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obtain a representation of its inverse in product form. The number of general 
communication steps required by this approach is proportional to the number of 
factors in the factorization. The triangular matrix can be symmetrically permuted to 
minimize the number of factors over suitable classes of permutations, and thereby the 

complexity of the parallel algorithm can be minimized. Algorithms for minimizing the 
number of factors over several classes of permutations have been considered in earlier 
work. Let F = L + LT denote the symmetric filled matrix corresponding to a Cholesky 

factor L, and let G, denote the adjacency graph of F. We consider the problem of 
minimizing the number of factors over all permutations which preserve the structure 
of G,. The graph model of this problem is to partition the vertices G, into the fewest 

transitively closed subgraphs over all perfect elimination orderings while satisfying a 
certain precedence relationship. The solution to this chordal-graph partitioning prob- 
lem can be described by a greedy scheme which eliminates a largest permissible 
subgraph at each step. Further, the subgraph eliminated at each step can be 
characterized in terms of lengths of chordless paths in the current elimination graph. 
This solution relies on several results concerning transitive perfect elimination order- 

ings introduced in this paper. We describe a partitioning algorithm with @(IV 1 + 1 El) 
time and space complexity. 

1. INTRODUCTION 

We consider a graph partitioning problem which arises in the develop- 

ment of a partitioned inverse approach to the solution of sparse triangular 
systems of equations on highly parallel computers. On such machines it is 
advantageous to compute the solution to a lower triangular system Lx = _b by 
matrix-vector multiplication _x := L ‘_b when there are several systems (not 
all available at the same time) involving the matrix L to be solved. This is due 
to the fact that there is much more parallelism to be exploited in the 
multiplication approach than in the conventional substitution algorithm. If we 
can find a factorization L = II:= 1Pi, where each factor Pi has the property 
that P, and P,-’ have the same nonzero structure, then L-l = lI=,Piml can 
be represented in a space-efficient manner, storing the t factors P,-’ in the 
space required for L. Furthermore, the vector g can be computed as a 
sequence of t matrix-vector multiplication steps, exploiting parallelism fully 
within each step. 

The number of factors t in the factorization of L is an important 
measure, since it is proportional to the number of (expensive) router commu- 
nication steps required by the parallel algorithm based on this approach; 
hence it is a good predictor of the running time of triangular solution on 
highly parallel machines like the Connection Machine CM-2. It has been 
recognized that the triangular matrix can be symmetrically permuted to 
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minimize the number of factors, and hence several strategies for minimizing t 
over appropriate permutations of L have been considered in previous work 

[2,111. 
Minimizing t over all symmetric permutations of L for which the 

permuted matrix remains lower triangular gives rise to a directed-acyclic- 

graph (DAG) partitioning problem [2]. After introducing some notation, we 
discuss this problem in some detail, after which we proceed with a descrip- 
tion of the closely related partitioning problem addressed in this paper. 

Let G, = (V, F) be the directed graph of the matrix L with vertices 
v = (1,. . . , n} corresponding to the columns of L and edges E = ((j, i) : i 
> j and li, j # 0). The edge (j, i> is directed from the lower-numbered vertex 

j to the higher-numbered vertex i. It follows that Gd is a directed acyclic 
graph (DAG). If th ere exists a directed path from a vertex j to another vertex 
i in Gd, then j is a predecessor of i, and i is a successor of j. An ordering 

of GC1 is any bijection from V to the set {1,2, . , IV I}. A topological ordering 

is any ordering that, for every predecessor-successor pair, numbers the 
predecessor with a lower number than that received by the successor. Note 
that the initial ordering imposed on Gd by L is a topological ordering. 

Given a set X c V, let F, c F be the set comprising every edge from a 
vertex in X to any vertex in the graph. The edge subgruph induced by F, is 
the subgraph of G, with edge set F, and vertex set consisting of all vertices 
which are endpoints of these edges. (We will refer to this as the edge 
subgraph induced by X.) A directed graph is transitively closed, or more 
briefly transitive, if the existence of edges (u, v) and (v, u;> implies the 
existence of edge (u, w). 

We can now give a precise statement of the DAG partitioning problem: 

PROBLEM 1. Given a DAG G,, find an ordered partition R, + R, + 
*** < R, of its vertices such that 

(1) for every v E V, if v E R, then all predecessors of v belong to 

R,, > Rj, 
(2) the edge subgraph induced by each Ri is transitively closed, and 
(3) t is minimum over all partitions that satisfy the first two properties. 

Problem 1 can be solved in @(IV 1 IF 1) time and 8(] FI) space when L is 
an arbitrary lower triangular matrix, or is obtained from the sparse LU 

factorization of an unsymmetric coefficient matrix [2]. However, if L is a 
Cholesky factor of a symmetric positive definite matrix, then there is a more 
efficient @(lV 1) time and space partitioning algorithm [ll]. We consider this 
latter case in more detail now, since it will be helpful in describing the graph 
partitioning problem considered in this paper. 
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Let A be a symmetric positive definite matrix whose nonzeros are 
algbebraically independent, and let F = L + LT denote the symmetric filled 

matrix corresponding to its Cholesky factor L. Then G,, the adjacency graph 
of F, is a chordal graph.i The ordering cy : V + (1, . , IV I} of the vertices of 
G that corresponds to the order in which the unknowns in the linear system 
are eliminated is a pe$xt elimination ordering (PEO) of G. In the case of 
sparse symmetric factorization, because G is a chordal graph, the transitive 
reduction of Gd (a data structure called the elimination tree [8]) can be used 
to obtain an extremely efficient @(IV I) t’ ime and space algorithm for solving 
the chordal DAG partitioning problem ill]. The only other data required are 
the outdegrees of the vertices in G,!, which are either already available or 
easily computed. 

Further details on DAG partitioning problems connected with highly 
parallel alg on ‘th ms for the solution of sparse triangular systems and computa- 
tional results from a Connection Machine CM-2 implementation may be 
found in the papers [2,11]. The partitioned inverse approach has been shown 
to be normwise but not componentwise forward and backward stable when a 
certain scalar, which can be loosely described as a growth factor, is small; this 
scalar is guaranteed to be small when L is well conditioned [5]. A compre- 
hensive survey of the partitioned inverse approach to highly parallel sparse 
triangular solution is provided in [I]. 

The more general chordal graph partitioning problem addressed in this 
paper arises when we consider a larger class of elimination orderings for 
Cholesky factorization (thereby potentially reducing t further). Given the 
matrix A, we may compute an appropriate ordering in two steps: First, we 
compute the filled graph G, for a Cholesky factor L by means of a primary 
fill-reducing ordering; then we compute a secondary reordering that mini- 
mizes the number of factors t in the triangular matrix over all reorderings of 
A that preserve the structure of the-filled graph G,. The computed ordering 
is then applied to the coefficient matrix A before the factorization is 
computed. When there are several systems to be solved involving the same 
triangular matrix, the use of an ordering for factorization that has been 
optimized for efficient parallel triangular solution is justified. This two-step 
approach is similar to that used to compute the Jess-Kees ordering for 
parallel sparse Cholesky factorization [6,9]. 

