
Partitioning a Chordal Graph Into Transitive Subgraphs
for Parallel Sparse Triangular Solution*

Barry W. Peytont

Mathematical Sciences Section

Oak Ridge National Laboratory

P.O. Box 2008, Building 6012

Oak Ridge, Tennessee 378314367

Alex Pothen*

Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl

and

Xiaoqing Yuan

IBM Canada Laborato y

1150 Eglinton Avenue East

North York, Ontario, Canada M3C lH7

Submitted by Robert M. Guralnick

ABSTRACT

A recent approach for solving sparse triangular systems of equations on massively
parallel computers employs a factorization of the triangular coefficient matrix to

*Written December 1992.

‘E-mail: peyton@msr . epm. ornl _ gov. The work of this author was supported by
the Applied Mathematical Sciences Research Program of the Office of Energy Research,
U.S. Department of Energy under Contract No. DE-AC05-850R21400.

‘E-mail: apothen@narnia.uwaterloo.ca,na.pothen@na-net.ornl.gov.
This author was supported by NSF grant CCR-9024954 and by U.S. Department of Energy
grant DE-FG02-91ER25095 at the Pennsylvania State University and by the Canadian
Natural Sciences and Engineering Research Council under grant OGPOOO8111 at the
University of Waterloo.

LINEAR ALGEBRA AND ITS APPLICATIONS 192:329-353 (1993) 329

0 Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0024-3795/93/$6.00

330 B. W. PEYTON, A. POTHEN, AND X. YUAN

obtain a representation of its inverse in product form. The number of general
communication steps required by this approach is proportional to the number of
factors in the factorization. The triangular matrix can be symmetrically permuted to
minimize the number of factors over suitable classes of permutations, and thereby the

complexity of the parallel algorithm can be minimized. Algorithms for minimizing the
number of factors over several classes of permutations have been considered in earlier
work. Let F = L + LT denote the symmetric filled matrix corresponding to a Cholesky

factor L, and let G, denote the adjacency graph of F. We consider the problem of
minimizing the number of factors over all permutations which preserve the structure
of G,. The graph model of this problem is to partition the vertices G, into the fewest

transitively closed subgraphs over all perfect elimination orderings while satisfying a
certain precedence relationship. The solution to this chordal-graph partitioning prob-
lem can be described by a greedy scheme which eliminates a largest permissible
subgraph at each step. Further, the subgraph eliminated at each step can be
characterized in terms of lengths of chordless paths in the current elimination graph.
This solution relies on several results concerning transitive perfect elimination order-

ings introduced in this paper. We describe a partitioning algorithm with @(IV 1 + 1 El)
time and space complexity.

1. INTRODUCTION

We consider a graph partitioning problem which arises in the develop-

ment of a partitioned inverse approach to the solution of sparse triangular
systems of equations on highly parallel computers. On such machines it is
advantageous to compute the solution to a lower triangular system Lx = _b by
matrix-vector multiplication _x := L ‘_b when there are several systems (not
all available at the same time) involving the matrix L to be solved. This is due
to the fact that there is much more parallelism to be exploited in the
multiplication approach than in the conventional substitution algorithm. If we
can find a factorization L = II:= 1Pi, where each factor Pi has the property
that P, and P,-’ have the same nonzero structure, then L-l = lI=,Piml can
be represented in a space-efficient manner, storing the t factors P,-’ in the
space required for L. Furthermore, the vector g can be computed as a
sequence of t matrix-vector multiplication steps, exploiting parallelism fully
within each step.

The number of factors t in the factorization of L is an important
measure, since it is proportional to the number of (expensive) router commu-
nication steps required by the parallel algorithm based on this approach;
hence it is a good predictor of the running time of triangular solution on
highly parallel machines like the Connection Machine CM-2. It has been
recognized that the triangular matrix can be symmetrically permuted to

PARTITIONING A CHORDAL GRAPH 331

minimize the number of factors, and hence several strategies for minimizing t
over appropriate permutations of L have been considered in previous work

[2,111.
Minimizing t over all symmetric permutations of L for which the

permuted matrix remains lower triangular gives rise to a directed-acyclic-

graph (DAG) partitioning problem [2]. After introducing some notation, we
discuss this problem in some detail, after which we proceed with a descrip-
tion of the closely related partitioning problem addressed in this paper.

Let G, = (V, F) be the directed graph of the matrix L with vertices
v = (1,. . . , n} corresponding to the columns of L and edges E = ((j, i) : i
> j and li, j # 0). The edge (j, i> is directed from the lower-numbered vertex

j to the higher-numbered vertex i. It follows that Gd is a directed acyclic
graph (DAG). If th ere exists a directed path from a vertex j to another vertex
i in Gd, then j is a predecessor of i, and i is a successor of j. An ordering

of GC1 is any bijection from V to the set {1,2, . , IV I}. A topological ordering

is any ordering that, for every predecessor-successor pair, numbers the
predecessor with a lower number than that received by the successor. Note
that the initial ordering imposed on Gd by L is a topological ordering.

Given a set X c V, let F, c F be the set comprising every edge from a
vertex in X to any vertex in the graph. The edge subgruph induced by F, is
the subgraph of G, with edge set F, and vertex set consisting of all vertices
which are endpoints of these edges. (We will refer to this as the edge
subgraph induced by X.) A directed graph is transitively closed, or more
briefly transitive, if the existence of edges (u, v) and (v, u;> implies the
existence of edge (u, w).

We can now give a precise statement of the DAG partitioning problem:

PROBLEM 1. Given a DAG G,, find an ordered partition R, + R, +
*** < R, of its vertices such that

(1) for every v E V, if v E R, then all predecessors of v belong to

R,, > Rj,
(2) the edge subgraph induced by each Ri is transitively closed, and
(3) t is minimum over all partitions that satisfy the first two properties.

Problem 1 can be solved in @(IV 1 IF 1) time and 8(] FI) space when L is
an arbitrary lower triangular matrix, or is obtained from the sparse LU

factorization of an unsymmetric coefficient matrix [2]. However, if L is a
Cholesky factor of a symmetric positive definite matrix, then there is a more
efficient @(lV 1) time and space partitioning algorithm [ll]. We consider this
latter case in more detail now, since it will be helpful in describing the graph
partitioning problem considered in this paper.

332 B. W. PEYTON, A. POTHEN, AND X. YUAN

Let A be a symmetric positive definite matrix whose nonzeros are
algbebraically independent, and let F = L + LT denote the symmetric filled

matrix corresponding to its Cholesky factor L. Then G,, the adjacency graph
of F, is a chordal graph.i The ordering cy : V + (1, . , IV I} of the vertices of
G that corresponds to the order in which the unknowns in the linear system
are eliminated is a pe$xt elimination ordering (PEO) of G. In the case of
sparse symmetric factorization, because G is a chordal graph, the transitive
reduction of Gd (a data structure called the elimination tree [8]) can be used
to obtain an extremely efficient @(IV I) t’ ime and space algorithm for solving
the chordal DAG partitioning problem ill]. The only other data required are
the outdegrees of the vertices in G,!, which are either already available or
easily computed.

Further details on DAG partitioning problems connected with highly
parallel alg on ‘th ms for the solution of sparse triangular systems and computa-
tional results from a Connection Machine CM-2 implementation may be
found in the papers [2,11]. The partitioned inverse approach has been shown
to be normwise but not componentwise forward and backward stable when a
certain scalar, which can be loosely described as a growth factor, is small; this
scalar is guaranteed to be small when L is well conditioned [5]. A compre-
hensive survey of the partitioned inverse approach to highly parallel sparse
triangular solution is provided in [I].

