
Designing Scalable b-MATCHING Algorithms on
Distributed Memory Multiprocessors by

Approximation
Arif Khan∗, Alex Pothen∗, Md. Mostofa Ali Patwary†,

Mahantesh Halappanavar‡, Nadathur Rajagopalan Satish†, Narayanan Sundaram† and Pradeep Dubey†
∗Computer Science, Purdue University †Intel Labs ‡ Pacific Northwest National Lab

Email: ∗{khan58, apothen}@purdue.edu
†{mostofa.ali.patwary, nadathur.rajagopalan.satish, narayana.sundaram, pradeep.dubey}@intel.com

‡hala@pnnl.gov

Abstract—A b-MATCHING is a subset of edges M such that at
most b(v) edges in M are incident on each vertex v, where b(v) is
specified. We present a distributed-memory parallel algorithm,
b-SUITOR, that computes a b-MATCHING with more than half
the maximum weight in a graph with weights on the edges. The
approximation algorithm is designed to have high concurrency
and low time complexity. We organize the implementation of
the algorithm in terms of asynchronous supersteps that combine
computation and communication, and balance the computa-
tional work and frequency of communication to obtain high
performance. Since the performance of the b-SUITOR algorithm
is strongly influenced by communication, we present several
strategies to reduce the communication volume. We implement
the algorithm using a hybrid strategy where inter-node com-
munication uses MPI and intra-node computation is done with
OpenMP threads. We demonstrate strong and weak scaling of
b-SUITOR up to 16K processors on two supercomputers at
NERSC. We compute a b-MATCHING in a graph with 2 billion
edges in under 4 seconds using 16K processors.

I. INTRODUCTION

For the problem of computing a maximum weighted
b-MATCHING in a graph, we describe a distributed-memory
parallel algorithm that scales to 16K cores of a multiprocessor.
b-MATCHING is a generalization of the better known and stud-
ied MATCHING problem in graphs, and has applications to data
privacy [1], semi-supervised learning and data clustering [2],
finite element mesh refinement [3], preconditioning, etc. Our
work on scalable algorithms for b-MATCHING is motivated by
applications in data privacy and preconditioning.

We obtain a scalable parallel algorithm by careful algorithm
design and choices in implementation. First, by employing
approximation algorithms we avoid the polynomial, but still
impractical, time complexity of an algorithm for computing
the maximum weight, and obtain algorithms with near-linear
time complexity. These approximation algorithms nevertheless
guarantee that the b-MATCHING computed has at least half
the maximum weight, although in practice, the computed
weight is closer to 95% or more of the optimal weight.
Second, new approximation algorithms are designed to have

high concurrency, so that they can scale to ten-thousand cores
or more. The increase in concurrency is achieved by removing
ordering constraints from the approximation algorithm, albeit
at the cost of additional work. We make choices in the
algorithm to reduce the quantum of this extra work, so that
the gains from concurrency are not lost. Third, we choose
variants of the algorithm to implement that have proven to
have low time complexity and good practical performance
on serial and shared-memory computers. Fourth, we organize
the distributed-memory parallel computation in terms of su-
persteps that include computation and communication, and
balance the granularity of computation and the frequency of
communication in order to obtain high performance. Fifth,
by the choice of our parallel algorithm, we can make use of
asynchronous supersteps, so that a processor can continue to
compute after it receives a message from any processor that
holds information about the neighbors of the vertices it owns.
We can also make use of asynchronous communications to
hide the communication latency. By such algorithmic choices,
we decrease the communication and synchronization costs, and
achieve good scaling.

The rest of this paper is organized as follows. We provide
background on MATCHINGS and b-MATCHINGS in Section II.
A serial, recursive, version of the algorithm we consider in
this paper, the b-SUITOR algorithm, is briefly discussed in
Section III. This algorithm has each vertex u proposing to
match to its neighbors in decreasing order of weights, provided
the neighbor already does not have a better offer than the
weight u offers to it. Next we discuss the distributed-memory
parallel version of the b-SUITOR algorithm in Section IV.
Strategies to reduce the communication overhead are consid-
ered in Section V. Our experiments on two leadership class
distributed memory multiprocessors and results are described
in Section VI. We provide a summary of our results and
conclude in Section VII.

II. BACKGROUND AND RELATED WORK

We consider an undirected, simple graph G = (V,E),
where V is the set of vertices and E is the set of edges.SC16; Salt Lake City, Utah, USA; November 2016
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We denote n ≡ |V |, and m ≡ |E|. Given a function b that
maps each vertex to a non-negative integer, a b-MATCHING
is a set of edges M such that at most b(v) edges in M
are incident on each vertex v ∈ V . (This corresponds to
the concept of a simple b-MATCHING in Schrijver [4].) An
edge in M is matched, and an edge not in M is unmatched.
Similarly, an endpoint of an edge in M is a matched vertex,
and other vertices are unmatched. If M has exactly b(v)
edges incident on each vertex v, then the b-MATCHING is
perfect. An important special case is when the b(v) values
are the same for every vertex, say equal to b. In this case, a
perfect b-MATCHING M is also called a b-factor. For future
use, we define β = maxv∈V b(v), and B =

∑
v∈V b(v). We

also denote by δ(v) the degree of a vertex v, and by ∆ the
maximum degree of a vertex in a graph G.

Now consider the case when there are non-negative weights
on the edges, given by a function w : E 7→ R≥0. The weight
of a b-MATCHING is the sum of the weights of the matched
edges. The objective we consider is maximizing the weight of
a b-MATCHING, and it is not necessarily a b-MATCHING of
maximum cardinality.

