
order such that vertices with smaller indices will have higher precedence. Second, having read the colors, the thread Tv

chooses the smallest permissible color and assigns it to the vertex v. Because a readff is used to read the colors of neigh-
bors of v and a writeef to write the color of v, the algorithm is race-free. Leaving the XMT-specific mechanism in which
concurrent execution is made possible aside, note that this algorithm is conceptually the same as the Jones–Plassmann
algorithm [28].

3.3.2. A recursive dataflow algorithm
As written, the algorithm DATAFLOW may deadlock on a system with fewer compute resources than vertices, since only a

subset of the threads can start; the others need to wait for resources to become available. If all active threads read vertices
whose threads are waiting, deadlock occurs.

The deadlock can be eliminated in one of three ways: (1) preemption, (2) ordering, or (3) recursion. Preempting blocked
threads is expensive, and is a poor choice when high-performance and scalability are important goals. Ordering the threads
to ensure progress may not be possible in all cases, and in many cases, computing a correct order is expensive. Using recur-
sion is a simple and often efficient way to eliminate deadlock in dataflow algorithms executing on systems with limited com-
pute resources.

We outline the deadlock-free recursive variant of the dataflow coloring algorithm in procedure DATAFLOWRECURSIVE (Algo-
rithm 4). The function PROCESSVERTEX (Algorithm 5) is now responsible for coloring vertex v. Its code is similar to the body
of the second loop of DATAFLOW (Algorithm 3). Before reading a neighbor’s color, the procedure checks whether or not the
neighbor is processed. If the neighbor is processed, the procedure issues a readff to read its color; if the neighbor is not
processed, the procedure processes the neighbor itself. The recursive algorithm stores the state of each vertex in a new array
named state; a value of zero indicates that a vertex is unprocessed. The algorithm also utilizes the XMT intrinsic function
int_fetch_add to manipulate the state of each vertex. The function is an atomic operation that increments the value of
a given memory location with a given constant and returns the original value. Note that the procedure PROCESSVERTEX is called
only once per vertex—when its state is zero. Hence the overall work performed by the algorithm is linear in the input size.
Algorithm 4. Recursive dataflow algorithm for coloring
1: procedure DATAFLOWRECURSIVEðGðV ; EÞÞ

2: for each v 2 V in parallel do

3: purge(color[v])
 . Sets full/empty bit to empty and value to zero

4: state[v] 0

5: for each v 2 V in parallel do

6: CurState int_fetch_add(state[v], 1)
 . returns 0 if first time

7: if CurState = 0 then

8: PROCESSVERTEXðvÞ
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Algorithm 5. A routine called by DATAFLOWRECURSIVE (Algorithm 4)
ble 2
uctural properties of the test graphs.

Graph No. vertices No. edges Avg. deg

RMAT-ER 16,777,216 134,217,654 16
RMAT-G 16,777,216 134,181,095 16
RMAT-B 16,777,216 133,658,229 16
1: procedure PROCESSVERTEX(v)

2: for each w 2 adjðvÞ where w < v do

3: CurState int_fetch_add(state[w], 1)

4: if CurState = 0 then

5: PROCESSVERTEXðwÞ
 . Recursive call

6: c w readff(color[w])
 . Wait until full/empty bit becomes full

7: forbiddenColors[c w]  v
 . thread-private

8: c minfi > 0 : forbiddenColors½i�– vg

9: writeef(color[v], c)
 . Write color and set full/empty bit to full
4. Test graphs

We studied the performance of algorithms ITERATIVE and DATAFLOWRECURSIVE on the three platforms discussed in Section 2
using a set of synthetically generated graphs. The test graphs are designed to represent a wide spectrum of input types.
We briefly discuss in this section the algorithm used to generate the test graphs and the key structural properties (relevant
to the performance of the coloring algorithms) of the generated graphs.