The more general chordal graph partitioning problem addressed in this
paper arises when we consider a larger class of elimination orderings for
Cholesky factorization (thereby potentially reducing t further). Given the
matrix A, we may compute an appropriate ordering in two steps: First, we
compute the filled graph G, for a Cholesky factor L by means of a primary
fill-reducing ordering; then we compute a secondary reordering that mini-
mizes the number of factors t in the triangular matrix over all reorderings of
A that preserve the structure of the-filled graph G,. The computed ordering
is then applied to the coefficient matrix A before the factorization is
computed. When there are several systems to be solved involving the same
triangular matrix, the use of an ordering for factorization that has been
optimized for efficient parallel triangular solution is justified. This two-step
approach is similar to that used to compute the Jess-Kees ordering for
parallel sparse Cholesky factorization [6,9].

Given a chordal graph G = (V, E) with vertices numbered in a PEO, we
can associate a DAG Gd with G by directing each edge in E from the
lower-numbered vertex to the higher-numbered vertex. The more general
chordal graph partitioning problem may be stated as follows.

‘Definitions of some technical terms will be deferred until later in the paper.

PARTITIONING A CHORDAL GRAPH 333

PROBLEM 2. Given a chordal graph G = (V, E), compute a PEO, the
associated DAG Gd, and an ordered partition R, + R, < ... + R, of its
vertices such that

(I) for every u E V, if v E I$ then all predecessors of v belong to

Rip.. . > Ri,
(2) the edge subgraph induced by each Ri is transitively closed, and
(3) t is minimum over all partitions that satisfy the first two properties for n ,9

some DAG G,, where Gd ranges over all DAGs obtained from PEOs of G in
the manner described above.

In this paper we introduce an @‘(IV 1 + 1 El) algorithm for solving Problem
2. Our solution, which we discuss briefly now, involves the lengths of certain
chordless’ paths in G. A vertex v is an interior vertex of a path if it lies on
the path and is not an endpoint of the path. Observe that any vertex v is
either an interior vertex on some chordless path in the graph, or else an
endpoint of every chordless path on which it lies. In the former case, let A(u)
denote the length of the longest chordless path in G which includes o in its
interior. [Note that A(u) Z= 2 for all such vertices.] In the latter case, let
A(v) = 1. The vertices v E V for which A(v) = 1 or h(v) = 2 have certain
properties which will play a crucial role in our solution to Problem 2. Section
2 introduces a few of these properties.

From among all solutions to Problem 2, choose one for which)Ril is as
large as possible. In Section 3 we show that R, is the unique set consisting of
vertices 0 which satisfy A(U) < 2, and also satisfy A(u) < 2 for all u E adj[v]
such that {u} U adj[u] c {v) U adj[v].3 Th’ is characterization moreover can
be applied recursively to obtain the largest possible partition member R, in
the reduced graph G \ (R, U **- u R,_I). As we shall see in Section 4, we
can solve Problem 2 by using a simple greedy scheme that eliminates at the
ith step a maximum-cardinality set Ri from the reduced graph. This greedy
scheme is based on concepts associated with transitive perjkt elimination

orderings of subgraphs of G which are introduced in this paper.
The remainder of the paper is concerned with the expansion of this

greedy scheme into an efficient algorithm for solving Problem 2. Section 5
develops two ideas needed for efficient implementation of the high-level
scheme. Further details needed to realize our goal of an @(IV I + IEI)
implementation are given in Section 6. A few concluding remarks are given in
Section 7.

“A path is chordless if no edge in G joins two nonadjacent vertices on the path

3The set adj[u] contains all vertices joined to o by an edge in G.

334 B. W. PEYTON, A. POTHEN, AND X. YUAN

2. CHORDLESS PATHS AND AN ADJACENCY-SET PARTITION

Assume G = (V, E) is a connected chordal graph,4 and let the “length”
parameters A(v), u E V, be as defined in Section 1. Figure 1 displays a
chordal graph for which A(a) = A(b) = A(c) = A(d) = 1, A(e) = 2, and
A(f) = A(g) = 3. It is interesting to note that the simplicial vertices5 of the
graph are a, b, c, and d: precisely the vertices for which A(.) = 1. We
formalize the result suggested by this observation later in this section.

The following concepts will be used to define an interesting partition of
adj[n] in the case where A(v) < 2. The neighborhood of a vertex v is
denoted by nbd[v] := {u) U adj[u]. A ve rt ex u E adj[v] is said to be indis-

tinguishable from v if nbd[u] = nbd[v]; the set of neighbors indistinguish-
able from v will be denoted by adj’[v]. A ve rt ex u E adj[v] is said to strictly

outmatch v if nbd[u] c nbd[v]. Th e set of vertices that strictly outmatch v
will be written adj-[v]; the set of vertices strictly outmatched by v will be
written adj ‘[v]. Finally, let adj*[v] consist of the vertices u E adj[v I for
which nbd[u] and nbd[v] are incomparable. Some of these relationships in
Figure 1 are: a E adj-[e] and e E adj+[u]; b E adj-[e] and e E adj+[b];
e E adj-[f] and f E adj+[e]. Th ere are no pairs of indistinguishable vertices
in Figure 1.

It is worth noting that some of these ideas have already played an
important role in sparse-matrix computations. In particular, vertex indistin-
guishability and outmatching play an interesting and vital role in efficient
implementations of the minimum-degree ordering heuristic 141; vertex indis-
tinguishability also plays a critical role in the subscript compression scheme

a P\

FIG. 1. Chordal graph with A(a) = h(b) = A(c) = A(d) = 1, A(e) = 2, and
A(f) = A(g) = 3.

4A graph is chordal if every cycle containing more than three edges has a chord (i.e.,
an edge joining two nonadjacent vertices on the cycle).

“A vertex 0 E V is simplicial. if the vertices of adj[u] induce a complete subgraph of G
(i.e., adj[u] is a clique in G).

PARTITIONING A CHORDAL GRAPH 335

introduced by Sherman [I21 and in improving the time efficiency of the
symbolic factorization step [3].

The reader may easily verify that the sets adj j[v], adj’[u], adj+[n], and
adj*[v] form a partition of adj[v]. The following result shows that the vertices
v E V for which h(u) < 2 are precisely those vertices for which adj j[u],
adjO[u], and adj+[v] form a partition of adj[u] (i.e., adj*[ul = 0). Before
reading the proof, the reader may find it helpful to verify the result for the
graph in Figure 1.

LEMMA 2.1 (Adj acency-partition lemma). For each vertex v of a chordal
graph, the sets adj -[u], adj’[01, and adj ‘[VI form a partition of adj[u] if

and only if A(v) < 2.

Proof. We first prove the “only if’ part by contraposition. Assume that
adj-[v], adjO[u], and adj ‘[u] do not form a partition of adj[u]. It follows
then that there exists a vertex u E adj*[v], and thus we can choose w,, E
nbd[u] - nbd[v] # 0, and wO E nbd[v] - nbd[u] f 0. Note that w,, U, O,
and w, are necessarily distinct, and moreover [w,, u, v, w”] is a path in G.
Since (w,, 0) and (u, wti) clearly are not edges in G, the only other possible
chord for the path is (w,, wJ. If, however, w,, were joined to wv by an edge
in G, then [w,, U, v, w,, wU] would be a chordless cycle of length four,
contrary to the chordality of G. It then follows that [tu,,, U, O, w,J is a
chordless path in G, and consequently we have A(O) > 3.