Edmonds [5] devised the first exact algorithm for
b-MATCHING. Pulleyblank [6] gave a pseudo-polynomial time
algorithm with time complexity O(mnB). Several other al-
gorithms for exact b-MATCHING were proposed in [7], [8],
[9], [10], [11], [12], [13]. A survey of exact algorithms for
b-MATCHING was provided by [3]. More recently, Huang
and Jebara [14] proposed an exact b-MATCHING algorithm
based on belief propagation which assumes that the solution
is unique, and otherwise it does not guarantee convergence.
Since algorithms for computing a b-MATCHING of maximum
weight have high time complexities, they are not practical for
massive graphs with billions of edges, and they do not have
much concurrency either. Hence we consider approximation
algorithms for b-MATCHING here.

Relatively little work has been done on approximate
b-MATCHING. Mestre [15] showed that a b-MATCHING is
a relaxation of a matroid called a k-extendible system with
k = 2, and hence that the Greedy algorithm gives a 1/k =
1/2-approximation for a maximum weighted b-MATCHING.
He generalized the Path-Growing algorithm of Drake and
Hougardy [16] to obtain an O(mβ) time 1/2-approximation
algorithm. He also generalized a randomized algorithm for
MATCHING to obtain a (2/3−ε)-approximation algorithm with
expected running time O(mβ log 1

ε ) [15]. Morales et al. [17]
have adapted the GREEDY algorithm and an integer linear
program (ILP) based algorithm to the MapReduce environment
to compute b-MATCHING in bipartite graphs. There have been
several attempts at developing fast b-MATCHING algorithms
using linear programming [18], [19], but these are slow relative
to the approximation algorithms discussed here.

The fastest serial as well as shared memory multi-threaded
algorithm, b-SUITOR, was proposed by us [20]. In this paper,
we compared a number of approximate b-MATCHING algo-
rithms, and identified key algorithmic issues for this problem
in general. We also showed that the b-SUITOR algorithm is

suitable for parallelization and demonstrated that the algorithm
scales up to 240 cores in shared memory settings.

There are few papers on approximate b-MATCHING in
distributed memory settings. Koufogiannakis and Young [21]
showed a randomized algorithm which guarantees 1/2- ap-
proximation. However, the authors did not mention an im-
plementation or any performance results in that paper. Man-
shadi et al. [19] proposed (1 − ε)-approximate algorithm for
bipartite graphs. The algorithm uses a linear programming
(LP) formulation and it is implemented on a MapReduce
environment. Geogiadis and Papatriantafilou [22] implemented
a distributed 1/2-approximation for b-MATCHING, based on
local dominating edges. To the best of our knowledge, this
is the only implementation for approximate b-MATCHING for
general graphs; however, the largest graph considered by these
authors has 1K vertices with 500K edges, and they did not
report the runtime performance of the algorithm.

In case of approximate MATCHING, (b(v) is 1 for all v),
there are several algorithms proposed in [23], [24], [25] for
distributed memory settings. An algorithm based on locally
dominant edges was first proposed for computing a 1/2-
approximate MATCHING by Preis [26]. (An edge is locally
dominant if it is at least as heavy as all other edges in-
cident on its endpoints.) Manne and Bisseling [27] have
described a distributed-memory parallel implementation of
the locally dominant edge algorithm. The SUITOR algorithm
was proposed by Manne and Halappanavar [28], on which
the b-SUITOR algorithm is based; the former algorithm was
implemented on shared memory parallel architectures by these
authors. Since we describe the b-SUITOR algorithm in the
next Section, we do not discuss the SUITOR algorithm in
detail here. Manne et al. [29] proposed a distributed memory
MATCHING algorithm which has the so called self-stabilizing
property. In a self-stabilizing algorithm in a distributed mem-
ory setting, every vertex has only local information, i.e., it
has knowledge about itself and only its neighbors. A self-
stabilizing algorithm neither requires any global knowledge
nor any fixed initial ordering to reach a stable solution. Lotker
et al. [23], [30] proposed another algorithm which can handle
dynamic graphs, i.e., where vertices leave and join the graph.

Blelloch, Fineman and Shun [31] have shown that the
maximal (not maximum) matching problem can be solved in
parallel in O(log2n) rounds with high probability using the
locally dominant edge algorithm. They prove that the maximal
independent vertex set (MIS) problem can be solved in this
many rounds with high probability, and the maximal matching
problem can be reduced to the MIS problem on the line graph
of the original graph.

III. SEQUENTIAL b-SUITOR

We begin by justifying our choice of a specific variant of the
b-SUITOR algorithm which we implement to be scalable on a
distributed memory multiprocessor. The b-SUITOR algorithm
has several attractive properties that make it a good choice to
be implemented on a distributed memory multiprocessor. First,
it is a half-approximation algorithm that computes the same