4.1. The graph generator

The test graphs were created using the R-MAT graph generator [31]. Let the graph to be generated consist of jV j vertices
and jEj edges. The R-MAT algorithm works by recursively subdividing the adjacency matrix of the graph to be generated (a jV j
by jV jmatrix) into four quadrants ð1;1Þ; ð1;2Þ; ð2;1Þ, and ð2;2Þ, and distributing the jEj edges within the quadrants with spec-
ified probabilities. The distribution is determined by four non-negative parameters (a; b; c; d) whose sum equals one. Initially
every entry of the adjacency matrix is zero (no edges added). The algorithm places an edge in the matrix by choosing one of
the four quadrants ð1;1Þ; ð1;2Þ; ð2;1Þ, or, ð2;2Þ with probabilities a; b; c, or, d, respectively. The chosen quadrant is then sub-
divided into four smaller partitions and the procedure is repeated until a 1� 1 quadrant is reached, where the entry is incre-
mented (that is, the edge is placed). The algorithm repeats the edge generation process jEj times to create the desired graph
G ¼ ðV ; EÞ.

By choosing the four parameters appropriately, graphs of varying characteristics can be generated. We generated three
graphs of the same size but widely varying structures by using the following set of parameters:
ð0:25;0:25;0:25;0:25Þ; ð0:45;0:15;0:15;0:25Þ; ð0:55;0:15;0:15;0:15Þ.

We call the three graphs RMAT-ER, RMAT-G, and RMAT-B, respectively. (The suffix ER stands for ‘‘Erd}os-Rényi,’’ G and B
stand for ‘‘good’’ and ‘‘bad’’ for reasons that will be apparent shortly.) Table 2 provides basic statistics on the structures of the
three graphs. The graphs were generated on the XMT using an implementation of the R-MAT algorithm similar to the one
described in [32]. The graphs were then saved on disk for reuse on other platforms. Duplicate edges and self loops were re-
moved; the small variation in the number of edges is due to such removals. The sizes of the graphs were chosen so that they
would fit on all three of the platforms we consider. For scalability study on the XMT, however, we generated larger graphs
using the same three sets of four parameters; we shall encounter these in Section 5, Table 4.

4.2. Characteristics of the test graphs

The test graphs are designed to represent instances posing varying levels of difficulty for the performance of the multi-
threaded coloring algorithms. The three graphs in Table 2 are nearly identical in size, implying that the serial work involved
in the algorithms is the same, but they vary widely in degree distribution of the vertices and density of local subgraphs. Both
of these have implications on available concurrency in algorithms ITERATIVE and DATAFLOWRECURSIVE: large-degree vertices and
dense subgraphs would increase the likelihood for conflicts to occur in ITERATIVE and would cause more ‘‘serialization’’ in DATA-

FLOWRECURSIVE, thereby impacting parallel performance.
Fig. 4 summarizes the vertex degree distributions in the three graphs. The graph RMAT-ER belongs to the class of Erd}os-

Rényi random graphs, since a ¼ b ¼ c ¼ d ¼ 0:25. Its degree distribution is expected to be normal. The single local maximum
. Max. deg. Variance

42 16.01
1278 415.72

38,143 8,085.64



Fig. 4. Degree distribution of the three test graphs listed in Table 2.
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observed in the corresponding curve in the degree distribution plot depicted in Fig. 4(a) is consistent with this expectation.
In the graphs RMAT-G and RMAT-B, ‘‘subcommunities’’ (dense local subgraphs) are expected to form because of the larger
values of a and d compared to b and c; the subcommunities are coupled together in accordance with the values of b and c. The
multiple local maxima observed in the degree distributions of these two graphs, shown in Fig. 4(b) and (c), correlate with the
existence of such communities.