Given a chordal graph G = (V, E) with vertices numbered in a PEO, we 
can associate a DAG Gd with G by directing each edge in E from the 
lower-numbered vertex to the higher-numbered vertex. The more general 
chordal graph partitioning problem may be stated as follows. 

‘Definitions of some technical terms will be deferred until later in the paper. 
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PROBLEM 2. Given a chordal graph G = (V, E), compute a PEO, the 
associated DAG Gd, and an ordered partition R, + R, < ... + R, of its 
vertices such that 

(I) for every u E V, if v E I$ then all predecessors of v belong to 

Rip.. . > Ri, 
(2) the edge subgraph induced by each Ri is transitively closed, and 
(3) t is minimum over all partitions that satisfy the first two properties for n ,9 

some DAG G,, where Gd ranges over all DAGs obtained from PEOs of G in 
the manner described above. 

In this paper we introduce an @‘(IV 1 + 1 El) algorithm for solving Problem 
2. Our solution, which we discuss briefly now, involves the lengths of certain 
chordless’ paths in G. A vertex v is an interior vertex of a path if it lies on 
the path and is not an endpoint of the path. Observe that any vertex v is 
either an interior vertex on some chordless path in the graph, or else an 
endpoint of every chordless path on which it lies. In the former case, let A(u) 
denote the length of the longest chordless path in G which includes o in its 
interior. [Note that A(u) Z= 2 for all such vertices.] In the latter case, let 
A(v) = 1. The vertices v E V for which A(v) = 1 or h(v) = 2 have certain 
properties which will play a crucial role in our solution to Problem 2. Section 
2 introduces a few of these properties. 

From among all solutions to Problem 2, choose one for which )Ril is as 
large as possible. In Section 3 we show that R, is the unique set consisting of 
vertices 0 which satisfy A(U) < 2, and also satisfy A(u) < 2 for all u E adj[v] 
such that {u} U adj[u] c {v) U adj[v].3 Th’ is characterization moreover can 
be applied recursively to obtain the largest possible partition member R, in 
the reduced graph G \ (R, U **- u R,_I). As we shall see in Section 4, we 
can solve Problem 2 by using a simple greedy scheme that eliminates at the 
ith step a maximum-cardinality set Ri from the reduced graph. This greedy 
scheme is based on concepts associated with transitive perjkt elimination 

orderings of subgraphs of G which are introduced in this paper. 
The remainder of the paper is concerned with the expansion of this 

greedy scheme into an efficient algorithm for solving Problem 2. Section 5 
develops two ideas needed for efficient implementation of the high-level 
scheme. Further details needed to realize our goal of an @(IV I + IEI) 
implementation are given in Section 6. A few concluding remarks are given in 
Section 7. 

“A path is chordless if no edge in G joins two nonadjacent vertices on the path 

3The set adj[u] contains all vertices joined to o by an edge in G. 
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2. CHORDLESS PATHS AND AN ADJACENCY-SET PARTITION 

Assume G = (V, E) is a connected chordal graph,4 and let the “length” 
parameters A(v), u E V, be as defined in Section 1. Figure 1 displays a 
chordal graph for which A(a) = A(b) = A(c) = A(d) = 1, A(e) = 2, and 
A(f) = A(g) = 3. It is interesting to note that the simplicial vertices5 of the 
graph are a, b, c, and d: precisely the vertices for which A(.) = 1. We 
formalize the result suggested by this observation later in this section. 

The following concepts will be used to define an interesting partition of 
adj[n] in the case where A(v) < 2. The neighborhood of a vertex v is 
denoted by nbd[v] := {u) U adj[u]. A ve rt ex u E adj[v] is said to be indis- 

tinguishable from v if nbd[u] = nbd[v]; the set of neighbors indistinguish- 
able from v will be denoted by adj’[v]. A ve rt ex u E adj[v] is said to strictly 

outmatch v if nbd[u] c nbd[v]. Th e set of vertices that strictly outmatch v 
will be written adj-[v]; the set of vertices strictly outmatched by v will be 
written adj ‘[ v]. Finally, let adj*[ v] consist of the vertices u E adj[ v I for 
which nbd[u] and nbd[v] are incomparable. Some of these relationships in 
Figure 1 are: a E adj-[e] and e E adj+[u]; b E adj-[e] and e E adj+[b]; 
e E adj-[f] and f E adj+[e]. Th ere are no pairs of indistinguishable vertices 
in Figure 1. 

It is worth noting that some of these ideas have already played an 
important role in sparse-matrix computations. In particular, vertex indistin- 
guishability and outmatching play an interesting and vital role in efficient 
implementations of the minimum-degree ordering heuristic 141; vertex indis- 
tinguishability also plays a critical role in the subscript compression scheme 

a P\ 

FIG. 1. Chordal graph with A(a) = h(b) = A(c) = A(d) = 1, A(e) = 2, and 
A(f) = A(g) = 3. 

4A graph is chordal if every cycle containing more than three edges has a chord (i.e., 
an edge joining two nonadjacent vertices on the cycle). 

“A vertex 0 E V is simplicial. if the vertices of adj[ u] induce a complete subgraph of G 
(i.e., adj[u] is a clique in G). 
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introduced by Sherman [I21 and in improving the time efficiency of the 
symbolic factorization step [3]. 

The reader may easily verify that the sets adj j[ v], adj’[u], adj+[n], and 
adj*[v] form a partition of adj[v]. The following result shows that the vertices 
v E V for which h(u) < 2 are precisely those vertices for which adj j[ u], 
adjO[u], and adj+[v] form a partition of adj[u] (i.e., adj*[ul = 0). Before 
reading the proof, the reader may find it helpful to verify the result for the 
graph in Figure 1. 

LEMMA 2.1 (Adj acency-partition lemma). For each vertex v of a chordal 
graph, the sets adj -[ u], adj’[ 01, and adj ‘[VI form a partition of adj[u] if 

and only if A(v) < 2. 

Proof. We first prove the “only if’ part by contraposition. Assume that 
adj-[ v], adjO[u], and adj ‘[ u] do not form a partition of adj[ u]. It follows 
then that there exists a vertex u E adj*[v], and thus we can choose w,, E 
nbd[u] - nbd[ v] # 0, and wO E nbd[v] - nbd[u] f 0. Note that w,, U, O, 
and w, are necessarily distinct, and moreover [w,, u, v, w”] is a path in G. 
Since (w,, 0) and (u, wti) clearly are not edges in G, the only other possible 
chord for the path is (w,, wJ. If, however, w,, were joined to wv by an edge 
in G, then [w,, U, v, w,, wU] would be a chordless cycle of length four, 
contrary to the chordality of G. It then follows that [tu,,, U, O, w,J is a 
chordless path in G, and consequently we have A(O) > 3. 