b-MATCHING as the one obtained by a GREEDY algorithm
and a Locally Dominant Edge (LD) algorithm (see Theorem
1 in the next Section, and [20]). Second, it has increased
concurrency over the GREEDY and the LD algorithms: unlike
the GREEDY algorithm which considers edges to match in
decreasing order of weights, and the LD algorithm which
matches an edge only when it becomes locally dominant, in the
b-SUITOR algorithm vertices can extend proposals in arbitrary
order, thus increasing concurrency in the algorithm. A vertex
has to extend proposals to its neighbors in decreasing order
of weights, but since each vertex can propose independent
of others, this exposes sufficient parallelism in the algorithm.
Second, the b-SUITOR algorithm has low serial running times
relative to the GREEDY and the LD algorithms, as we will
report in the next paragraph. It can be proved that the expected
number of proposals in the SUITOR algorithm is O(n log n)
if the weights of the edges are chosen randomly, although in
the worst-case it can be O(n2) [32], [33]. (This follows from
the connection of the SUITOR algorithm to an algorithm for
the stable matching problem.) Finally, it can be proved that
the expected value of the ranks (the sum over the vertices of
the position of the matched neighbor in the sorted adjacency
list of each vertex) is O(n log n), again when the weights are
assigned randomly [33]. This last result suggests that each
vertex needs to examine on the average at most O(log n)
neighbors in its sorted adjacency list to find a mate in the
SUITOR algorithm. We believe that these results, which hold
for the SUITOR algorithm, can be generalized to the b-SUITOR
algorithm as well.

Now we compare the run times of the exact b-MATCHING
algorithm, and the half-approximate GREEDY, LD, and
b-SUITOR algorithms on serial and shared memory processors.
Since exact b-MATCHING algorithms are challenging to im-
plement, there are few implementations that are publicly avail-
able. We compare our sequential b-SUITOR algorithm with two
exact algorithms: the first, an algorithm that solves the Integer
Linear Programming (ILP) formulation of b-MATCHING and
the second, an algorithm based on belief propagation (BP)
[14]. The BP algorithm is not guaranteed to converge if the
b-MATCHING is not unique. The serial b-SUITOR algorithm is
895× faster than ILP, and 287× faster than the BP algorithm
on the test set used in [20]. When compared with other approx-
imation algorithms, b-SUITOR is 17× faster than the GREEDY
algorithm, and 3× faster than the Locally Dominating edge
(LD) based algorithm [20] on a serial machine. On a shared
memory multiprocessor with 16 threads, b-SUITOR is 14×
faster than LD algorithms, and the former scales better than
the latter with increasing numbers of threads. In summary,
b-SUITOR algorithm is the fastest among these algorithms,
and it is scalable in a multithreaded shared memory context.
The b-SUITOR algorithm requires only local information, as
described later in this section, which is advantageous in the
distributed memory context.

We now describe a serial version of the b-SUITOR algo-
rithm. This algorithm is a 1/2-approximation algorithm for
maximum edge weighted b-MATCHING, and was proposed in

[20]. For each vertex u, we maintain a priority queue S(u)
that contains at most b(u) elements from its adjacency list
N(u). The intent of this priority queue is to maintain a list of
neighbors of u that have proposed to u and hence are Suitors of
u. The priority queue enables us to update the lowest weight
of a Suitor of u in log b(u) time. If u has fewer than b(u)
Suitors, then this lowest weight is defined to be zero. The
operation S(u).insert(v) adds the vertex v to the priority
queue of u with the weight w(u, v). If S(u) has b(u) vertices,
then the vertex with the lowest weight in the priority queue is
discarded on insertion of v. This lowest weight Suitor is stored
in S(u).last; if the priority queue contained fewer than b(u)
vertices, then a value of NULL is returned for S(u).last.

In what follows, we will need to break ties consistently
when the priorities of two vertices are equal. Without loss of
generality, we will say that w(u, x) > w(v, x) if the weights
are equal but vertex u is numbered lower than v.

It is also conceptually helpful to consider an array T (u)
which contains the vertices that u has proposed to. These are
all the vertices v such that u is a Suitor of v. Again, there
are at most b(u) neighbors of u in the set T (u), and so this
is a subset of N(u). The operation T (u).insert(v) inserts a
vertex v into the array T (u), and T (u).remove(v) removes the
vertex v from T (u). Throughout the algorithm, we maintain
the property that v ∈ S(u) if and only if u ∈ T (v). When the
algorithm terminates, we satisfy the property that v ∈ S(u)
if and only if u ∈ S(v), and then (u, v) is an edge in the
b-MATCHING.

Consider what happens when we attempt to find the i-
th neighbor for a vertex u to propose to. At this stage u
has made i − 1 outstanding proposals to vertices in the set
Ti−1(u), the index showing the number of proposals made
by u. We must have i ≤ b(u), for u can have at most
b(u) outstanding proposals. If a vertex u has fewer than b(u)
outstanding proposals, then we say that it is unsaturated; if
it has b(u) outstanding proposals, then it is saturated. The
b-SUITOR algorithm finds a partner for u, pi(u), according to
the following equation:

pi(u) = arg max
v∈N(u)\Ti−1(u)

{w(u, v) |w(u, v) > w(v, S(v).last)}

(1)

In words, the i-th vertex that u proposes to is a neighbor v
that it it has not proposed to yet, such that the weight of the
edge (u, v) is maximum among such neighbors, and is also
greater than the lowest weight offer v has currently. We will
call such a vertex v an eligible partner for u at this stage in
the algorithm. Note that the vertex pi(u) belongs to Ti(u) but
not to Ti−1(u).