Besides degree distribution, the three test graphs also vary highly in terms of maximum degrees and degree variances
(see Table 2). As an additional measure for the structural variation represented by the three graphs, we computed the clus-
tering coefficients of vertices in these graphs using the tool GraphCT.1 The local clustering coefficient of a vertex v is the ratio
between the actual number of edges among the neighbors adjðvÞ of v to the total possible number of edges among adjðvÞ [33].
The average clustering coefficient in the graph is the sum of all local clustering coefficients of vertices divided by the number of
vertices.

Tabulated in Fig. 5(a) is the average clustering coefficient in each of the three test graphs. The numbers there show orders
of magnitude progression as one goes from RMAT-ER to RMAT-G to RMAT-B. Fig. 5(b) shows the distribution of local clus-
tering coefficients, categorized in blocks of values. For the RMAT-ER graph, the local clustering coefficient of any vertex is
found to be either 0, or between 0 and 0.1, whereas the values are spread over a wider range for the RMAT-G graph and even
wider range for the RMAT-B graph. Larger local clustering coefficients in general indicate the presence of relatively dense
local subgraphs, or subcommunities, as referred to earlier.

Finally, to visualize the difference in the structure represented by the three graphs, we include in Fig. 6 plots gener-
ated with MATLAB’s spy function of the adjacency matrices of scaled-down versions of the three test graphs (1024 ver-
1 Available at http://trac.research.cc.gatech.edu/graphs/wiki/GraphCT.

http://trac.research.cc.gatech.edu/graphs/wiki/GraphCT


Fig. 5. Clustering coefficient data on the three test graphs listed in Table 2.

Fig. 6. Spy plots of the adjacency matrices of scaled-down versions of the three graphs with the columns reordered using Approximate Minimum Degree to
aid visual appeal. Each matrix has 210 = 1024 columns and 16,252 nonzeros.
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tices and 16,252 edges). To aid visual appeal, in the spy-plots, the columns have been re-ordered using the Approximate
Minimum Degree (AMD) routine in MATLAB; loosely speaking, AMD orders lower degree vertices (columns) before
higher degree vertices in a graph model of sparse Gaussian elimination that updates the degrees of vertices dynamically
[34].

Based on the variation in maximum degree value, degree distribution, and clustering coefficient values the three test
graphs represent, one can see that a fairly wide spectrum of input types is covered in the experimental study.
5. Experimental results

With the test graphs discussed in Section 4 serving as inputs, we present in this section experimental results on the sca-
lability of and the number of colors used by the algorithms ITERATIVE and DATAFLOWRECURSIVE when they are run on the three
Table 3
Overview of compilers and flags used in the experiments.

Compiler Flag

Nehalem Intel 11.1 -fast
Niagara 2 Sun Studio 5.9 -fast -xopenmp -m64
XMT Cray Native C/C++ -par



Fig. 7. Strong scaling of the ITERATIVE algorithm on Nehalem and Niagara 2 for the graphs listed in Table 2. On each platform, results for different number of
threads per core are shown. The dashed-line curve in each chart corresponds to ideal speedup in the case where one thread per core is used. In all charts,
both axes are in logarithmic scale.
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platforms described in Section 2. We begin the section by discussing various matters on experimental setup in Sections 5.1–
5.4. The scalability results are presented in Sections 5.5, 5.6, and 5.7, and the results on the number of colors used are pre-
sented in Section 5.8. The purpose of Section 5.5 is to discuss the scalability results on each of the three platforms separately
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while that of Section 5.6 is to draw comparisons. Section 5.7 shows results analyzing the performance of ITERATIVE in more
detail.

5.1. Locality not exploited

The R-MAT algorithm tends to generate graphs where most high-degree vertices are of low indices. In the tests we run,
we randomly shuffled vertex indices in order to reduce the benefits of this artifact on architectures with caches and to min-
imize memory-hotspotting. The vertices were then colored in the resulting numerical order in both algorithms.