We now prove the “if’ part of the result, also by contraposition. Suppose 
A(o) > 3, so that there exists a chordless path [u, v, w, X] of length three in 
G with o in the interior. Clearly, u E nbd[v] - nbd[w] and x E nbd[wl - 
nbd[v], whence w E adj*[,]. It follows that adj-[ v], adjO[u], and adj+[ U] do 
not form a partition of adj[ v], thereby giving us the result. n 

The vertices o E V for which A(v) < 2 play a key role throughout the 
rest of the paper. The following properties of these vertices will be useful in 
later proofs. The reader may find it useful to confirm that the result holds for 
the vertices a, b, c, d, and e in Figure 1. 

LEMMA 2.2. 

(1) For each vertex v of a graph, A(u) = 1 if and only if v is simplicial, in 
which case adj -[VI = 0. 

(2) Fur each vertex v of a chordal graph, if A(v) = 2, then ladj -[VII 2 2 
and for every vertex u E adj -[VI there exists a vertex ZJ ’ E adj -[ U] for 
which (u, u’) G E. 
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Proof. For the first statement we prove both directions by contraposi- 
tion. If A(u) > 2, then u is an interior vertex of some chordless path in G, 
say [u, u,w]. (Here, G can be any graph.) Whereas u, w E adj[u] and 
(u, w) @ E, it follows that adj[u] is not complete in G, whence u is not 
simplicial in G. Now assume u is not simplicial in G. Since adj[u] is not 
complete in G, we can choose u, w E adj[u] for which (u,w) E E. The 
chordless path [ u, II, w] in G ensures that A(u) > 2. To prove the last part of 
the first statement, assume that u is simplicial, so that nbd[u] is complete in 
G. It follows that nbd[u] c nbd[w] for every vertex w E adj[w], whence 
adj-[u] = 0. 

To prove the second statement, assume that A(u) = 2, and let [u, u, u’] 
be a chordless path in G of length two with u in the interior. (Here, G is 
again assumed to be chordal.) It follows from the adjacency-partition lemma 
that u belongs to one and only one of the sets adjj[u], adj’[u], or adj+[u]. 
Since u’ E nbd[u] - nbd[u], it f 11 o ows that u E adjjlv]. By the same 
argument, u’ E adj j[ u] too, whence ladj-[ u]/ > 2, as required. To prove the 
last part of the second statement, again assume that h(u) = 2; moreover, let 
u E adj-[w] z 0, so that nbd[u] c nbd[u]. Choose a vertex u’ E nbd[u] - 
nbd[u] z 0. Clearly u’ P adj[u], whence it follows that u’ e adj’[u] U 
adj’[ v], and thus u’ E adj-[ v]. This concludes the proof. n 

Here, also for later use, we verily that each of the sets adj’[u] U adj+[u], 
v E V, is complete (i.e., pairwise adjacent) in G. 

LEMMA 2.3. The vertex set adj’[w] U adj ‘[u] is complete in G for each 

0 E v. 

Proof. Let u E V, and choose w, w’ E adjO[u] U adj+[w]. Since nbd[ul 
c nbd[w], clearly w ’ E adj[w 1, whence nbdlu I is complete in G. n 

3. TRANSITIVE PERFECT ELIMINATION ORDERINGS 

3.1. Definitions and Notation 

An ordering of G is a bijection 

a:V-+{1,2 ,..., n}, 

where n := IV). For any vertex v of an ordered graph, let the monotone 

adjacency set of v be defined by 

madj[u] := {w E adj[u] lo(w) > a(u)}. 
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A pelfect elimination ordering (PEO) of G is any ordering of G such that 
madj[v] is complete in G for every vertex o E V. 

In this paper we will be interested in perfect elimination orderings that 
are “partially specified” in the following sense. An incomplete ordering of G 

relative to a vertex set X 5 V is a mapping 

a:v-t {1,2,..., IXI - l,lXI,n + I} 

such that (Y restricted to X is a bijection from X to {1,2, . . , 1 Xl] and 
(Y(U) = n + 1 for each vertex v E V - X. For convenience we shall refer to 
such an incomplete ordering of G as an ordering of G(X). Whenever 
X = V, clearly the “incomplete” ordering is an ordering of G. A perfect 

elimination ordering of G(X) is an ordering of G(X) such that madj[v ] is 
complete in G for every vertex v E X. (We emphasize that G(X) does not 

refer to the subgraph induced by the vertex set X, and that in the previous 
sentence madj[v] is complete in the graph G and not in the subgraph 
induced by X.) Note that any incomplete PEO can be “completed” into a 
PEO of G. 

Unless G is a complete graph, there are some sets X c V for which there 
exists no PEO of G(X). Th e o owing result identifies every vertex set f 11 
X c V for which there exists a PEO of G(X). 

PROPOSITION 3.1 (Shier [13]). Let X c V. There exists a PEO of G( X) if 
and only if the vertices of every chordless path in G joining two vertices in 

V - X are included in V - X. 

A transitive ordering of G(X) is any ordering of G(X) for which the 
following property holds: If a(u) < a(v) < (u(w) and (u, v), (v, w) E E, 
then (u, w) E E. Note that the vertices u and v are necessarily taken from X 
[because (Y(U) < a(v) < n + 11, while the vertex w may be taken from 
either X or V - X. A transitive pe$xt elimination ordering (TEO) of G(X) 
is any ordering of G(X) that is both a PEO of G( X) and a transitive ordering 
of G(X). Any vertex set X c V for which there exists a TEO of G(X) will 
henceforth be called a T-set of G. 

Due to the additional transitivity condition, the collection of T-sets of G 
is generally much smaller than the collection of vertex sets X c V for which 
merely a PEO of G(X) exists. For example, while there exists a PEO of 
G(V) for every chordal graph G, it is not the case that there exists a TEO of 
G(V) for every chordal graph G. On the contrary, V is not a T-set for most 
chordal graphs G = (V, E). Indeed, any chordal graph G for which V is a 
T-set is also a member of another major class of perfect graphs known as 
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comparability graphs.6 In other words, if a chordal graph G is not also a 
comparability graph, then V is not a T-set of G. Note, however, that a graph 
G can be both a chordal graph and a comparability graph without possessing 
a TEO of G(V). That is, there exist graphs which are both chordal and 
comparability graphs, but for which the set of transitive orderings is disjoint 
from the set of perfect elimination orderings. An example is P4, the path on 
four vertices. 

Though V is not a T-set for most chordal graphs G = (V, E), T-sets 
nevertheless exist for any chordal graph G. For example, consider the vertex 
set X = Sim, # 0, where Simo is the set of simplicial vertices of G. It is 
easy to verify that any ordering of G(X) is a TEO of G(X), and hence X is a 
T-set of G. 