We now prove the “if’ part of the result, also by contraposition. Suppose
A(o) > 3, so that there exists a chordless path [u, v, w, X] of length three in
G with o in the interior. Clearly, u E nbd[v] - nbd[w] and x E nbd[wl -
nbd[v], whence w E adj*[,]. It follows that adj-[v], adjO[u], and adj+[U] do
not form a partition of adj[v], thereby giving us the result. n

The vertices o E V for which A(v) < 2 play a key role throughout the
rest of the paper. The following properties of these vertices will be useful in
later proofs. The reader may find it useful to confirm that the result holds for
the vertices a, b, c, d, and e in Figure 1.

LEMMA 2.2.

(1) For each vertex v of a graph, A(u) = 1 if and only if v is simplicial, in
which case adj -[VI = 0.

(2) Fur each vertex v of a chordal graph, if A(v) = 2, then ladj -[VII 2 2
and for every vertex u E adj -[VI there exists a vertex ZJ ’ E adj -[U] for
which (u, u’) G E.

336 B. W. PEYTON, A. POTHEN, AND X. YUAN

Proof. For the first statement we prove both directions by contraposi-
tion. If A(u) > 2, then u is an interior vertex of some chordless path in G,
say [u, u,w]. (Here, G can be any graph.) Whereas u, w E adj[u] and
(u, w) @ E, it follows that adj[u] is not complete in G, whence u is not
simplicial in G. Now assume u is not simplicial in G. Since adj[u] is not
complete in G, we can choose u, w E adj[u] for which (u,w) E E. The
chordless path [u, II, w] in G ensures that A(u) > 2. To prove the last part of
the first statement, assume that u is simplicial, so that nbd[u] is complete in
G. It follows that nbd[u] c nbd[w] for every vertex w E adj[w], whence
adj-[u] = 0.

To prove the second statement, assume that A(u) = 2, and let [u, u, u’]
be a chordless path in G of length two with u in the interior. (Here, G is
again assumed to be chordal.) It follows from the adjacency-partition lemma
that u belongs to one and only one of the sets adjj[u], adj’[u], or adj+[u].
Since u’ E nbd[u] - nbd[u], it f 11 o ows that u E adjjlv]. By the same
argument, u’ E adj j[u] too, whence ladj-[u]/ > 2, as required. To prove the
last part of the second statement, again assume that h(u) = 2; moreover, let
u E adj-[w] z 0, so that nbd[u] c nbd[u]. Choose a vertex u’ E nbd[u] -
nbd[u] z 0. Clearly u’ P adj[u], whence it follows that u’ e adj’[u] U
adj’[v], and thus u’ E adj-[v]. This concludes the proof. n

Here, also for later use, we verily that each of the sets adj’[u] U adj+[u],
v E V, is complete (i.e., pairwise adjacent) in G.

LEMMA 2.3. The vertex set adj’[w] U adj ‘[u] is complete in G for each

0 E v.

Proof. Let u E V, and choose w, w’ E adjO[u] U adj+[w]. Since nbd[ul
c nbd[w], clearly w ’ E adj[w 1, whence nbdlu I is complete in G. n

3. TRANSITIVE PERFECT ELIMINATION ORDERINGS

3.1. Definitions and Notation

An ordering of G is a bijection

a:V-+{1,2 ,..., n},

where n := IV). For any vertex v of an ordered graph, let the monotone

adjacency set of v be defined by

madj[u] := {w E adj[u] lo(w) > a(u)}.

PARTITIONING A CHORDAL GRAPH 337

A pelfect elimination ordering (PEO) of G is any ordering of G such that
madj[v] is complete in G for every vertex o E V.

In this paper we will be interested in perfect elimination orderings that
are “partially specified” in the following sense. An incomplete ordering of G

relative to a vertex set X 5 V is a mapping

a:v-t {1,2,..., IXI - l,lXI,n + I}

such that (Y restricted to X is a bijection from X to {1,2, . . , 1 Xl] and
(Y(U) = n + 1 for each vertex v E V - X. For convenience we shall refer to
such an incomplete ordering of G as an ordering of G(X). Whenever
X = V, clearly the “incomplete” ordering is an ordering of G. A perfect

elimination ordering of G(X) is an ordering of G(X) such that madj[v] is
complete in G for every vertex v E X. (We emphasize that G(X) does not

refer to the subgraph induced by the vertex set X, and that in the previous
sentence madj[v] is complete in the graph G and not in the subgraph
induced by X.) Note that any incomplete PEO can be “completed” into a
PEO of G.

Unless G is a complete graph, there are some sets X c V for which there
exists no PEO of G(X). Th e o owing result identifies every vertex set f 11
X c V for which there exists a PEO of G(X).

PROPOSITION 3.1 (Shier [13]). Let X c V. There exists a PEO of G(X) if
and only if the vertices of every chordless path in G joining two vertices in

V - X are included in V - X.

A transitive ordering of G(X) is any ordering of G(X) for which the
following property holds: If a(u) < a(v) < (u(w) and (u, v), (v, w) E E,
then (u, w) E E. Note that the vertices u and v are necessarily taken from X
[because (Y(U) < a(v) < n + 11, while the vertex w may be taken from
either X or V - X. A transitive pe$xt elimination ordering (TEO) of G(X)
is any ordering of G(X) that is both a PEO of G(X) and a transitive ordering
of G(X). Any vertex set X c V for which there exists a TEO of G(X) will
henceforth be called a T-set of G.

Due to the additional transitivity condition, the collection of T-sets of G
is generally much smaller than the collection of vertex sets X c V for which
merely a PEO of G(X) exists. For example, while there exists a PEO of
G(V) for every chordal graph G, it is not the case that there exists a TEO of
G(V) for every chordal graph G. On the contrary, V is not a T-set for most
chordal graphs G = (V, E). Indeed, any chordal graph G for which V is a
T-set is also a member of another major class of perfect graphs known as

338 B. W. PEYTON, A. POTHEN, AND X. YUAN

comparability graphs.6 In other words, if a chordal graph G is not also a
comparability graph, then V is not a T-set of G. Note, however, that a graph
G can be both a chordal graph and a comparability graph without possessing
a TEO of G(V). That is, there exist graphs which are both chordal and
comparability graphs, but for which the set of transitive orderings is disjoint
from the set of perfect elimination orderings. An example is P4, the path on
four vertices.

Though V is not a T-set for most chordal graphs G = (V, E), T-sets
nevertheless exist for any chordal graph G. For example, consider the vertex
set X = Sim, # 0, where Simo is the set of simplicial vertices of G. It is
easy to verify that any ordering of G(X) is a TEO of G(X), and hence X is a
T-set of G.

3.2. The T-Set of Maximum Cardinality

In this subsection we show that G has a unique maximum-cardinality
T-set R, and that this set is given by

R = (0 E VIA(v) < 2, and h(u) < 2foreveryu E adj-[u]). (1)

More specifically, ye will show that {a) the vertex set R is a T-set of G, and
(b) for any T-set R of G we have R G R. [The reader can, with some care,
verify that these two statements hold for the graph in Figure 1 CR =

{a, b, c, d, elI.1
Toward that goal, we first characterize the TEOs of G(R). The outmatch-

ing relation on V is the key concept needed to obtain the result. Henceforth,
for any pair of vertices u, v E V, we shall write u < 0 if u E adj-[v], or
equivalently, u < v if nbd[u] c nbd[v]. The relation -C clearly imposes a
strict partial order on the vertex set. An ordering (Y of G(X) is consistent

with the partial order -K if u -C v implies that a(u) < a(v). The following
result says that the TEOs of G(R) are precisely the orderings of G(R) that
are consistent with the partial order -C .