We present the pseudo-code for the sequential b-SUITOR
algorithm in Algorithm 1. A recursive version of the algorithm
is described since it is easier to understand, although the
versions we have implemented for both serial and parallel
algorithms use iteration rather than recursion. The algorithm
processes all of the vertices, and for each vertex u, it seeks
to propose to b(u) neighbors. In each iteration a vertex u



Algorithm 1 b-SUITOR(G, b)
1: for all u ∈ V do
2: for i = 1 to b(u) do
3: x = argmax

v∈N(u)\T (u)

{w(u, v) : w(u, v) > w(v, S(v).last)}

4: if x = NULL then
5: break
6: else
7: MakeSuitor(u, x)

Algorithm 2 MakeSuitor(u, x)
1: y = S(x).last
2: S(x).insert(u)
3: T (u).insert(x)
4: if y 6= NULL then
5: T (y).remove(x)
6: z = argmax

v∈N(y)\T (y)

{w(y, v) : w(y, v) > w(v, S(v).last)}

7: if z 6= NULL then
8: MakeSuitor(y, z)

proposes to a heaviest neighbor v it has not proposed to yet,
if the weight w(u, v) is heavier than the weight offered by
the last (b(v)-th) Suitor of v. If it fails to find such a vertex,
then we break out of the loop. If it succeeds in finding an
eligible vertex x to propose to, then the algorithm calls the
function MakeSuitor to make u the Suitor of x. This function
updates the priority queue S(u) and the array T (u). When
u becomes the Suitor of x, if it annuls the proposal of the
previous Suitor of x, a vertex y, then the algorithm looks for
an eligible partner z for y, and calls MakeSuitor recursively
to make y a Suitor of z.

There are some modifications that can improve the perfor-
mance of the basic b-SUITOR algorithm.

One modification is to sort the adjacency lists of the vertices
to list edges in decreasing order of weights to reduce the time
complexity of the algorithm. With sorting, the adjacency list of
each vertex needs to be scanned from the highest to the lowest
only once in the entire algorithm. This feature reduces the time
complexity of the b-SUITOR algorithm from O(m∆ log β)
to O(m log(β∆). This could be further reduced by partially
sorting the adjacency lists, since only some multiple of the
b(v) heaviest edges incident on v are likely to be involved in
an approximate b-MATCHING. The complexity of the partially
sorted variant is O(m(c + log β), where c is the maximum
number of subsets in an adjacency list that is sorted; this is
typically bounded by a constant.

The second modification concerns what to do when a vertex
u has one of its proposals annulled. Either we can process
vertex u immediately so that it proposes to its next eligible
neighbor, or we can put u into a queue for later processing
after all vertices in the current iteration. The second, delayed
processing option, leads to better cache accesses, and to
fewer proposal annulments (since a vertex whose proposal is
annulled is likely to have a low weight relative to other eligible
vertices). It is this Delayed, Partial sorting (DP) variant that
we consider in the distributed-memory setting.

IV. MULTINODE b-SUITOR

We describe the distributed memory b-SUITOR algorithm
in this section. If we set aside implementation details that
arise due to the distributed-memory setting, the algorithm is
conceptually simple. Referring to the Algorithms 1 and 2
discussed in the previous section, the heart of the b-SUITOR
algorithm is that a vertex u makes a proposal to another vertex
v by following a rule (corresponding to the invariant of the
algorithm, Equation 1), and in doing so it may annul a proposal
to v which was made earlier by another vertex w. Also, when
u proposes to v, its current value of the best offer that v has
might not be correct, and thus v might need to send a rejection
message to u. In a distributed-memory algorithm, the three
vertices u, v, and w could be in three different compute nodes,
and hence we need an inter-node message passing interface to
coordinate the operations.

The input graph, G(V,E,w) is distributed among the par-
ticipating compute nodes. For each compute node, we denote
the resident graph as Gl = (V,El, wl) where V = Vl ∪ Vr;
i.e., Vl is the set of vertices local to that node, and Vr is the
set of vertices remote to that node. For a specific compute
node, we do not need to consider all the remote vertices but
the subset of the remote vertices which are neighbors of at
least one local vertex. We call this subset of vertices as ghost
vertices, and denote them by Vg ⊆ Vr. We call the subset of
compute nodes that own the ghost vertices on a compute node
as its neighboring nodes. The set El denotes the edges induced
by Vl, where at least one end point of an edge e(u, v) ∈ El
is local, and wl denotes the set of weights of such edges. The
heap data structures for the local vertices S(vl) are exactly
same as we have described in the previous section. However,
for the ghost vertices, we keep only the last Suitor information.

We have three types of messages: i) PROP for proposals,
ii) REJ for rejections and iii) ANL for annulments. In the
sequential b-SUITOR algorithm, there was no notion of re-
jections, and this is one of the critical differences for the
algorithm in the distributed setting. Processors do not send
messages one at a time but in batches for obvious performance
reasons. A processor maintains separate sending and receiving
buffers for each neighboring compute node. If a compute node
needs to communicate with a ghost vertex v, the algorithm first
identifies the remote node r which owns vertex v, and then
creates an appropriate message for that vertex and adds it to
the send buffer SBr, assigned to that remote node.

Now we describe our multi-node b-SUITOR in Algorithms
3 and 4. The algorithm uses iteration rather than recursion.
Since the Delayed Partial (DP) variant of the b-SUITOR
algorithm performs the best in both sequential as well as multi-
thread shared memory settings [20], our base algorithm in
the distributed-memory setting is this variant. As our imple-
mentation employs a hybrid shared and distributed memory
programming model, the intra-node computation is done in
parallel with OpenMP, and the inter-node communication is
done using the MPI library.

The algorithm maintains a queue of unsaturated vertices Q



for which it tries to find partners by extending proposals, and
also a queue of vertices Q′ that become unsaturated during the
current iteration (through annulments) to be processed again
in the next iteration. When there is no more vertex to be
processed, the algorithm terminates. The algorithm attempts
to find b(u) partners for each vertex u in Q, (line 5) as long
as its neighborhood has not been exhausted.