3.2. The T-Set of Maximum Cardinality 

In this subsection we show that G has a unique maximum-cardinality 
T-set R, and that this set is given by 

R = (0 E VIA(v) < 2, and h(u) < 2foreveryu E adj-[u]). (1) 

More specifically, ye will show that {a) the vertex set R is a T-set of G, and 
(b) for any T-set R of G we have R G R. [The reader can, with some care, 
verify that these two statements hold for the graph in Figure 1 CR = 

{a, b, c, d, elI.1 
Toward that goal, we first characterize the TEOs of G(R). The outmatch- 

ing relation on V is the key concept needed to obtain the result. Henceforth, 
for any pair of vertices u, v E V, we shall write u < 0 if u E adj-[ v], or 
equivalently, u < v if nbd[u] c nbd[v]. The relation -C clearly imposes a 
strict partial order on the vertex set. An ordering (Y of G(X) is consistent 

with the partial order -K if u -C v implies that a(u) < a(v). The following 
result says that the TEOs of G(R) are precisely the orderings of G(R) that 
are consistent with the partial order -C . 

THEOREM 3.2 (TEO theorem). An ordering (Y of G(R) is a TEO of 

G(R) if and only f i (Y is consistent with the partial order + 

Proof. First we show that any ordering (Y of G(R) that is consistent 
with the partial order -C is a PEO of G(R). Let CY be any ordering of G(R) 

6An arbitrary graph G = (V, E) IS a comparability graph if there exists a transitive 
ordering of G(V); each comparability graph is associated in a natural way with a finite 
partially ordered set. 
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for which a(u) < a(u) whenever u < u. From (1) and the adjacency-parti- 
tion lemma, it follows that for each vertex o E R the sets adj j[ VI, adjO[vl, 
and adj+[ u] form a partition of adj[u]. Furthermore, our assumption that (Y 
is consistent with the partial order -X implies that for each vertex 0 E R, the 
set madj[o] includes no vertices from adjj[ v], and hence contains only 
vertices from adjO[u] U adj+[u]. From Lemma 2.3 it follows that madj[vl is 
complete in G for every vertex v E R, and (Y is therefore a PEO of G(R). 

Next we show that any ordering CY of G(R) that is consistent with the 
partial order < is also transitive, and hence a TEO of G(R). Assume the 
ordering (Y of G(R) is not transitive. There exist then vertices U, 0 E R and 
w E V such that a(u) < a(v) < a(w), (u, u), (v, W> E E, and (u, W) P E. 

From (1) and the adjacency-partition lemma, it follows that adj-[ u], adj’[v], 
and adj ‘[ v] form a partition of adj[ v]. Consequently, since u, w E adj[ v 1 
and (u, w) e E, we have U, w E adjj[u]. Since LY(D) < (u(w), the ordering 
cr clearly is not consistent with the partial order + , and thus we have proven 
the “if’ part of the result. 

To complete the proof, we show that any TEO of G(R) is consistent with 
the partial order < Let cx be any ordering of G(R) that is not consistent 
with -C . Then for some vertex u E R there exists a vertex u E adjj[ v] such 
that a(v) < a(u). Now by (1) and Lemma 2.2, A(U) = 2 and moreover 
there exists a vertex w E adj-[ u], w + U, that is not adjacent to U. If 
a(w) < o(z)), then we have a(w) < a(u) < (u(u), (w, u>, (u, U) E E, and 
(w, U) e E, whence (Y is not a transitive ordering of G(R). If on the other 
hand a(w) > a(u), then U, w E madj[v] and (w, v> @ E, whence (Y is not a 
PEO of G(R). In either case, CY is not a TEO of G(R), and this concludes 
the proof. n 

That the vertex set R is a T-set of G follows immediately from the TEO 
theorem. We now show that any T-set of G is contained in R. 

THEOREM 3.3. For any T-set l? of G, we have l? c R. 

Proof. To prove the result it suffices to show that for every vertex 
v E V - R there exists no T-set that contains u. We therefore choose a 
vertex 0 E V - R and consider in turn the following two mutually exclusive 
cases, at least one of which must hold true: 

(1) NV) z 3. 
(2) AC(u) = 2, but h(u) > 3 for some vertex u E adj-[VI. 

Assume first that A( U) > 3, and let [u, o, w, x] be a chordless path of 
length three in G with 2) in the interior. Let LY moreover be any PEO of 

,. ,. 
G(R) where v E R. It suffices to show that CY is not a transitive ordering 
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L1 I 
of G(R). Since o E R, we have cu(u) # (Y(W); there are therefore two cases 
to c_onsider. Consider first the case where a(u) < (Y(W). Since (Y is a PEO of 
G(R), it follows that a(u) < (Y(V) < (Y(W). Such an ordering cannot be a 
transitive ordering of G(g), b ecause (u, u), (u, w) E E, but (u, w) 6 E. Now 
consider the case where a(w) < a(u). Since (Y is a PEO of G(i), it follows 
that CY!X) < (Y(W) < (Y(V). Such an ordering cannot be a transitive ordering 
of G(R), because (x,w), (w,v) E E, but (x, U) @ E. 

Now suppose that A(v) = 2, but h(u) > 3Afor some vertex u E adj-[ u]. 
Again let c~ be any PEO of G(R) w ere p E R; it again suffices to show that h 
cy is not a transitive ordering of G(R). First, by the argument in the 
precedi?g paragraph it is impossible for (Y ,to be a transitive ordering of G( fi> 
if u E R, and thus we assume that u P R; that is, we assume that a(u) = 
n + 1. By Lemma 2.2, there exists another vertex u: E adj-[v] such that 
(w, U) g E. Note that [u, v, w] is a chordless path in G. Since (Y(V) < a(u) 
= n, + 1, we must have (Y(W) < a(o) < (Y(U) in order for CY to be a PEOpf 
G(R). Such an ordering however cannot be a transitive ordering of G(R), 
because (w, v), (v, U) E E, but (w, U) e E. This concludes the proof n . 

4. A GREEDY SCHEME FOR THE CHORDAL 
PARTITIONING PROBLEM 

We can partially reduze the graph G by choosing a T-set 2 of G a?d 
removing the vertices in R from G in the order specified by a TEO of G(R); 
we then complete the reduction of G to th: null graph by applying this 
process recursively to the reduced graph G \ R. 

Suppose the graph G is reduced to the null graph after the removal of t 
distinct T-sets, each ordered by a TEO. Define G, := G, and let 

G,,G,,...,G,+, be the sequence of reduced graphs obtained at the end of 
eAachh “block’: elimination step. (Note that G,, 1 js the empty graph.) Let 

R,, R,, . , f$ be the sequence of T-sets, so that Rj is remo_ved from Gj by a 
TEO of G,(R,) to obtain the zedu_ced graph Gi+ 1 = Gi \ Ri. We shall refer 
to any vertex set partition R,, R,, . , R, obtained by this process as a 
T-partition of V,;7 we shall refer to any PEO of G generateAd by this prccess 
as a compound TEO of G with respect to the T-partition R,, R,, . , R,. 

Note that the solution to Problem 2 consists of a compound TEO, along 
with its associated T-partition and DAG, for which t, the number of mem- 

7Henceforth we will incorporate the graph into our notation as a subscript when 
needed. For example, if G has been reduced to G,, we might write VCC, h,,(u), adjCt[u], 
etc. to distinguish these items from the corresponding items for a different graph. 
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bers in the partition, is as small as po:siblF. Let r(G) be the minimum value t 
for which there exists a T-partition R,, R,, . . , R, of V,. Consider a greedy 
approach for generating a T-partition of V by eliminating the T-set of 
maximum cardinality at each major step, as shown in Figure 2. We let 
R,, R,, , R, be the T-partition of V, obtained by this process. For the 
graph in Figure 1, the T-partition obtained by this process has members 
R, = (a, h, c, d, e} and R, = {f, g}. 