THEOREM 3.2 (TEO theorem). An ordering (Y of G(R) is a TEO of

G(R) if and only f i (Y is consistent with the partial order +

Proof. First we show that any ordering (Y of G(R) that is consistent
with the partial order -C is a PEO of G(R). Let CY be any ordering of G(R)

6An arbitrary graph G = (V, E) IS a comparability graph if there exists a transitive
ordering of G(V); each comparability graph is associated in a natural way with a finite
partially ordered set.

PARTITIONING A CHORDAL GRAPH 339

for which a(u) < a(u) whenever u < u. From (1) and the adjacency-parti-
tion lemma, it follows that for each vertex o E R the sets adj j[VI, adjO[vl,
and adj+[u] form a partition of adj[u]. Furthermore, our assumption that (Y
is consistent with the partial order -X implies that for each vertex 0 E R, the
set madj[o] includes no vertices from adjj[v], and hence contains only
vertices from adjO[u] U adj+[u]. From Lemma 2.3 it follows that madj[vl is
complete in G for every vertex v E R, and (Y is therefore a PEO of G(R).

Next we show that any ordering CY of G(R) that is consistent with the
partial order < is also transitive, and hence a TEO of G(R). Assume the
ordering (Y of G(R) is not transitive. There exist then vertices U, 0 E R and
w E V such that a(u) < a(v) < a(w), (u, u), (v, W> E E, and (u, W) P E.

From (1) and the adjacency-partition lemma, it follows that adj-[u], adj’[v],
and adj ‘[v] form a partition of adj[v]. Consequently, since u, w E adj[v 1
and (u, w) e E, we have U, w E adjj[u]. Since LY(D) < (u(w), the ordering
cr clearly is not consistent with the partial order + , and thus we have proven
the “if’ part of the result.

To complete the proof, we show that any TEO of G(R) is consistent with
the partial order < Let cx be any ordering of G(R) that is not consistent
with -C . Then for some vertex u E R there exists a vertex u E adjj[v] such
that a(v) < a(u). Now by (1) and Lemma 2.2, A(U) = 2 and moreover
there exists a vertex w E adj-[u], w + U, that is not adjacent to U. If
a(w) < o(z)), then we have a(w) < a(u) < (u(u), (w, u>, (u, U) E E, and
(w, U) e E, whence (Y is not a transitive ordering of G(R). If on the other
hand a(w) > a(u), then U, w E madj[v] and (w, v> @ E, whence (Y is not a
PEO of G(R). In either case, CY is not a TEO of G(R), and this concludes
the proof. n

That the vertex set R is a T-set of G follows immediately from the TEO
theorem. We now show that any T-set of G is contained in R.

THEOREM 3.3. For any T-set l? of G, we have l? c R.

Proof. To prove the result it suffices to show that for every vertex
v E V - R there exists no T-set that contains u. We therefore choose a
vertex 0 E V - R and consider in turn the following two mutually exclusive
cases, at least one of which must hold true:

(1) NV) z 3.
(2) AC(u) = 2, but h(u) > 3 for some vertex u E adj-[VI.

Assume first that A(U) > 3, and let [u, o, w, x] be a chordless path of
length three in G with 2) in the interior. Let LY moreover be any PEO of

,. ,.
G(R) where v E R. It suffices to show that CY is not a transitive ordering

340 B. W. PEYTON, A. POTHEN, AND X. YUAN

L1 I
of G(R). Since o E R, we have cu(u) # (Y(W); there are therefore two cases
to c_onsider. Consider first the case where a(u) < (Y(W). Since (Y is a PEO of
G(R), it follows that a(u) < (Y(V) < (Y(W). Such an ordering cannot be a
transitive ordering of G(g), b ecause (u, u), (u, w) E E, but (u, w) 6 E. Now
consider the case where a(w) < a(u). Since (Y is a PEO of G(i), it follows
that CY!X) < (Y(W) < (Y(V). Such an ordering cannot be a transitive ordering
of G(R), because (x,w), (w,v) E E, but (x, U) @ E.

Now suppose that A(v) = 2, but h(u) > 3Afor some vertex u E adj-[u].
Again let c~ be any PEO of G(R) w ere p E R; it again suffices to show that h
cy is not a transitive ordering of G(R). First, by the argument in the
precedi?g paragraph it is impossible for (Y ,to be a transitive ordering of G(fi>
if u E R, and thus we assume that u P R; that is, we assume that a(u) =
n + 1. By Lemma 2.2, there exists another vertex u: E adj-[v] such that
(w, U) g E. Note that [u, v, w] is a chordless path in G. Since (Y(V) < a(u)
= n, + 1, we must have (Y(W) < a(o) < (Y(U) in order for CY to be a PEOpf
G(R). Such an ordering however cannot be a transitive ordering of G(R),
because (w, v), (v, U) E E, but (w, U) e E. This concludes the proof n .

4. A GREEDY SCHEME FOR THE CHORDAL
PARTITIONING PROBLEM

We can partially reduze the graph G by choosing a T-set 2 of G a?d
removing the vertices in R from G in the order specified by a TEO of G(R);
we then complete the reduction of G to th: null graph by applying this
process recursively to the reduced graph G \ R.

Suppose the graph G is reduced to the null graph after the removal of t
distinct T-sets, each ordered by a TEO. Define G, := G, and let

G,,G,,...,G,+, be the sequence of reduced graphs obtained at the end of
eAachh “block’: elimination step. (Note that G,, 1 js the empty graph.) Let

R,, R,, . , f$ be the sequence of T-sets, so that Rj is remo_ved from Gj by a
TEO of G,(R,) to obtain the zedu_ced graph Gi+ 1 = Gi \ Ri. We shall refer
to any vertex set partition R,, R,, . , R, obtained by this process as a
T-partition of V,;7 we shall refer to any PEO of G generateAd by this prccess
as a compound TEO of G with respect to the T-partition R,, R,, . , R,.

Note that the solution to Problem 2 consists of a compound TEO, along
with its associated T-partition and DAG, for which t, the number of mem-

7Henceforth we will incorporate the graph into our notation as a subscript when
needed. For example, if G has been reduced to G,, we might write VCC, h,,(u), adjCt[u],
etc. to distinguish these items from the corresponding items for a different graph.

PARTITIONING A CHORDAL GRAPH 341

bers in the partition, is as small as po:siblF. Let r(G) be the minimum value t
for which there exists a T-partition R,, R,, . . , R, of V,. Consider a greedy
approach for generating a T-partition of V by eliminating the T-set of
maximum cardinality at each major step, as shown in Figure 2. We let
R,, R,, , R, be the T-partition of V, obtained by this process. For the
graph in Figure 1, the T-partition obtained by this process has members
R, = (a, h, c, d, e} and R, = {f, g}.

It is not difficult to show that this process obtains a minimum-cardinality
T-partition of Vc, and hence a solution to Problem 2. First we show that
T(H > < T(G) for any induced subgraph H of G, after which the main result
of this section can be obtained by a simple induction argument.