Consider the situation when a vertex u has i − 1 < b(u)
vertices outstanding proposals and the vertex u finds an
eligible partner p by satisfying Equation 1 (line 8). There are
two possible scenarios, i.e., p is either a local or a ghost vertex.
If it is a ghost vertex then the algorithm creates a Proposal
message and adds it to the appropriate send buffer (line 21).
If p is a local vertex then the thread processing the vertex u
attempts to acquire the lock for the priority queue S(p) so that
other vertices do not simultaneously become Suitors of p. This
attempt might take some time to succeed since another thread
might have the lock for p, or could be competing for it. Once
the thread processing u succeeds in acquiring the lock, then it
needs to check again if p continues to be an eligible partner,
since by this time another thread might have found another
Suitor for p, and its lowest offer might have changed. If p is
still an eligible partner for u, then we make u as a suitor of
p. By making u a suitor of p, we may dislodge the lowest
weight Suitor v of p, i.e., we annul the proposal that v made
to p earlier (line 14). Again, what happens next depends on
whether vertex v is a local or ghost vertex. If it is a local vertex
then we add v to the queue of vertices Q′ to be processed in
the next iteration (line 15) and the thread releases the lock
on S(p). If v is a ghost vertex, then the algorithm creates an
annulment message and adds it to the appropriate send buffer.

In the Remote msg handle procedure, the algorithm
sends all the messages gathered during the computation phase
to the respective remote nodes using the asynchronous MPI
send primitive. The reason for the asynchrony is that we do not
know when the computation phases of other compute nodes
will finish. Since b-SUITOR algorithm has the inherent self
stabilizing property and also has separate queues for receiving
messages, we do not need to wait for the outstanding send
primitives to finish. Thus we hide much of the communica-
tion latency. Next, the compute node waits until it receives
incoming messages from any of the remote nodes. As soon
as it receives an incoming message from a remote node r, it
starts to process the message. In doing so, we again hide the
communication latency because by the time the algorithm is
finished processing messages from r, it is likely that messages
from other remote nodes are already in the respective receive
buffers, RBs.

We process all the messages coming from a remote node
r in parallel (line 6). Consider a message m received from
remote node r, with u, p and w being the source (ghost) vertex,
destination (local) vertex and the weight for the message m,
respectively. There are two cases based on the message types.

1) Proposal message: If it is a Proposal message, then
we need to check whether it is a valid proposal or
not, i.e., if w > S(p).last. This validity checking is

required because when u decided that p is an eligible
partner to propose to (Algorithm 3 line 8), it made the
decision based on the ghost information about p, and
the information may not be current at that time. If the
proposal is still valid, then we make u a Suitor of p
with locking/unlocking mechanism for thread synchro-
nization as before. If during this process, u annuls a
proposal of v to p then again we handle it as described
in Algorithm 3.
However, if the proposal is not a valid one, the al-
gorithm replies to vertex u with a Rejection message.
An important point to note is that the proposal was
rejected because u made a decision based on the stale
information about the last Suitor of p. So when the
algorithm sends the Rejection message to u, it updates
the current last Suitor information S(p).last in the
Rejection message (line 18).

2) Rejection or Annulment message: We treat both types
of messages in the same manner because in effect, the
algorithm requires us to find a new partner for p for
both cases. In case of rejection, the proposal to u got
rejected because of the stale information of u. In case of
annulment, another vertex v made an better offer than
p. For both cases the worst suitor information of u has
been updated. So we update this information which is
encoded in the message (line 20) and add vertex p to
Q′ to process it in the next iteration.

The distributed b-SUITOR algorithm is a 1/2− approxima-
tion algorithm. Its proof directly follows from the proof of the
sequential b-SUITOR algorithm in [20]. We omit this proof
and the proof for termination of the algorithm due to space
limitations. We can prove a stronger result.

Theorem 1: All of the four algorithms: the distributed
b-SUITOR, the serial b-SUITOR, the GREEDY, and the Locally
Dominant edge algorithms, compute the same b-MATCHING,
and hence are 1/2-approximation algorithms for the maximum
weighted b-MATCHING problem.

V. STRATEGIES FOR REDUCING COMMUNICATION

The distributed memory b-SUITOR algorithm is
communication-intensive. The communication volume
depends on many factors such as the distribution of the edges
and their weights, the values of b(v), and the partitioning
of the graph among the processors, etc. Except for the last
factor, the other factors are input to the algorithm. We use a
simple vertex partitioning for our experiments, i.e., vertices
in the original order in the graph are equally distributed
among the participating compute nodes. We show and discuss
the effect on runtime for random permutation of vertices
among the nodes in the experimental section. Clearly, a
partition that minimizes the total number of cut edges should
reduce the communication volume but partitioning itself is a
heavy-weight task in distributed settings. Since we compute
matchings in our test problem under 10 seconds, and a good
partitioning algorithm requires much more time, partitioning



Algorithm 3 Distributed memory algorithm for approximate b-MATCHING. Input: A graph Gl = (V,El, wl) where V = Vl∪Vr,
vectors bl and sl. (Here l denotes local values, and r denotes remote values for this processor.) Output: A 1/2−approximate
edge weighted b-MATCHING M .