It is not difficult to show that this process obtains a minimum-cardinality 
T-partition of Vc, and hence a solution to Problem 2. First we show that 
T( H > < T(G) for any induced subgraph H of G, after which the main result 
of this section can be obtained by a simple induction argument. 

LEMMA 4.1. For any induced subgraph H of G, we have r(H) < r(G). 

Proof. Let Ei,, I?,, . . , I?, be a nT-p@tion pf Vc, and let (Y be a 
compound TEO of G with respect to R,, R,, . . , R,. Consider the subgraph 
H of G induced by X c V and the unique ordering /3 of H that is 
consistent with CY in the sense that p(u) < P(v) whenever u, v E X and 
a(u) < (Y(G). Now, for every vertex v E X we have madj.[cl c madjclvl, 
with madj,[ c] complete in G. It follows therefore that madj,[vl is complete 
in H for every vertex v E X, whence /3 is a PEO of H. 

Let ii, R,, , g, be the partition of X defined by Rj = ii n X, 
1 < i < t. To prove the result it suffices to show that P is a compound TEO 
of H with respect to gi, I&, . , fi,. Clearly, p is a “block” ordering of V,, 
consecutively numbering the vertices in R, before numbering next those in 
ii+,. In the previous paragraph we showed that P is a PEO of H. To 
complete the proof, it suffices to show that P restricted to Ri is a transitive 
ordering of Hi(&). Toward that end, assume that u, o E &, w ‘,X, P(u) < 

P(v) < P(u;), and (u, 01, (v, w> E E,. It follows that U, v E Ri, a(u) < 
a(v) < a(w), and (u, v), (v, w) E E,. Since LY is a compound TEO of G 

i + 1; 

G, + G; 

while Gi # 0 do 

Let Ri be the maximum-cardinality T-set of Gi; 

Compute Gi+ 1 +- Gi \ R,, 

with R, removed in a TEO of G,(R,); 

i+i+l; 
end while 

FIG. 2. Greedy partitioning scheme for which each Ri is the maximum-cardinal- 

ity T-set of Gi. 
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with respect to the T-partition Gi, RI,, . . . , i,, we have (u, w) E E,, which 
in turn implies that (u, w> E E,, thereby giving us the result. W 

THEOREM 4.2. The greedy partitioning scheme in Figure 2 generates a 

minimum-cardinality T-partition of V,. 

Proof. We prove the result by induction on n = IVol. Clearly, the result 
is true for n < 2. Let G be a graph with n > 3 vertices, and assume the 
greedy scheme produces a minimum-Fardinality T-partition for any graph 
with fewer vertices. Let R,, R,, . . , R, be a T-partition of Vo for which 
s = r(G), and let R,, R,, . . . , R, be the T-partition of V, generated by the 
greedy scheme in Figure 2. Clearly r(G) = s < t; thus to prove the result it 
suffices to show that t < s. 

Since the greedy scheme applied to G processes the reduced graph 
G \ R, precisely as it does when applied directly to G \ R,, it follows by the 
induction hypothesis that R,, R,, . . . , R, is a minimum-cardinality T-parti- 
tion of V, - tl, and thus we have t - 1 = r(G \ R,). Now, Theorem 3;3 
implies thtt RJ c R,, _whence G \ R, is an induc$d subgraph of G \R,. 

Whereas R,, R,, . . . , R, is a T-partition of V, - R,, it follows by Lemma 
4.1 that 

t - 1 = T(G\R,) < 7(G\&) =s s - 1. 

In consequence we have t < s as required. n 

5. COMPUTING A MAXIMUM-CARDINALITY T-SET 

This section introduces an algorithm for computing the maximum-cardi- 
nality T-set R and a TEO of G(R). The algorithm removes one simplicial 
vertex after another from the graph so that upon termination the vertices of 
R have been eliminated and the order in which they were eliminated is a 
TEO of G(R). Using this algorithm, Section 6 presents the implementation 
details needed for a linear-time implementation of the greedy scheme in 
Figure 2. 

The algorithm introduced in this section is based on two simple ideas. As 
the algorithm eliminates simplicial vertices from the graph, new simplicial 
vertices appear in the reduced graph. The first, and most important, idea 
incorporated into the algorithm is a technique for determining whether or not 
a “candidate” simplicial vertex in ;he reduced graph is a member of R and 
hence should be eliminated. Let R denote the set of vertices that have been 
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eliminated thus far by the algorithm, and let o be the next simplical vertex 
examined as a candidate for elimination. We will show that, within the 
context of our algorithm, o E R if and only if 

adj,[ 01 - i? G adjz[ u] u adjd [ 01 

To enable the test in (21 to accurately distinguish members from non- 
members of R, the order in which the candidate simplicial vertices are 
examined must be carefully prescribed. The second idea incorporated into 
the algorithm deals with this issue. Let deg,(u) be the degree of a vertex w 
in G (i.e., ladjc[n]]). At each step, the algorithm chooses as the next vertex to 
examine for elimination a candidate simplicial vertex u for which deg,(u) is 
minimum. Whenever u E adj,[ v], we have nbd,[u] c nbd,[v], whence 
dego(u1 < deg,(u). We th erefore incorporated this particular ordering of 
the candidates into the algorithm to enforce examination of the vertex 
u E adjo[u] bf e ore examination of 0, so that whenever the algorithm finally 
tests whether or not a vertex u satisfies (2), it will have already examined and, 
if called for, eliminated, every member of ad&J u]. 

We have incorporated these two ideas into the algorithm shown in Figure 
3. The algorithm collects the eliminated vertices in the set R. The set C 
contains the candidate simplicial vertices belonging to the current elimina- 
tion graph. Initially C = Sun,. As the computation proceeds, each “success- 
ful” candidate is eliminated from both the graph and the set C. When 
elimination of a successful candidate z) results in a new simplicial vertex w in 

n 

H + G; R * 0; C + Sim,; 
whileC#iZIdo 

Choose o E C for which deg,(u) is minimum; 
c + c - {Oli 
if adj,[z,] - R c ad&v] U adjd[u] then 

H'+H\{u};lb-Eiu{v}; 
for u: E Sim,. - Sim, do 

c +- c u {w); 

end for 

H +-H'; 
end if 

end while 

FIG. 3. High-level algorithm for computing the maximum-cardinahty T-set R 
and a TEO of G(R). Upon termination, R = R and the elimination sequence is a 
TEO of G(R). 
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the reduced graph, the algorithm places w in C, where it will be examined 
later for possible elimination. 