5.2. Compilers used

Algorithm ITERATIVE was implemented on the Nehalem and Niagara 2 platforms using OpenMP. On the Cray XMT, both
ITERATIVE and DATAFLOWRECURSIVE were implemented using the XMT programming model. Table 3 summarizes the compilers
and flags used on each platform.

5.3. Thread scheduling

In both ITERATIVE and DATAFLOWRECURSIVE, there is a degree of freedom in the choice of thread scheduling policy for parallel
execution. Both the OpenMP and the XMT programming models offer directives supporting different kinds of policies. We
experimented with various policies (static, dynamic, and guided with different block sizes) on the three platforms to as-
sess the impact of the policies on performance. We observed no major difference in performance for the experimental set-
up we have, that is, RMAT-generated graphs with vertex indices randomly shuffled. Note, however, that for vertex
orderings that exhibit some locality (e.g., some high degree vertices are clustered together) scheduling policies could affect
performance due to cache effects. In the results reported in this paper, we have used the default static scheduling on all
platforms.

5.4. Thread binding

In the experiments on scalability, we used various platform-specific thread binding mechanisms. On the Nehalem, bind-
ing was achieved using a high-level affinity interface, the environment variable KMP_AFFINITY from the Intel compiler. Recall
that the Nehalem has two sockets with four cores per socket, and two threads per core, amounting to 16 threads in total. The
eight threads on the four cores of the first socket are numbered (procID) as fð1;9Þ; ð3;11Þ; ð5;13Þ; ð7;15Þg, where the first pair
corresponds to the threads on the first core, the second pair to the threads on the second core, etc. Similarly the remaining
eight threads on the second socket are numbered as fð0;8Þ; ð2;10Þ; ð4;12Þ; ð6;14Þg. With such topology in place, we bound
the OpenMP threads to the cores by assigning the procID to KMP_AFFINITY. For example, to run a job with four OpenMP
threads on four cores (one thread per core), we set KMP_AFFINITY="verbose,proclist=[9,8,15,14]" and
OMP_NUM_THREADS = 4.

Notice here that threads from the two sockets, rather than from only one, are engaged. Note also that the threads are
bound to cores that are as far apart as possible. These seemingly counter-intuitive choices are made to maximize band-
width. Recall that the memory banks in the Nehalem system (see Fig. 1) are associated with sockets, and each socket
has independent channels to its memory bank. Engaging the two sockets would thus increase the effective memory band-
width available. Such a choice could, however, be counter-productive for small problems that fit in a single bank, or for
cache reuse between threads.
Table 4
Properties of the larger graphs used in the scalability study on the XMT.

Graph Scale No. vertices No. edges Max. deg. Variance % Isolated vertices

RMAT-ER 24 16,777,216 134,217,654 42 16.00 0
25 33,554,432 268,435,385 41 16.00 0
26 67,108,864 536,870,837 48 16.00 0
27 134,217,728 1,073,741,753 43 16.00 0

RMAT-G 24 16,777,216 134,181,095 1,278 415.72 2.33
25 33,554,432 268,385,483 1,489 441.99 2.56
26 67,108,864 536,803,101 1,800 469.43 2.81
27 134,217,728 1,073,650,024 2,160 497.88 3.06

RMAT-B 24 16,777,216 133,658,229 38,143 8,085.64 30.81
25 33,554,432 267,592,474 54,974 9,539.17 32.34
26 67,108,864 535,599,280 77,844 11,213.79 33.87
27 134,217,728 1,071,833,624 111,702 13,165.52 35.37
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Niagara 2 provides a mechanism for binding the threads to processors using SUNW_MP_PROCBIND. This was exploited in
the experiments by binding 1;2;4, or 8 threads to each core to get results from 1 to 128 threads.
Fig. 8. Strong and weak scaling results on the Cray XMT for the graphs listed in Table 4. For each run, a system request of maximum 100 streams (threads)
was placed. The dashed-line curve in each chart corresponds to ideal speedup on the largest graph (scale 27). In all charts, both axes are in logarithmic scale.
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5.5. Scalability results