LEMMA 4.1. For any induced subgraph H of G, we have r(H) < r(G).

Proof. Let Ei,, I?,, . . , I?, be a nT-p@tion pf Vc, and let (Y be a
compound TEO of G with respect to R,, R,, . . , R,. Consider the subgraph
H of G induced by X c V and the unique ordering /3 of H that is
consistent with CY in the sense that p(u) < P(v) whenever u, v E X and
a(u) < (Y(G). Now, for every vertex v E X we have madj.[cl c madjclvl,
with madj,[c] complete in G. It follows therefore that madj,[vl is complete
in H for every vertex v E X, whence /3 is a PEO of H.

Let ii, R,, , g, be the partition of X defined by Rj = ii n X,
1 < i < t. To prove the result it suffices to show that P is a compound TEO
of H with respect to gi, I&, . , fi,. Clearly, p is a “block” ordering of V,,
consecutively numbering the vertices in R, before numbering next those in
ii+,. In the previous paragraph we showed that P is a PEO of H. To
complete the proof, it suffices to show that P restricted to Ri is a transitive
ordering of Hi(&). Toward that end, assume that u, o E &, w ‘,X, P(u) <

P(v) < P(u;), and (u, 01, (v, w> E E,. It follows that U, v E Ri, a(u) <
a(v) < a(w), and (u, v), (v, w) E E,. Since LY is a compound TEO of G

i + 1;

G, + G;

while Gi # 0 do

Let Ri be the maximum-cardinality T-set of Gi;

Compute Gi+ 1 +- Gi \ R,,

with R, removed in a TEO of G,(R,);

i+i+l;
end while

FIG. 2. Greedy partitioning scheme for which each Ri is the maximum-cardinal-

ity T-set of Gi.

342 B. W. PEYTON, A. POTHEN, AND X. YUAN

with respect to the T-partition Gi, RI,, . . . , i,, we have (u, w) E E,, which
in turn implies that (u, w> E E,, thereby giving us the result. W

THEOREM 4.2. The greedy partitioning scheme in Figure 2 generates a

minimum-cardinality T-partition of V,.

Proof. We prove the result by induction on n = IVol. Clearly, the result
is true for n < 2. Let G be a graph with n > 3 vertices, and assume the
greedy scheme produces a minimum-Fardinality T-partition for any graph
with fewer vertices. Let R,, R,, . . , R, be a T-partition of Vo for which
s = r(G), and let R,, R,, . . . , R, be the T-partition of V, generated by the
greedy scheme in Figure 2. Clearly r(G) = s < t; thus to prove the result it
suffices to show that t < s.

Since the greedy scheme applied to G processes the reduced graph
G \ R, precisely as it does when applied directly to G \ R,, it follows by the
induction hypothesis that R,, R,, . . . , R, is a minimum-cardinality T-parti-
tion of V, - tl, and thus we have t - 1 = r(G \ R,). Now, Theorem 3;3
implies thtt RJ c R,, _whence G \ R, is an induc$d subgraph of G \R,.

Whereas R,, R,, . . . , R, is a T-partition of V, - R,, it follows by Lemma
4.1 that

t - 1 = T(G\R,) < 7(G\&) =s s - 1.

In consequence we have t < s as required. n

5. COMPUTING A MAXIMUM-CARDINALITY T-SET

This section introduces an algorithm for computing the maximum-cardi-
nality T-set R and a TEO of G(R). The algorithm removes one simplicial
vertex after another from the graph so that upon termination the vertices of
R have been eliminated and the order in which they were eliminated is a
TEO of G(R). Using this algorithm, Section 6 presents the implementation
details needed for a linear-time implementation of the greedy scheme in
Figure 2.

The algorithm introduced in this section is based on two simple ideas. As
the algorithm eliminates simplicial vertices from the graph, new simplicial
vertices appear in the reduced graph. The first, and most important, idea
incorporated into the algorithm is a technique for determining whether or not
a “candidate” simplicial vertex in ;he reduced graph is a member of R and
hence should be eliminated. Let R denote the set of vertices that have been

PARTITIONING A CHORDAL GRAPH 343

eliminated thus far by the algorithm, and let o be the next simplical vertex
examined as a candidate for elimination. We will show that, within the
context of our algorithm, o E R if and only if

adj,[01 - i? G adjz[u] u adjd [01

To enable the test in (21 to accurately distinguish members from non-
members of R, the order in which the candidate simplicial vertices are
examined must be carefully prescribed. The second idea incorporated into
the algorithm deals with this issue. Let deg,(u) be the degree of a vertex w
in G (i.e., ladjc[n]]). At each step, the algorithm chooses as the next vertex to
examine for elimination a candidate simplicial vertex u for which deg,(u) is
minimum. Whenever u E adj,[v], we have nbd,[u] c nbd,[v], whence
dego(u1 < deg,(u). We th erefore incorporated this particular ordering of
the candidates into the algorithm to enforce examination of the vertex
u E adjo[u] bf e ore examination of 0, so that whenever the algorithm finally
tests whether or not a vertex u satisfies (2), it will have already examined and,
if called for, eliminated, every member of ad&J u].

We have incorporated these two ideas into the algorithm shown in Figure
3. The algorithm collects the eliminated vertices in the set R. The set C
contains the candidate simplicial vertices belonging to the current elimina-
tion graph. Initially C = Sun,. As the computation proceeds, each “success-
ful” candidate is eliminated from both the graph and the set C. When
elimination of a successful candidate z) results in a new simplicial vertex w in

n

H + G; R * 0; C + Sim,;
whileC#iZIdo

Choose o E C for which deg,(u) is minimum;
c + c - {Oli
if adj,[z,] - R c ad&v] U adjd[u] then

H'+H\{u};lb-Eiu{v};
for u: E Sim,. - Sim, do

c +- c u {w);

end for

H +-H';
end if

end while

FIG. 3. High-level algorithm for computing the maximum-cardinahty T-set R
and a TEO of G(R). Upon termination, R = R and the elimination sequence is a
TEO of G(R).

344 B. W. PEYTON, A. POTHEN, AND X. YUAN

the reduced graph, the algorithm places w in C, where it will be examined
later for possible elimination.

Before proving the algorithm correct, we examine how it processes the
graph shown in Figure 1. Initially, C = Sim, = {a, b, c, d). It is trivial to *
verify that each of these vertices will pass the test for inclusion in R when it
is finally examined by the algorithm. (It can be proven formally using Lemma
2.2 and the adjacency-partition lemma.) The vertex d (degree one in G) will
be removed first, whereupon the newly simplicial vertex g will be added to
the candidate set C. The vertices a, b, and c, each of degree two in G, will
be removed next in succession. Observe that after the removal of these
vertices, e has become simplicial and f remains nonsimplicial, whence
C = {e, g}. The algorithm will next examine either e or g for inclusion in 2.
(Both ar,e of degree three in G.) No matter which is examined first, g will fail
the test because the vertex f E ad$[g] remains uneliminated, and e will
pass the test because the vertex f E adj,+ [el is the only neighbor of e in the
reduced graph. The vertex f (degree five in G) becomes simplicial upon the
removal cf e, but upon examining it the algorithm will reject it for member-
ship in R because the vertez g E adjc[f] remains uneliminated. The algo-
rithm thus terminates with R = R = {a, b, c, d, e), as required.