1: procedure MULTINODE b-SUITOR(Gl, b, s)
2: Q = Vl; Q′ = ∅;
3: All buffers are initially empty;
4: while Q 6= ∅ do
5: for all vertices u ∈ Q in parallel do
6: i = 1;
7: while i <= b(u) and N(u) 6= exhausted do . Extend i-th proposal from u
8: Let p ∈ N(u) be an eligible partner of u;
9: if p 6= NULL then

10: if p is local then . Adding and updating the heap of a local vertex
11: Lock p;
12: if p is still eligible then
13: Make u a Suitor of p;
14: if u annuls the proposal of a vertex v then
15: if v is local then
16: Add v to Q′; Update db(v);
17: else . Remote annulments are added to Message queues
18: Let r be the node that owns v;
19: Add an Annulment message to the send buffer SBr(u, v, S(p).last, ANL)

20: i = i+ 1;
Unlock p;

21: else . Remote proposals are added to Message queues
22: Let r be the node that owns p;
23: Add a Proposal message to the send buffer SBr(u, p, w(u, p), PRP );
24: else
25: N(u) = exhausted;
26: /∗ Start of communication phase ∗/
27: Remote msg handle(SB,RB,Q′, db);
28: Update Q using Q′; Update b using db;

as a preprocessing step will not improve the performance
when the cost of partitioning is included.

Another source of redundant communications in Algorithm
3 is Proposal messages to vertices based on the ghost in-
formation. The ghost information on a processor might be
stale at the time of a decision to extend a proposal, and
this can generate many Rejection messages (we consider this
in line 9 in Algorithm 4). If the information was correct
and not stale, then we could have saved two messages (one
Proposal message and the corresponding Rejection message)
per decision. One extreme solution could be to send update
messages as soon as the S(u).last is updated for a vertex
u, to all the compute nodes where u is a ghost vertex. But
that would mean: i) all compute nodes have to be in lockstep
(synchronized communication) and ii) there would be many
small messages across the interconnection network. Both of
these lead to poor performance. So we consider three strategies
to reduce the number of messages in the following.

A. Subsetting the b(v) values

We define 1 ≤ b′(v) ≤ b(v) for each node v. Instead of
finding b(v) partners for a vertex v (Algorithm 3, line 7), we
can find a batch of b′(v) partners at each iteration until all
partners are found. Since the adjacency lists are sorted, we
find partners with higher edge weights first. The reason for
this is that the weight of the last Suitor of a vertex can only
increase in the course of the algorithm, so we let a vertex
extend proposals to its heavier neighbors first and become their
Suitor, and the corresponding ghost information about the last
Suitor spreads in the graph first. Later on when the algorithm
tries to find Suitors with lower edge weights, there is a reduced
chance that the offers from lower weight neighbors can beat
the offer of the last Suitor even if the ghost information is
not fresh. We apply two different strategies for choosing the
b′ values: i) constant b′, where b′(v) ∈ {1, 3, 5, . . . , b(v)}, and
ii) variable b′, where b′(v) = 1/2b(v) or (b(v)/d(v))× b(v).

B. Subsetting the vertices on a compute node

Instead of subsetting the b(v) values, we can process the
vertices on a specific processor in subsets. Let us assume



Algorithm 4 Procedure for remote message handling. Input: Send and Receive buffers, SB and RB, for each remote node, a
queue Q′ and a vector db. Output: All messages in Receive buffers are processed. The values of SB, Q′ and db are updated.

1: procedure REMOTE MSG HANDLE(S,R,Q′, db)
2: for all Neighboring Nodes r do
3: Send message SBr;
4: for all Neighboring nodes do . Wait for message from any remote node
5: Let r be the node from which data is received;
6: for all messages m ∈ RBr in Parallel do
7: Let u be the remote vertex and p the local vertex in m;
8: if m is a Proposal then . Handling proposal messages
9: if valid Proposal then

10: lock p; Make u a Suitor of p; unlock p;
11: if u annuls the proposal of a vertex v then
12: if v is local then
13: Add v to Q′; Update db(v);
14: else
15: Let r′ be the node that owns v;
16: Add an Annulment message to the send buffer SBr′(p, v, S(p).last, ANL)

17: else
18: Add a Reject message to the send buffer SBr(p, u, S(p).last, REJ)

19: else . Handling annulment or reject messages
20: Update Last Suitor of u using S(u).last ∈ m;
21: Add p to Q′, update db(p);

that a compute node in its tth iteration has to process nt
unsaturated vertices. Instead of processing all nt at the same
time in parallel, we can process a subset of p vertices, and then
do the communications. In the distributed memory setting this
strategy has been called super-stepping, which has been shown
to load-balance the communications among the compute nodes
by making a trade-off between the freshness of the last Suitor
information and the volume of communication. In our case,
this strategy gives us an added benefit since by controlling the
number of vertices being processed in a superstep (one round
of computation and communication), we control the volume
of last Suitor updates in S(v). Since each S(v) update ideally
requires us to propagate the information, we reduce the number
of such updates by processing fewer vertices at each step.
We observe experimentally that the volume of stale updates
decreases by applying this strategy.