5.5.1. Scalability of ITERATIVE on Nehalem and Niagara 2
Fig. 7 gives a summary of strong scaling results of algorithm ITERATIVE on the three test graphs RMAT-ER, RMAT-G, and

RMAT-B listed in Table 2. The left column shows results on the Nehalem platform, and the right column shows results on
the Niagara 2 platform. On each platform, different numbers of threads per core were utilized via thread binding. In the sets
of results on both architectures, the curve represented by the dashed line corresponds to ideal speedup in the case where one
thread per core is used. It can be seen that the strong scaling behavior of algorithm ITERATIVE is near-ideal on both architec-
tures across all three input types considered, when one thread per core is used.

The results in Fig. 7 corresponding to the use of multiple threads per core on both the Nehalem and Niagara 2 show the
benefit of exploiting simultaneous multithreading (SMT). On the Nehalem, by using two threads per core, instead of one, we
obtained relative speedups ranging from 1.2 to 1.5, depending on the number of cores used and the type of input graph con-
sidered. The observed speedup due to SMT is less than the ideal factor of two, and the difference is more pronounced when
the number of cores increases to eight. Note that the speedup is greater for the RMAT-ER graph than for the RMAT-B and
RMAT-G graphs. This is because the memory accesses in the RMAT-ER graphs pose less performance challenges than the
accesses in the RMAT-B and RMAT-G graphs, due to the presence of a larger number of dense subgraphs in the latter
two. The speedup we obtained via the use of SMT on the Nehalem is consistent with the results reported in [35], where
the authors measured the runtime reduction (speedup) obtained by employing SMT on the Nehalem on seven application
codes. The authors found only a 50% reduction in the best case, and for four of the codes, they observed an increase in run-
time (slowdown), instead of decrease (speedup).
Fig. 9. Strong scaling results on all three platforms for the graphs listed in Table 2. On the XMT, a system request was placed for maximum 100 streams
(threads). In all charts, both axes are in logarithmic scale.
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The speedup due to SMT we obtained on the Niagara 2 (the right column in Fig. 7) is more impressive than that on the
Nehalem. By and large, we observed that the runtime of ITERATIVE using 2T threads on C cores is about the same as the runtime
using T threads on 2C cores, except when T is 4, in which case the relative gain due to SMT is smaller.
5.5.2. Scalability of ITERATIVE and DATAFLOWRECURSIVE on the XMT
5.5.2.1. Larger test graphs. The Cray XMT provides about 1 TB of global shared memory and massive concurrency
(128� 128 = 16,384-way interleaved multithreading). Both capabilities are much larger than what is available on the other
two platforms. To make use of this huge resource and assess scalability, we experimented with larger RMAT graphs gener-
ated using the same parameters as in the experiments thus far but with different scales. The characteristics of these graphs
are summarized in Table 4. In the table, the number of vertices (third column) is equal to 2s, where s is the scale shown in the
second column.
5.5.2.2. Thread allocation. In contrast to the Niagara 2 and Nehalem, where thread allocation and binding is static, the corre-
sponding tasks on the XMT are dynamic. However, one can place a system request for a maximum number of streams (the
XMT term for threads) for a given execution on the XMT. In our experiments, we requested 100 streams, an empirically
determined optimal number for keeping all processors busy. The runtime system then decides as to how many will actually
get allocated. We observed that at the beginning of the execution of the coloring algorithms, we do get close to 100 streams.
Then, the number drastically decreases and gets to around 5 towards the end of the execution, when little computational
work is left.
5.5.2.3. Scalability results. The scalability results we obtained on the XMT with the maximum 100 streams system request and
using the large test graphs listed in Table 4 are summarized in Fig. 8; the left set of figures shows results on algorithm
Fig. 10. (a) Comparison of total number of conflicts generated in the ITERATIVE algorithm on the different platforms for the RMAT-B graph listed in Table 2. (b)
Total number of iterations the algorithm needed to complete on the same graph. (c) Breakdown of number of conflicts per iteration.
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ITERATIVE and the right set of figures shows results on algorithm DATAFLOWRECURSIVE. In each case the ideal (linear) scaling of the
largest (scale 27) graph is depicted by the dashed line.