Before proving the algorithm correct, we examine how it processes the 
graph shown in Figure 1. Initially, C = Sim, = {a, b, c, d). It is trivial to * 
verify that each of these vertices will pass the test for inclusion in R when it 
is finally examined by the algorithm. (It can be proven formally using Lemma 
2.2 and the adjacency-partition lemma.) The vertex d (degree one in G) will 
be removed first, whereupon the newly simplicial vertex g will be added to 
the candidate set C. The vertices a, b, and c, each of degree two in G, will 
be removed next in succession. Observe that after the removal of these 
vertices, e has become simplicial and f remains nonsimplicial, whence 
C = {e, g}. The algorithm will next examine either e or g for inclusion in 2. 
(Both ar,e of degree three in G.) No matter which is examined first, g will fail 
the test because the vertex f E ad$[ g] remains uneliminated, and e will 
pass the test because the vertex f E adj,+ [ el is the only neighbor of e in the 
reduced graph. The vertex f (degree five in G) becomes simplicial upon the 
removal cf e, but upon examining it the algorithm will reject it for member- 
ship in R because the vertez g E adjc[f] remains uneliminated. The algo- 
rithm thus terminates with R = R = {a, b, c, d, e), as required. 

While the primary purpose of the following result is to prove the 
algorithm correct, it also shows that the minimum degree among the candi- 
dates is nondecreasing as the algorithm proceeds. This property of the 
algorithm provides the implementation presented in Section 6 with efficient 
access to the minimum-degree members of C. 

THEOREM 5.1. The set of vertices I? removed by the algorithm in Figure 
3 is precisely the maximum-cardinality T-set R. Furthemre, the order in 
which the vertices are removed is a TEO of G(R), and the minimum degree 
among the vertices of C is nondecreasing as the algorithm proceeds. 

Proof. _Let I? be the set of vertices removed by the algorithm. We first 
show that R L R. Toward that end, let R denote the set of vertices already 
selected for elimination at some point during the compu!ation, and let o be 
the next vertex selected for elimination. To prove that R c R, it suffkes to 
prove the following: if fi G R, then v E R. 

Let g a”d v be as stated above, and consider a vertex u E adj,[v] n fi. 
Since u E R c R, by (I) we have A,(u) < 2, and thus by the adjacency-par- 
tition lemma the sets adjJ u], adjE[u], and adjG+[ u] form a partition of 
adj,[u]. It follows that u belongs to one of the three_sets adj,[v], ad$[v], 
and adjd [v 1. Now con$der a vertex w E adj,[v] - R. Since v passes the 
test for inclusion in R, it follows that w E adj,$[v] U adj,t[v]. We have 
therefore shown that adj,[ v], adjE[v], and adjd[zj] form a partition of 
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adj,[u], whence h,(u) < 2 by the adjacency-partition lemma. Since adj,[v] 

-fi c ad$[u] U adjd[u], we have adji[v] c i L R; hence, by (11, h,(u) 
5 2 for each vertex u E adjJ u]. It follows by (1) then that w E R, giving us 
R c R as required. This concludes the firzt part of the proof. 

We now complete the proof that R = R by showing \hat fi is not 
properly cc+ained in R. By way of contradiction assume that R c R. Choose 
0 E R - R for which deg,(u) is minimum. We first show that adjJv] G i. 
Consider a vertex u E adj,[v]. By (11, h,(u) < 2; moreover, since 0 E R 
and adjJu] c adjJu], it follows by (1) that u E R. From nbd,[u] c 
nbd,[u] we have degc(u> < deg,(u), and Lhus by the minimality o,f degc(o) 
among the vertices of R excluded from R, it follows that u E R, thereby 
giving us adjc [ v] & R. 

Let fi be the set of vertices already selected for elimination by the 
algorithm im?ediately after the last vertex of _adjc[ v] has been selected for 
inclusion in R, so that we have adjc [u] c R. It follows by applying the 
adjacency-partition lemma to 0 E R that adjJ u], adjE[v], and adjd[ u] form 
a partition of adj,[u], and thus we have adj,[vl - R c_ad$[v] U adj,f[o]. In 
consequence, u is simplicial in the reduced graph G \R (by Lemma 2.3) and 
also henceforth satisfies the test for inclusion in k Observe that the 
algorithm has not yet examined w for inclusion in fi, because degc(u) < 
deg,(u) for any vertex u E adj,[ u], and moreover u becomes simplicial in 
the reduced graph no later than u does. The algorithm therefore eventually 
examines v sometime afer eliminating the last member of adjG[ V] and 
includes it in R, despite our assumption to the contrary. From this contradic- 
tion we conclude that i = R. 

To conclude the argume+ note that the test for inclusion in i ensures 
that for every vertex u E R = R the vertices of adjJ w] precede 0 in the 
elimination sequence. Tb elimination sequence is therefore, by the ATEO 
theorem, a TEO of G(R). Finally, note that the test for inclusion in R also 
ensures that deg,(w) > deg,(u) for each new simplicial vertex w resulting 
from the elimination of V. In consequence, the minimum degree among the 
vertices in C is nondecreasing, which concludes the proof. n 

6. IMPLEMENTING THE GREEDY SCHEME 

Repeated application of the algorithm in Figure 3 to a chordal graph gives 
us an algorithm that implements the greedy partitioning scheme in Figure 2. 
With careful attention to certain implementation details, we can obtain an 
algorithm whose runtime is linear in the number of vertices and edges in the 
chordal graph. 
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Two implementation issues in particular must be successfully dealt with 
in order to achieve a linear-time algorithm. First, we need an efficient 
technique for detecting new simplicial vertices (i.e., the vertices w E 
Sim,, - Sim, in Figure 3). Liu and Mirzaian [9] showed how to use a 
previously computed PEO and certain vertex degree information in the graph 
to devise a simple and efficient test for simpliciality. We briefly discuss this 
test in Section 6.1. 

Second, we need an efficient way to implement the test for membership 
of a candidate simplicial vertex in R. Note that straightforward determination 
of whether or not a vertex v satisfies (2) yould require examination of the set 
adj,[w] for each vertex w E adj,[v] - R, which is far too costly. We show in 
Section 6.2 that judicious use of vertex degree information leads to a simple 
and efficient test that is equivalent to (2). 

Other implementation issues are fairly straightforward and will be dealt 
with when we look at the detailed algorithm in Section 6.3. In Section 6.4 we 
show that the time complexity of the algorithm is @(IV 1 + [El). 

6.1. An Eflicient Test for Simpliciality 

In their efficient implementation of the Jess-Kees reordering algorithm, 
Liu and Mirzaian [9] address the issue of how to determine when a vertex has 
become simplicial in the reduced graph. Their approach requires a perfect 
elimination ordering P of the chordal graph. Throughout the rest of Section 
6 we will often subscript the vertices with their position in this PEO; that is, 
we will let V, = {vi, v2, . , v,,}, where p(vj> = j for 1 < j < n. Note that a 
PEO can be computed in @‘(IV 1 + 1 E 1) t ime using the maximum-cardinality 
search algorithm [I4]. 

For each vertex vj, let fj be the index given by 

4 := min{k I ok E nbd,[ vj]}, 

and let mdeg,(vj), the monotone degree of vj, be given by 

The following result is Theorem 3.5 in Liu and Mirzaian [9]. 