While the primary purpose of the following result is to prove the
algorithm correct, it also shows that the minimum degree among the candi-
dates is nondecreasing as the algorithm proceeds. This property of the
algorithm provides the implementation presented in Section 6 with efficient
access to the minimum-degree members of C.

THEOREM 5.1. The set of vertices I? removed by the algorithm in Figure
3 is precisely the maximum-cardinality T-set R. Furthemre, the order in
which the vertices are removed is a TEO of G(R), and the minimum degree
among the vertices of C is nondecreasing as the algorithm proceeds.

Proof. _Let I? be the set of vertices removed by the algorithm. We first
show that R L R. Toward that end, let R denote the set of vertices already
selected for elimination at some point during the compu!ation, and let o be
the next vertex selected for elimination. To prove that R c R, it suffkes to
prove the following: if fi G R, then v E R.

Let g a”d v be as stated above, and consider a vertex u E adj,[v] n fi.
Since u E R c R, by (I) we have A,(u) < 2, and thus by the adjacency-par-
tition lemma the sets adjJ u], adjE[u], and adjG+[u] form a partition of
adj,[u]. It follows that u belongs to one of the three_sets adj,[v], ad$[v],
and adjd [v 1. Now con$der a vertex w E adj,[v] - R. Since v passes the
test for inclusion in R, it follows that w E adj,$[v] U adj,t[v]. We have
therefore shown that adj,[v], adjE[v], and adjd[zj] form a partition of

PARTITIONING A CHORDAL GRAPH 345

adj,[u], whence h,(u) < 2 by the adjacency-partition lemma. Since adj,[v]

-fi c ad$[u] U adjd[u], we have adji[v] c i L R; hence, by (11, h,(u)
5 2 for each vertex u E adjJ u]. It follows by (1) then that w E R, giving us
R c R as required. This concludes the firzt part of the proof.

We now complete the proof that R = R by showing \hat fi is not
properly cc+ained in R. By way of contradiction assume that R c R. Choose
0 E R - R for which deg,(u) is minimum. We first show that adjJv] G i.
Consider a vertex u E adj,[v]. By (11, h,(u) < 2; moreover, since 0 E R
and adjJu] c adjJu], it follows by (1) that u E R. From nbd,[u] c
nbd,[u] we have degc(u> < deg,(u), and Lhus by the minimality o,f degc(o)
among the vertices of R excluded from R, it follows that u E R, thereby
giving us adjc [v] & R.

Let fi be the set of vertices already selected for elimination by the
algorithm im?ediately after the last vertex of _adjc[v] has been selected for
inclusion in R, so that we have adjc [u] c R. It follows by applying the
adjacency-partition lemma to 0 E R that adjJ u], adjE[v], and adjd[u] form
a partition of adj,[u], and thus we have adj,[vl - R c_ad$[v] U adj,f[o]. In
consequence, u is simplicial in the reduced graph G \R (by Lemma 2.3) and
also henceforth satisfies the test for inclusion in k Observe that the
algorithm has not yet examined w for inclusion in fi, because degc(u) <
deg,(u) for any vertex u E adj,[u], and moreover u becomes simplicial in
the reduced graph no later than u does. The algorithm therefore eventually
examines v sometime afer eliminating the last member of adjG[V] and
includes it in R, despite our assumption to the contrary. From this contradic-
tion we conclude that i = R.

To conclude the argume+ note that the test for inclusion in i ensures
that for every vertex u E R = R the vertices of adjJ w] precede 0 in the
elimination sequence. Tb elimination sequence is therefore, by the ATEO
theorem, a TEO of G(R). Finally, note that the test for inclusion in R also
ensures that deg,(w) > deg,(u) for each new simplicial vertex w resulting
from the elimination of V. In consequence, the minimum degree among the
vertices in C is nondecreasing, which concludes the proof. n

6. IMPLEMENTING THE GREEDY SCHEME

Repeated application of the algorithm in Figure 3 to a chordal graph gives
us an algorithm that implements the greedy partitioning scheme in Figure 2.
With careful attention to certain implementation details, we can obtain an
algorithm whose runtime is linear in the number of vertices and edges in the
chordal graph.

346 B. W. PEYTON, A. POTHEN, AND X. YUAN

Two implementation issues in particular must be successfully dealt with
in order to achieve a linear-time algorithm. First, we need an efficient
technique for detecting new simplicial vertices (i.e., the vertices w E
Sim,, - Sim, in Figure 3). Liu and Mirzaian [9] showed how to use a
previously computed PEO and certain vertex degree information in the graph
to devise a simple and efficient test for simpliciality. We briefly discuss this
test in Section 6.1.

Second, we need an efficient way to implement the test for membership
of a candidate simplicial vertex in R. Note that straightforward determination
of whether or not a vertex v satisfies (2) yould require examination of the set
adj,[w] for each vertex w E adj,[v] - R, which is far too costly. We show in
Section 6.2 that judicious use of vertex degree information leads to a simple
and efficient test that is equivalent to (2).

Other implementation issues are fairly straightforward and will be dealt
with when we look at the detailed algorithm in Section 6.3. In Section 6.4 we
show that the time complexity of the algorithm is @(IV 1 + [El).

6.1. An Eflicient Test for Simpliciality

In their efficient implementation of the Jess-Kees reordering algorithm,
Liu and Mirzaian [9] address the issue of how to determine when a vertex has
become simplicial in the reduced graph. Their approach requires a perfect
elimination ordering P of the chordal graph. Throughout the rest of Section
6 we will often subscript the vertices with their position in this PEO; that is,
we will let V, = {vi, v2, . , v,,}, where p(vj> = j for 1 < j < n. Note that a
PEO can be computed in @‘(IV 1 + 1 E 1) t ime using the maximum-cardinality
search algorithm [I4].

For each vertex vj, let fj be the index given by

4 := min{k I ok E nbd,[vj]},

and let mdeg,(vj), the monotone degree of vj, be given by

The following result is Theorem 3.5 in Liu and Mirzaian [9].

PROPOSITION 6.1 (Liu and Mirzaian [9]).

if deg,(u$ = mdeg,(v4).

We have vj E Simc ifand only

In order to use the simpliciality test of Proposition 6.1, the algorithm will
maintain the degree values deg,(vj) and mdeg,(vj) in the variables deg(uj)
and mdeg(vj) respectively, where H is the current reduced graph.

PARTITIONING A CHORDAL GRAPH 347

6.2. An Efficient Test for Membership in R

As noted earlier, a naive implementation of the test in (2) is far too
expensive to lead to a linear-time implementation. The following result
provides us with an efficient alternative to (2).

PROPOSITION 6.2. Suppose the algorithm in Figure 3 is currently testing

the simplicial vertex v E C for elimination, and let I? now denote the subset of

R containing those vertices that have been eliminated thus far. We then have

(2) zf and only zf

Inbd,[u] - I?(=Inbd,[v] - I?[forewey u E nbd,[v] n I?. (3)

Proof. Let v and E be as stated, and choose a vertex u E nbd,[v] n I?.
Because u was simplicialjn the reduced graph from which it was removed, it
follows that nbd,[u] - R is complete in G. Since v belongs to the clique A
nbd,[u] - R, the following statement holds true:

nbd,[u] - R^ c nbdc[w] - k for every u E nbd,[u] n 2. (4)

Assume that (3) holds. It follows then from (4) that

nbd,[u] - 2 = nbd,[v] - k for every u E nbd,[v] n fi. (5)

Choose a vertex w E adj,[ul - g. To show that (2) holds, it suffices to show
that nbd,[uh] c nbd,[w]. Let r E nbd,[v]. If x belongs to the clique
nbd,[v] - R from which w was ta@n, clearly x E nbd,[w] as required. If
o,” the other handA x E nbd,[u] n R, then from (5) we have w E nbd,[u] -
R = nbd,[xl - R, whence x E nbd,[w], completing the first half of the
argument.