It can be seen that both ITERATIVE and DATAFLOWRECURSIVE scale well to the maximum number of available processors (128) on
the RMAT-ER and RMAT-G graphs; on the RMAT-B graph, DATAFLOWRECURSIVE scales to 64 processors and ITERATIVE to 16 proces-
sors. The poorer scalability of ITERATIVE is likely due to the relatively large number of conflicts generated (and consequently,
the relatively large number of iterations required) as a result of the massive concurrency utilized on the XMT in coloring the
vertices. It can also be seen that the runtime of ITERATIVE is about twice that of DATAFLOWRECURSIVE. This is mainly because of the
conflict-detection phase in ITERATIVE, which entails a second pass through the (sub)graph data structure, a phase that is absent
in DATAFLOWRECURSIVE.

Note that Fig. 8 also shows weak scaling results. In each subfigure, observe that the input size is doubled as one goes from
one input size (say 24) to the next (say 25) and the number of processors is doubled as one goes from one data point on the
horizontal axis to the next. Imagine running a horizontal line cutting through the four curves in each subfigure. In most of the
figures such a line will intersect the four curves at points that correspond to a near-ideal weak scaling behavior.
5.6. Scalability comparison on the three architectures

Figs. 7 and 8 have already shown some of the differences in performance observed on the three architectures. For further
cross-platform comparison, we provide in Fig. 9 a condensed summary of strong scaling results on all three platforms at
once. The three subfigures show results corresponding to runtimes in seconds on the three test graphs of Table 2. In each
subfigure four runtime plots are shown, three corresponding to the performance of ITERATIVE on the three platforms and
one corresponding to the performance of DATAFLOWRECURSIVE on the XMT.
Fig. 11. Number of colors used by the two multithreaded algorithms on the various architectures for the graphs listed in Table 2. The number used by the
serial greedy algorithm is depicted with the horizontal red line. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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To enable a common presentation on all three platforms, we have shown in Fig. 9 results on fewer processing units than
what is available on the Cray XMT. In particular, we show results when up to 8 cores on the Nehalem, 16 cores on the Niagara
2, and 16 processors on the XMT are used. Note also that for a given number of cores (or processors in the case of XMT), the
amount of concurrency utilized and the type of multithreading (MT) employed varies from platform to platform. On the XMT,
out of the 128 threads available per processor, a system request for a maximum of 100 was placed. On the Niagara 2, the max-
imum eight threads available per core were used, and on Nehalem the two available threads per core were used. This means
the total amount of concurrency involved is a possible maximum of 12,800 threads (with interleaved MT) on the XMT, exactly
128 threads (with simultaneous MT) on the Niagara 2, and exactly 16 threads (with simultaneous MT) on the Nehalem.

On the XMT, it can again be seen that DATAFLOWRECURSIVE scales nearly ideally on RMAT-ER and RMAT-G, and quite decently
on RMAT-B, the most difficult input. Algorithm ITERATIVE scales in an analogous fashion on the same platform. It can also be
seen that ITERATIVE scales well not only on the XMT, but also on the Niagara 2 and Nehalem platforms, in that relative ordering.
The relative ordering is in part due to the difference in the amount of thread concurrency exploited, which is the highest on
the XMT and the lowest on the Nehalem.