PROPOSITION 6.1 (Liu and Mirzaian [9]). 

if deg,(u$ = mdeg,(v4). 

We have vj E Simc ifand only 

In order to use the simpliciality test of Proposition 6.1, the algorithm will 
maintain the degree values deg,(vj) and mdeg,(vj) in the variables deg(uj) 
and mdeg(vj) respectively, where H is the current reduced graph. 
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6.2. An Efficient Test for Membership in R 

As noted earlier, a naive implementation of the test in (2) is far too 
expensive to lead to a linear-time implementation. The following result 
provides us with an efficient alternative to (2). 

PROPOSITION 6.2. Suppose the algorithm in Figure 3 is currently testing 

the simplicial vertex v E C for elimination, and let I? now denote the subset of 

R containing those vertices that have been eliminated thus far. We then have 

(2) zf and only zf 

Inbd,[u] - I?( =Inbd,[v] - I?[ forewey u E nbd,[v] n I?. (3) 

Proof. Let v and E be as stated, and choose a vertex u E nbd,[ v] n I?. 
Because u was simplicialjn the reduced graph from which it was removed, it 
follows that nbd,[u] - R is complete in G. Since v belongs to the clique A 
nbd,[u] - R, the following statement holds true: 

nbd,[u] - R^ c nbdc[w] - k for every u E nbd,[u] n 2. (4) 

Assume that (3) holds. It follows then from (4) that 

nbd,[u] - 2 = nbd,[v] - k for every u E nbd,[v] n fi. (5) 

Choose a vertex w E adj,[ul - g. To show that (2) holds, it suffices to show 
that nbd,[uh] c nbd,[w]. Let r E nbd,[ v]. If x belongs to the clique 
nbd,[v] - R from which w was ta@n, clearly x E nbd,[w] as required. If 
o,” the other handA x E nbd,[u] n R, then from (5) we have w E nbd,[u] - 
R = nbd,[xl - R, whence x E nbd,[w], completing the first half of the 
argument. 

Now assume that (2) holds, and choose a vertex u E nbd,[v] n l?. To 
show that (3) holds, it suffices [by (41 to show that 

nbd,[v] - I? c nbd,[u] - fi. 

Clearly, v belongs to both sets. Let w # u belong to nbd,[v] - k It follows 
by (2) that w E adji[vl U adj,+[v]. In consequen:e, nbd,[u] & nbd,[w]; 
hence u E nbd,[w], and thus w E nbd,[ul - R, which completes the 
proof. H 

To test for (3), our algorithm must accurately maintain the variable 

deg(u) = ladj,[u] _A1 f or eliminated vertices u E Ei as well as uneliminated 
vertices u E V, - R. 
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6.3. Implementation Details 

The algorithm introduced in Figure 4 (along with Figures 5, 6, and 7) 
implements the greedy scheme introduced in Figure 2. That is, it generates 
the minimum-cardinality T-partition R,, R,, . . , R,, where each partition 
member Ri is the unique maximum-cardinality T-set of the reduced graph 
Gj = G\{R, u ... U Rip,}, and it also generates a compound TEO of G 
with respect to the T-partition R,, R,, , R,. For efficient access to a 

Input: A chordal graph G = (V, El; f or each vertex vj E V, deg(v.1 [= degc.vj)], 
mdeg(vj) [ = mdegC(vi)], and adj,[v,], sorted in ascending order b y the numbers 
assigned by the initial PEO. 
Output: Upon termination, i,, I?,, , I?, is precisely the minimum-cardinality 
T-partition R,, R,, , R,, where each partition member Ri is the maximum-cardi- 
n&y T-set of the reduced graph Gi = G \ {R, U ... U Ri_ 1}. The PEO CY (com- 
puted in Figure 7) is a compound TEO of G with respect to the T-partition 

R,, R,, > R,. 
INITIALIZE (markt * ), C[ * 1, S,); /*Figure 5*/ 
r + 0; i + 1; G, + G; U 6 V; 
while Gi # 0 do 

d ,,,= + 0; d,i, + IVI; 
for vj E Si do 

d,, +- max{d,,,, deg(uj)k 
d,,i, + min{d,,,, deg(v.)]; 

C]dedvJ)l + c[degCv,)j U {vj]; 
end for 

fpr vj E U do olddeg(vj) + deg(vj) end for 

R<+0; Si+l + 0; u +- 0; 
while dmi, < d,,, do 

for each vertex vI E C[d,,,,] do 

C]d,,ll,,l + G]d,,,i”l - {vj]; 
if IN_TSET(V~) = 1 then /*Figure 6*/ 

ELIMINATE(V]); /*Figure 7*/ 
else 

si+r + si+ 1 u ivj); 

end if 

end for 

while C[d,,] = 0 and dmin < d,, do 

dIni*, + dmi, + 1; 
end while 

end while . 
for vI E Ri do mark(vj) + 0 end for 

‘G+I + Gi \ ii; i +- i + 1; 

end while 

Fig, 4. Detailed implementation of scheme in Figure 2. 
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procedure INITIAI,IZE(mZdCf*), c[*], s,> 

s, +- 0; 

for d E {I, 2,. , n} do ~[d] + 0 end for 

for j E {l, 2,. , n} do 

if deg(vj) = mdegfy) then 

mai+ + 2; S, + S, U {vj}; 
else mark(uj;j) + 3; end if 

end for 

Fig. 5. Initialization procedure: initializes data structures for main while loop. 

candidate simplicial vertex of smallest degree in Gj, the algorithm maintains a 
collection of sets C[d] (1 < d < n), where ~[d] contains the current candi- 
date simplicial vertices u; for which deg,!w) = d. Since vertices are both 
added to and removed from these sets, they should be implemented as a 
collection of doubly linked lists. Because no vertex appears in more than one 
set at a time, only three n-vectors are required: one for the first pointers into 
the lists, two more for the backward and forward links. We now discuss other 
details of the implementation. 

Initialization for the algorithm is performed by the procedure INITIALIZE 

shown in Figure 5. This procedure initializes S, to Sim. (see Proposition 
6.11, each candidate set C[d] to the empty set, and each marker variable 
mark(uj) to an appropriate integer value. The various values taken on by the 
marker variables mark(l;j) during the course of the algorithm have the 
meanings given below: 

0 if vj has been eliminated during an earlier major step, 

1 
mark( vj) = 

: 

if vj has been eliminated during the current major step, 

2 if vj is simplicial, but not yet chosen for elimination, 

3 if vj is not yet simplicial, 

where each major step is a single iteration of the main while loop. 

boolean function IN_TsET(u~) 

IN_TSET + 1; 

for each vertex ok E adj,[l;,] do 

if marMu,) = 1 and deg(t+) # deg(uj) + 1 then 

IN_TSET + 0; 

end if 

end for 

Fig. 6. Boolean function that tests for membership in the maximum-cardinality T-set 
Rj. 
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procedure ELI~INAT;( uj) 
mar!duj) + 1; Rj + Rj U {u,}; U +- U - {uj}; 
r + r + 1; cu(Ui> ‘+ r; 
for each vertex ok E adj,[uj] in ascending order do 

dedsk) + deg(uk) - 1; 
if mark&) > 2 then 

Update fk if necessary; u + u u {ok}; 
if k <j then mdeg(uk) + mdeg(vk) - I; 
if de&+) = mdeg(vfk) and mark(+) = 3 then 

marktuk) + 2; 

C[olddeg(t+)] + C[olddeg(uk)] u (+}; 
d ,nax + ma+,,,, olddeg(u,)k 

end if 

end if 

end for 

Fig. 7. Elimination procedure: updates data structures to reflect the selection of ‘oj 
for elimination. 