Now assume that (2) holds, and choose a vertex u E nbd,[v] n l?. To
show that (3) holds, it suffices [by (41 to show that

nbd,[v] - I? c nbd,[u] - fi.

Clearly, v belongs to both sets. Let w # u belong to nbd,[v] - k It follows
by (2) that w E adji[vl U adj,+[v]. In consequen:e, nbd,[u] & nbd,[w];
hence u E nbd,[w], and thus w E nbd,[ul - R, which completes the
proof. H

To test for (3), our algorithm must accurately maintain the variable

deg(u) = ladj,[u] _A1 f or eliminated vertices u E Ei as well as uneliminated
vertices u E V, - R.

348 B. W. PEYTON, A. POTHEN, AND X. YUAN

6.3. Implementation Details

The algorithm introduced in Figure 4 (along with Figures 5, 6, and 7)
implements the greedy scheme introduced in Figure 2. That is, it generates
the minimum-cardinality T-partition R,, R,, . . , R,, where each partition
member Ri is the unique maximum-cardinality T-set of the reduced graph
Gj = G\{R, u ... U Rip,}, and it also generates a compound TEO of G
with respect to the T-partition R,, R,, , R,. For efficient access to a

Input: A chordal graph G = (V, El; f or each vertex vj E V, deg(v.1 [= degc.vj)],
mdeg(vj) [= mdegC(vi)], and adj,[v,], sorted in ascending order b y the numbers
assigned by the initial PEO.
Output: Upon termination, i,, I?,, , I?, is precisely the minimum-cardinality
T-partition R,, R,, , R,, where each partition member Ri is the maximum-cardi-
n&y T-set of the reduced graph Gi = G \ {R, U ... U Ri_ 1}. The PEO CY (com-
puted in Figure 7) is a compound TEO of G with respect to the T-partition

R,, R,, > R,.
INITIALIZE (markt *), C[* 1, S,); /*Figure 5*/
r + 0; i + 1; G, + G; U 6 V;
while Gi # 0 do

d ,,,= + 0; d,i, + IVI;
for vj E Si do

d,, +- max{d,,,, deg(uj)k
d,,i, + min{d,,,, deg(v.)];

C]dedvJ)l + c[degCv,)j U {vj];
end for

fpr vj E U do olddeg(vj) + deg(vj) end for

R<+0; Si+l + 0; u +- 0;
while dmi, < d,,, do

for each vertex vI E C[d,,,,] do

C]d,,ll,,l + G]d,,,i”l - {vj];
if IN_TSET(V~) = 1 then /*Figure 6*/

ELIMINATE(V]); /*Figure 7*/
else

si+r + si+ 1 u ivj);

end if

end for

while C[d,,] = 0 and dmin < d,, do

dIni*, + dmi, + 1;
end while

end while .
for vI E Ri do mark(vj) + 0 end for

‘G+I + Gi \ ii; i +- i + 1;

end while

Fig, 4. Detailed implementation of scheme in Figure 2.

PARTITIONING A CHORDAL GRAPH 349

procedure INITIAI,IZE(mZdCf*), c[*], s,>

s, +- 0;

for d E {I, 2,. , n} do ~[d] + 0 end for

for j E {l, 2,. , n} do

if deg(vj) = mdegfy) then

mai+ + 2; S, + S, U {vj};
else mark(uj;j) + 3; end if

end for

Fig. 5. Initialization procedure: initializes data structures for main while loop.

candidate simplicial vertex of smallest degree in Gj, the algorithm maintains a
collection of sets C[d] (1 < d < n), where ~[d] contains the current candi-
date simplicial vertices u; for which deg,!w) = d. Since vertices are both
added to and removed from these sets, they should be implemented as a
collection of doubly linked lists. Because no vertex appears in more than one
set at a time, only three n-vectors are required: one for the first pointers into
the lists, two more for the backward and forward links. We now discuss other
details of the implementation.

Initialization for the algorithm is performed by the procedure INITIALIZE

shown in Figure 5. This procedure initializes S, to Sim. (see Proposition
6.11, each candidate set C[d] to the empty set, and each marker variable
mark(uj) to an appropriate integer value. The various values taken on by the
marker variables mark(l;j) during the course of the algorithm have the
meanings given below:

0 if vj has been eliminated during an earlier major step,

1
mark(vj) =

:

if vj has been eliminated during the current major step,

2 if vj is simplicial, but not yet chosen for elimination,

3 if vj is not yet simplicial,

where each major step is a single iteration of the main while loop.

boolean function IN_TsET(u~)

IN_TSET + 1;

for each vertex ok E adj,[l;,] do

if marMu,) = 1 and deg(t+) # deg(uj) + 1 then

IN_TSET + 0;

end if

end for

Fig. 6. Boolean function that tests for membership in the maximum-cardinality T-set
Rj.

350 B. W. PEYTON, A. POTHEN, AND X. YUAN

procedure ELI~INAT;(uj)
mar!duj) + 1; Rj + Rj U {u,}; U +- U - {uj};
r + r + 1; cu(Ui> ‘+ r;
for each vertex ok E adj,[uj] in ascending order do

dedsk) + deg(uk) - 1;
if mark&) > 2 then

Update fk if necessary; u + u u {ok};
if k <j then mdeg(uk) + mdeg(vk) - I;
if de&+) = mdeg(vfk) and mark(+) = 3 then

marktuk) + 2;

C[olddeg(t+)] + C[olddeg(uk)] u (+};
d ,nax + ma+,,,, olddeg(u,)k

end if

end if

end for

Fig. 7. Elimination procedure: updates data structures to reflect the selection of ‘oj
for elimination.

An iteration of the main while loop in Figure 4 removes the vertices of
the maximum-cardinality T-set Ri from the reduced graph Gi, generating a
TEO of G,(R,) as the elimination sequence for the set. Note that the set
Si = Sirno, is available at the beginning of the ith iteration. The first for loop

computes the minimum and maximum degrees encountered among the
vertices of Sim,, (d,,, and dmin, respectively), and also places each simpli-
cial vertex V~ in the appropriate candidate set C[deg,-vj)]. The algorithm

maintains the degree value deg,{v.) in the variable olddeg(uj).
The second for loop updates ofddeg(vj) for each vertex vj whose degree

was reduced during the preceding major step. To do this efficiently, the
algorithm maintains a set U, which contains every uneliminated vertex whose
degree has been reduced during the current major step.

As long as there remain candidate simplicial vertices to be processed, the
algorithm examines those of minimum degree in Gi (i.e., those in C[d,,]).
For each vertex v. E C[d,,,], the boolean function IN_TSET (see Figure 6)
uses the current d egree information to determine if V~ satisfies the test for
elimination given in (3). In Figure 6, note that

deg(vk) =ladjG[+] - A,[=Inbd,[vk] -&I

and

deg(vj) =ladj,[vj] - ii1 =Inbd,[u,] - i?,l - 1.