C. Ordering the vertices for extending proposals

Intuitively, edges with higher weights are more likely to be
matched since our goal is to find a matching of maximum
weight. Hence when a vertex makes a proposal with a higher
edge weight, it is less likely to be annulled later by another
vertex. So we sort the vertices according to the heaviest edge
incident on them, and process them in that order. For example,
if two vertices u and v have wu and wv respectively as their
heaviest remaining edges incident on them, we process u be-
fore v if wu > wv . (This simple strategy does as well as more
sophisticated ones that sort by estimating the value of the last
Suitor of a vertex.) For the sequential algorithm, processing
in this order indeed reduces the number of annulments by

Problems Vertices Edges Avg. deg
ER 28 268,434,430 2,147,483,648 8
ER 27 134,217,028 1,073,741,824 8
ER 26 67,107,760 530,160,025 8

SSCA 28 268,435,154 2,136,323,325 8
SSCA 27 134,217,728 1,066,851,217 8
SSCA 26 67,107,987 534,179,576 8
G500 27 134,217,726 2,111,641,641 16
G500 26 67,108,089 1,073,058,343 16
G500 25 33,554,330 532,507,217 16
twitter 41,652,230 1,468,365,182 36

gsh-2015-host 68,680,142 1,802,747,600 27

TABLE I
TEST PROBLEMS.

as much as 15% for problem with 500 million edges ([20]),
In the distributed setting, message-based communication is
costlier than the computation. As the number of compute
nodes increases, for the same graph, each node owns fewer
vertices, and the overhead cost of sorting the adjacency lists
decreases. Therefore, for each compute node, we sort Q
according to the heaviest remaining edge before processing
the vertices (before line 5 in Algorithm 3).

VI. EXPERIMENTS AND RESULTS

We conducted our experiments on Edison and Cori, two
leadership-class machines at NERSC, Berkeley. Edison is a
Cray XC30 supercomputer, whose compute node consists
of two 12-core 2.4 GHz Intel R© Ivy Bridge processors with
64GB RAM. Each core in a compute node has its own



64KB L1 cache and 256KB L2 cache, as well as a 30MB
shared L3 cache per socket. Edison nodes are interconnected
with the Cray Aries network using a Dragonfly topology
with 5.625TB/s global bandwidth. We used the Intel R© MPI
implementation for inter-node communication and OpenMP
for intra-node multi-threading, and compiled the code with
Intel R© compiler 1 mpiicpc-5.1.1 with -O3 -openmp flags. Our
hybrid implementation used two MPI-openMP settings: i) 12
cores per MPI process, where each MPI process is placed in an
Edison compute node, and ii) all 24 cores per MPI process and
1 MPI process per node. We find that the latter configuration
gives better performance. Cori is a Cray XC40 supercomputer,
with each compute node consisting of two 16-core 2.3 GHz
Intel R© Haswell processors with 128GB RAM. Each core in
a node has its own 64KB L1 cache and 256KB L2 cache,
as well as a 40MB shared L3 cache per socket. Cori nodes
are also interconnected with the Cray Aries network using a
Dragonfly topology.

Table I describes the set of problems for the experiments.
We used synthetic datasets based on RMAT [34] as well as real
world problems obtained from [35], [36]. We generated three
classes of RMAT graphs: (a) G500 representing graphs with
skewed degree distribution from the Graph 500 benchmark
[37], (b) SSCA from HPCS Scalable Synthetic Compact Ap-
plications graph analysis (SSCA#2) benchmark [38], and (c)
Erdos-Renyi random graphs with uniform degree distributions.
We used the following parameter settings:
(a) a = 0.57, b = c = 0.19, and d = 0.05 for G500,
(b) a = 0.6, and b = c = d = 0.133 for SSCA,
and (c) a = b = c = d = 0.25 for ER.
We have generated three scales for each class of graph where
the scale k determines the number of vertices, n = 2k. For
ER and SSCA graph the scales are k ∈ {26, 27, 28} and for
G500 graphs they are k ∈ {25, 26, 27}. We choose b(v) =
min{10, δ(v)} for all the problems where δ(v) is the degree of
vertex v. High b(v) values relative to the average degree means
that the algorithm has more work per vertex and also that
the communication across the network is expected to be high.
Since the b-SUITOR algorithm is communication-intensive, we
investigate its performance under high communication loads.

At first, we investigate the best performing scheme
for each communication reduction strategy. The number
of combinations is large, i.e., we find the best perform-
ing scheme for b(v) subsetting, where we have b′(v) ∈
{{1, 3, . . . , b(v)}, 1/2b(v), b(v)/d(v) × b(v)}, for a total of
eight choices. Then for each of these choices, we apply the
vertex subsetting policies, where we partition the vertices in
each compute node into {1, 8, 16, 32, 64, 128} subsets, for
a total of six values. Then we repeat these 6 × 8 = 48

1Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel micro-architecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice. Notice revision #20110804.

Fig. 1. Strong scaling results for different strategies for three classes of
problems on Edison.

experiments with vertices sorted according to the heaviest edge
weight incident on it. We run these experiments for the largest
problems in each class and we report results from the best
strategies in Figure 1.

The strategy information is encoded in the legends of Figure
1. For example, b′10 N16 S in the ER 28 plot denotes that
under the vertex sorting strategy: vertex subsetting with 16



subsets and b′ = 10 (i.e., no b(v) subsetting because b(v) ≤
10) gives the best performance. We plot the number of cores
on the x-axis and logarithms of the runtimes in seconds on
the y-axis.

We observe that for all three classes of graphs the basic
strategy, (b′10 N1 U), is the worst performer. For ER and
SSCA problems, the basic strategy scales up to 6K cores
where as for G500 27, it scales up to 1.5K cores. All of the
communication strategies make the algorithm scale better, and
the combination of sorting the vertices with vertex subsetting
but no b(v) subsetting, is the best strategy for all problems.
It is interesting to note that the behaviors of vertex subsetting
and b(v) subsetting are orthogonal to each other. When we use
b(v) subsetting, no vertex subsetting (i.e., N1) gives the best
result, and vice versa. In summary, the b-SUITOR algorithm
scales up to 12K cores with speed up of 47× (ideally, 64×) for
ER and SSCA problems. (Speedups are computed relative to
192 cores.) However for the G500 problem, it scales up only
to 6K cores with 15× (ideally, 32×). The under-performance
of this class of graph is due to its skewed degree distribution,
since the number of edges in each compute node can be highly
imbalanced.