An iteration of the main while loop in Figure 4 removes the vertices of 
the maximum-cardinality T-set Ri from the reduced graph Gi, generating a 
TEO of G,(R,) as the elimination sequence for the set. Note that the set 
Si = Sirno, is available at the beginning of the ith iteration. The first for loop 

computes the minimum and maximum degrees encountered among the 
vertices of Sim,, (d,,, and dmin, respectively), and also places each simpli- 
cial vertex V~ in the appropriate candidate set C[deg,-vj)]. The algorithm 

maintains the degree value deg,{v.) in the variable olddeg(uj). 
The second for loop updates ofddeg(vj) for each vertex vj whose degree 

was reduced during the preceding major step. To do this efficiently, the 
algorithm maintains a set U, which contains every uneliminated vertex whose 
degree has been reduced during the current major step. 

As long as there remain candidate simplicial vertices to be processed, the 
algorithm examines those of minimum degree in Gi (i.e., those in C[d,,]). 
For each vertex v. E C[d,,,], the boolean function IN_TSET (see Figure 6) 
uses the current d egree information to determine if V~ satisfies the test for 
elimination given in (3). In Figure 6, note that 

deg(vk) =ladjG[+] - A,[ =Inbd,[vk] -&I 

and 

deg(vj) =ladj,[vj] - ii1 =Inbd,[u,] - i?,l - 1. 
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If vj is not to be eliminated at this step, the algorithm then places oj in 
the set of simplicial vertices Si+ i, where it will be processed (and eliminated) 
during the next iteration of the main while loop. Otherwise, the procedure 
shown in Figure 7 selects vj for elimination and updates the current T-set Ri 

and the relevant marker and degree variables. More specifically, while the 
degree variables of the peighbors of uj are updated, new simplicial vertices 
detected in adjo[vj] - Ri (see Proposition 6.1) are placed in the appropriate 
candidate set. The set U of uneliminated vertices whose degrees have been 
reduced is also updated. 

Note that the procedure ELIMINATE must process the members of adj,[u,] 
in ascending order by their numbering in the initial PEO. This is needed to 
enable efficient updating of the parameters fk and to ensure that the values 
mdeg(vk) have been correctly updated before they are used in simpliciality 
tests. In Figure 7, we have not shown the details of how fk is updated. 
Efficient access to fk can be obtained by maintaining a pointer to the first 
vertex in the ordered list adj,[ vk] that has not yet been chosen for elimina- 
tion. If fk =j, where vj is the vertex just chosen for elimination, then 
adj,[u, ] must be searched to the right of vj for the new first uneliminated 
vertex, and the pointer must be adjusted accordingly. 

After the algorithm examines vj for possible elimination, it then increases 
dmin if necessary. That dmin cannot possibly decrease during the course of a 
major step was shown in *Theorem 5.1. After computing & ( = I$), the 
algorithm then eliminates Rj from the graph and marks each vertex of ii as 
eliminated from the graph. 

Finally, that the algorithm in Figure 4 correctly implements the greedy 
scheme in Figure 2 follows immediately from the fact that each iteration of 
the main while loop implements the algorithm in Figure 3. 

6.4. Complexity Analysis 

In this section we verify that the algorithm in Figure 4 runs in time 
proportional to IV 1 + 1 El. Recall that the algorithm in Figure 4 requires 

(1) a PEO of G, and 
(2) sorted adjacency lists so that neighbors can be processed in ascending 

order by their labels in the PEO. 

The first can be obtained in @‘(IV 1 + IEI> time using the maximum-cardinal- 
ity search algorithm [14]; the second can be obtained in @‘(IV 1 + 1 E 1) time by 
careful application of a bin sort. It is worth pointing out that in our 
application, the PEO and sorting can be obtained as a by-product of the 
symbolic factorization step, and thus are available at no extra cost in computa- 
tion time. (For further details consult Liu [7].) 
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The total work associated with the procedure INITIALIZE is clearly propor- 
tional to [VI. Because Si c Rj at each major step i, the total work performed 
by the for loop that distributes the members of Si among the candidate sets 
is also proportional to IVl. Each vertex is eliminated from the graph once, 
and thus the work associated with the procedure ELIMINATE is @‘(IV 1 + 1~1). 
Note that each vertex is eliminated either by the major step during which it 
first becomes simplicial or by the next major step. As a result, each vertex is 
examined for possible elimination no more than twice, and consequently the 
work associated with the boolean function IN_TSET is also @(IV 1 + [El). For 
each vertex uj E U whose “old’ degree is updated by the algorithm at major n 
step i + 1, we have oj E adjc [uk ] for some vertex vk E R,; that is, to each 
vertex uj E U there corresponds one or more edges which were removed 
from the graph during the previous major step i. In consequence, the total 
work spent updating the variables olddeg(vj) (1 < j < n) is @‘(lVl + /El). 

Finally, we consider the work expended by the while loop that updates 
dmi,. During any given iteration of the main while loop, the work performed 
updating dmi, is bounded above by the maximum of deg,(u) over all vertices 
v examined for possible elimination during the step. Since each vertex is 
examined for possible elimination no more than twice during the course of 
the algorithm, it follows that the total work spent updating dmin is @(IV] + 
/El>. From this and the foregoing observations, it follows that the time 
complexity of the algorithm in Figure 4 is @(IV 1 + I El). Note that the space 
complexity is also @(IV I + I E I). 

7. CONCLUDING REMARKS 

In this paper we have developed an &'(lVl + IEI) algorithm for solving 
the graph partitioning problem stated as Problem 2 in Section 1. Two new 
ideas-TEOs and T-sets-enabled us to devise a simple greedy scheme that 
solves Problem 2. We then provided a high-level description of an algorithm 
for computing a maximum-cardinality T-set R, along with the required TEO 
of G(R). Careful implementation provides us with a detailed @(IV I + I El) 
algorithm that implements the greedy scheme, and thus solves Problem 2. 

The approach taken in this paper has the virtue of simplicity and provides 
insight into the essential features of this fairly involved graph partitioning 
problem. A forthcoming paper [lo] will present an implementation of a 
variant of the greedy scheme in Figure 2 that processes a clique tree 
representation of G, rather than the conventional representation by adja- 
cency lists. The new clique tree algorithm makes use of some interesting new 
concepts about separators in the clique intersection graph of the chordal 
graph. 
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