5.7. ITERATIVE and degree of concurrency

For ITERATIVE, higher concurrency would also mean higher likelihood for the occurrence of conflicts and, as a result, increase
in the number of iterations involved. Fig. 10(a) shows the total number of conflicts generated during the course of algorithm
ITERATIVE on the three platforms for the most hostile of the three input types, the RMAT-B graph. As expected, the relative order-
ing in terms of number of conflicts is Nehalem followed by Niagara 2 followed by the XMT. The number of these conflicts is
seen to be small relative to the number of vertices (16 million) in the graph. As Fig. 10(b) shows, the total number of iterations
the algorithm needed to resolve these conflicts is quite modest, even on the XMT, where the number of conflicts is relatively
large. Fig. 10(c) shows how the total number of conflicts is divided across the iterations when 128 processors on the XMT, 16
cores of the Niagara 2 (with 8 threads per core) and 8 cores of the Nehalem (with 2 threads per core) are used. As this figure
shows, about 90% of the conflicts occur in the first iteration and the number of conflicts drops drastically in subsequent iter-
ations. This suggests that it might be worthwhile to switch to a sequential computation once a small enough number of con-
flicts is reached, rather than proceed iteratively in parallel. We will investigate this in future work.

5.8. Number of colors

The serial greedy coloring algorithm used 10, 27, and 143 colors on the three graphs RMAT-ER, RMAT-G, and RMAT-B
listed in Table 2, respectively. These numbers are much smaller than the maximum degrees (42; 1,278; and 38,143) in these
graphs, which are upper bounds on the number of colors the greedy algorithm uses. Clearly, the gap between the upper
bounds and the actual number of colors used is very large, which suggests that the serial greedy algorithm is providing rea-
sonably good quality solutions. Indeed experiments have shown that the greedy algorithm often uses near-optimal numbers
of colors on many classes of graphs [9,13].

Fig. 11 summarizes the number of colors the multithreaded algorithms ITERATIVE and DATAFLOWRECURSIVE use on the three test
graphs as the number of cores/processors on the various platforms is varied. It can be seen that both algorithms use about
the same number of colors as the serial greedy algorithm and the increase in number of colors with an increase in concur-
rency is none to modest—only for ITERATIVE on the XMT (where concurrency is massive) and the graph RMAT-B do we see a
modest increase in number of colors as the number of processors is increased.

6. Conclusion

We presented a heuristic multithreaded algorithm for graph coloring that is suitable for any shared-memory system,
including multi-core platforms. The key ideas in the design of the algorithm are speculation and iteration. We also presented
a massively multithreaded algorithm for coloring designed using dataflow principles exploiting the fine-grain, hardware-
supported synchronization mechanisms available on the Cray XMT. Using a carefully chosen set of input graphs, covering
a wide range of problem types, we evaluated the performance of the algorithms on three different platforms—Intel Nehalem,
Sun Niagara 2, and Cray XMT—that feature varying degrees of multithreading and caching capabilities to tolerate latency.
The iterative algorithm (across all three architectures) and the dataflow algorithm (on the Cray XMT) achieved near-linear
speedup on two of the three input graph classes considered and moderate speedup on the third, most difficult, input type.
These runtime performances were achieved without compromising the quality of the solution (i.e., the number of colors)
produced by the underlying serial algorithm. We also characterized the input graphs and provided insight on bottlenecks
for performance.

Backed by experimental results, some of the more general conclusions we draw about parallel graph algorithms include:

� simultaneous multithreading provides an effective way to tolerate latency, as can be seen from the experiments on the
Nehalem and Niagara 2 platforms where the runtime using N threads on one core is found to be similar to the runtime
using one thread on N cores,
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� the impact of lower clock frequency and smaller cache memories can be ameliorated with a greater thread concurrency,
as can be seen in the better performance obtained on the XMT and the Niagara 2 relative to the Nehalem,
� when supported by light-weight synchronization mechanisms in hardware, parallelism should be exploited at fine grain,

and
� graph structure critically influences the performance of parallel graph algorithms.

We expect these insights to be helpful in the design of high performance algorithms for irregular problems on the
impending many-core architectures.
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