Next, we investigate why these strategies improve the per-
formance by considering how it reduces the communication
volume with respect to the basic strategy. By subsetting on
b(v) values and the vertices, we aim to reduce the stale
information (last Suitor weights) to reduce rejections. Vertex
ordering for extending proposals aims to reduce annulments.
However, reducing annulments indirectly reduces rejections
also, because the algorithm chooses the vertices with heavier
edges to make proposals first. Hence we observe that sorting
the vertices coupled with vertex subsetting performs the best.
Table II verifies our claim and shows the percent reduction
in the number of proposals, rejections, annulments and total
number of messages with respect to the basic strategy for the
largest problems in the three graph classes.

Since the basic strategy scales up to 256 nodes for ER 28
and SSCA 28, and 128 nodes for G500 27, we compare the
number of different types of messages for the basic strategy
with the other strategies with these node counts. The number
of proposals and total number of messages are related to the
numbers of rejections and annulments, so we focus on these
two types. As claimed, subsetting b(v) and vertices (second
and third columns of Table II) reduces rejections for all the
problems (as much as 20% for ER 28). However, these two
strategies do not reduce the annulments that much. In fact
for SSCA 28 and G500 27, the annulments increase by 2%
with vertex subsetting. The last column of Table II shows the
reduction with vertex sorting and vertex subsetting. We see
that it reduces both rejections and annulments more than other
strategies for all problems, and this is why it performs the best
in terms of run times and scaling.

Next, we investigate the total number of proposal messages
and proposal messages per node (in log2 scale) as a function
of compute nodes in Figure 2. We observe that the number
of proposal messages initially increases and then stabilizes

ER 28 (256) b′1/2 N1 U b′10 N32 U b′10 N16 S
Proposal 3.23% 3.58% 6.91%
Rejection 20.72% 11.15% 21.18%

Annulment 0.33% 12.75% 24.90%
Total 4.97% 5.51% 10.62%

SSCA 28 (256) b′1/2 N1 U b′10 N32 U b′10 N16 S
Proposals 7.37% 8.13% 11.62%
Rejection 16.58% 17.63% 19.22%

Annulment 17.03% -1.55% 31.12%
Total 9.84% 8.62% 14.87%

G500 27 (128) b′1/2 N1 U b′10 N32 U b′10 N64 S
Proposals 0.14% 5.75% 9.16%
Rejection 0.95% 12.16% 7.08%

Annulment 4.51% -2.19% 40.12%
Total 0.78% 7.12% 11.16%

TABLE II
REDUCTION IN NUMBER OF MESSAGES W.R.T THE BASIC STRATEGY FOR

THE LARGEST INPUT SIZE IN EACH PROBLEM CLASS.

for ER 28 and SSCA 28 graphs, but for G500 27 graph it
keeps increasing with the number compute nodes. This is
another indication of the relatively poor strong scaling for
G500 graphs. We observe that the average number of proposal
messages generated per node goes down for all the graphs, but
the slope is more negative for ER and SSCA graphs.

Now we investigate the sensitivity of the algorithm to
different distributions of vertices among the compute nodes.
In order to test this, we randomly permuted the vertices, and
then mapped contiguous subsets of vertices to different com-
pute nodes (keeping the number of local vertices the same).
Then we performed three sets of experiments on the largest
problems with different permutations for the basic and the best
strategies. We report the mean runtimes in the histogram and
the standard deviations as the error bars in Figure 3. The best
strategy is mostly insensitive to the permutation except for
G500 27. The result for the last graph class is expected since
here with different permutations the edge distribution will be
significantly changed.

Finally, we report results on Cori for the largest problems in
each class with their best strategies. Figure 4 shows the strong
scaling performance of b-SUITOR algorithm. We observe a
speedup of 39 (ideally it would be 64) in going from 256
cores to 16K cores for RMAT. Run times are faster for the
same number of compute nodes for Cori relative to Edison.
E.g., the ER 28 graph takes 59 seconds with 128 nodes on
Edison, whereas it takes 26 seconds on Cori, because a Cori
node has more cores than an Edison node. The G500 27 graph
scales up to 16K cores (512 nodes) on Cori, whereas it scaled
only to 6K cores on Edison. We also experiment with the two
real world problems on Cori. The smaller problem twitter
has 1.5 billion edges, and scales up to 8K cores; the larger
problem gsh-2015-host has 1.8 billion edges, and scales
up to 16K cores. We observe nearly constant weak scaling
performance on Cori in Figure 5.



Fig. 2. The relationship between the number of Proposal messages and the
number of compute nodes.

Fig. 3. Performance sensitivity under random partitioning.

Fig. 4. Strong scaling with Cori.

Fig. 5. Weak scaling results for different strategies with three classes of
problems on Cori.

VII. CONCLUSIONS

We have designed the first distributed-memory parallel
algorithm for b-MATCHING that scales to 16K cores of a
supercomputer. We demonstrated both strong scaling and weak
scaling on three synethetic graphs as well as two graphs
from applications. We computed a half-approximate maximum
weighted b-MATCHING in a graph with 2 billion edges in less
than 4 seconds on 16K cores of Cori.
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