PARTITIONING A CHORDAL GRAPH 351

If vj is not to be eliminated at this step, the algorithm then places oj in
the set of simplicial vertices Si+ i, where it will be processed (and eliminated)
during the next iteration of the main while loop. Otherwise, the procedure
shown in Figure 7 selects vj for elimination and updates the current T-set Ri

and the relevant marker and degree variables. More specifically, while the
degree variables of the peighbors of uj are updated, new simplicial vertices
detected in adjo[vj] - Ri (see Proposition 6.1) are placed in the appropriate
candidate set. The set U of uneliminated vertices whose degrees have been
reduced is also updated.

Note that the procedure ELIMINATE must process the members of adj,[u,]
in ascending order by their numbering in the initial PEO. This is needed to
enable efficient updating of the parameters fk and to ensure that the values
mdeg(vk) have been correctly updated before they are used in simpliciality
tests. In Figure 7, we have not shown the details of how fk is updated.
Efficient access to fk can be obtained by maintaining a pointer to the first
vertex in the ordered list adj,[vk] that has not yet been chosen for elimina-
tion. If fk =j, where vj is the vertex just chosen for elimination, then
adj,[u,] must be searched to the right of vj for the new first uneliminated
vertex, and the pointer must be adjusted accordingly.

After the algorithm examines vj for possible elimination, it then increases
dmin if necessary. That dmin cannot possibly decrease during the course of a
major step was shown in *Theorem 5.1. After computing & (= I$), the
algorithm then eliminates Rj from the graph and marks each vertex of ii as
eliminated from the graph.

Finally, that the algorithm in Figure 4 correctly implements the greedy
scheme in Figure 2 follows immediately from the fact that each iteration of
the main while loop implements the algorithm in Figure 3.

6.4. Complexity Analysis

In this section we verify that the algorithm in Figure 4 runs in time
proportional to IV 1 + 1 El. Recall that the algorithm in Figure 4 requires

(1) a PEO of G, and
(2) sorted adjacency lists so that neighbors can be processed in ascending

order by their labels in the PEO.

The first can be obtained in @‘(IV 1 + IEI> time using the maximum-cardinal-
ity search algorithm [14]; the second can be obtained in @‘(IV 1 + 1 E 1) time by
careful application of a bin sort. It is worth pointing out that in our
application, the PEO and sorting can be obtained as a by-product of the
symbolic factorization step, and thus are available at no extra cost in computa-
tion time. (For further details consult Liu [7].)

352 B. W. PEYTON, A. POTHEN, AND X. YUAN

The total work associated with the procedure INITIALIZE is clearly propor-
tional to [VI. Because Si c Rj at each major step i, the total work performed
by the for loop that distributes the members of Si among the candidate sets
is also proportional to IVl. Each vertex is eliminated from the graph once,
and thus the work associated with the procedure ELIMINATE is @‘(IV 1 + 1~1).
Note that each vertex is eliminated either by the major step during which it
first becomes simplicial or by the next major step. As a result, each vertex is
examined for possible elimination no more than twice, and consequently the
work associated with the boolean function IN_TSET is also @(IV 1 + [El). For
each vertex uj E U whose “old’ degree is updated by the algorithm at major n
step i + 1, we have oj E adjc [uk] for some vertex vk E R,; that is, to each
vertex uj E U there corresponds one or more edges which were removed
from the graph during the previous major step i. In consequence, the total
work spent updating the variables olddeg(vj) (1 < j < n) is @‘(lVl + /El).

Finally, we consider the work expended by the while loop that updates
dmi,. During any given iteration of the main while loop, the work performed
updating dmi, is bounded above by the maximum of deg,(u) over all vertices
v examined for possible elimination during the step. Since each vertex is
examined for possible elimination no more than twice during the course of
the algorithm, it follows that the total work spent updating dmin is @(IV] +
/El>. From this and the foregoing observations, it follows that the time
complexity of the algorithm in Figure 4 is @(IV 1 + I El). Note that the space
complexity is also @(IV I + I E I).

7. CONCLUDING REMARKS

In this paper we have developed an &'(lVl + IEI) algorithm for solving
the graph partitioning problem stated as Problem 2 in Section 1. Two new
ideas-TEOs and T-sets-enabled us to devise a simple greedy scheme that
solves Problem 2. We then provided a high-level description of an algorithm
for computing a maximum-cardinality T-set R, along with the required TEO
of G(R). Careful implementation provides us with a detailed @(IV I + I El)
algorithm that implements the greedy scheme, and thus solves Problem 2.

The approach taken in this paper has the virtue of simplicity and provides
insight into the essential features of this fairly involved graph partitioning
problem. A forthcoming paper [lo] will present an implementation of a
variant of the greedy scheme in Figure 2 that processes a clique tree
representation of G, rather than the conventional representation by adja-
cency lists. The new clique tree algorithm makes use of some interesting new
concepts about separators in the clique intersection graph of the chordal
graph.

PARTITIONING A CHORDAL GRAPH 353

The third author would like to thank Professor Joseph Liu for the
guidance and encouragement he received when he was a student at York

University.

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

F. L. Alvarado, A. Pothen, and R. S. Schreiber, Highly parallel sparse triangular
solution, in Gru$ ‘f’heoy and Sparse Matrix Computation CJ. A. George, J. R.
Gilbert, and J. W. H. Liu, Eds.), Springer-Verlag, vol. 56, pp. 141-158 (1993).

F. L. Alvarado and R. S. Schreiber, Optimal parallel solution of sparse triangular

systems, SIAM J. Sci. Comput., 14:446-460 (1993).
J. A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive

Definite Systems, Prentice-Hall, Englewood Cliffs, N.J., 1981.
J. A. George and J. W. H. Liu, The evolution of the minimum degree ordering
algorithm, SIAM Rev. 31:1-19 (1989).

N. J. Higham and A. Pothen, The stability of the partitioned inverse approach to
parallel sparse triangular solution, Tech. Report CS-92-52, Computer Science,
Univ. of Waterloo, Oct. 1992: SIAM J. Sci. Cornput., to appear.
J. G. Lewis, B. W. Peyton, and A. Pothen, A fast algorithm for reordering sparse
matrices for parallel factorization, SIAM J. Sci. Statist. Comput 6:1146-1173
(1989).
J. W. H. Liu, Reordering sparse matrices for parallel elimination, Parallel

Comput. 11:73-91 (1989).
J. W. H. Liu, The role of elimination trees in sparse factorization, SZAMJ. Matrix

Anal. App2. 11:134-172 (1990).

J. W. H. Liu and A. Mirzaian, A linear reordering algorithm for parallel pivoting
of chordal graphs, SIAM J. Discrete Math. 2:100-107 (1989).
B. W. Peyton, A. Pothen, and X. Yuan, A clique tree algorithm for partitioning a
chordal graph into transitive subgraphs, Tech. Report CS-93-2’7, Computer
Science, Univ. Waterloo, July 1993; submitted.
A. Pothen and F. L. Alvarado, A fast reordering algorithm for parallel sparse
triangular solution, SIAM J. Sci. Statist. Comput. 13:645-653 (1992).
A. H. Sherman, On the Efficient Solution of Sparse Systems of Linear and
Nonlinear Equations, Ph.D. Thesis, Yale Univ., 1975.
D. R. Shier, Some aspects of perfect elimination orderings in chordal graphs,
Discrete Appl. Math. 7:325-331 (1984).
R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality

of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs, SIAM J. Comput. 13:566-579 (1984).

Received 18 December 1992; final manuscript accepted 11 May 1993

