
Exploiting Sparsity in Jacobian Computation via
Coloring and Automatic Differentiation:
A Case Study in a Simulated Moving Bed Process

Assefaw H. Gebremedhin1 and Alex Pothen1 and Andrea Walther2

1 Department of Computer Science and Center for Computational Sciences, Old Dominion
University, Norfolk, VA, USA, [assefaw,pothen]@cs.odu.edu

2 Department of Mathematics, Technische Universität Dresden, Germany,
andrea.walther@tu-dresden.de

Summary. Using a model from a chromatographic separation process in chemical engineer-
ing, we demonstrate that large, sparse Jacobians of fairly complex structures can be com-
puted accurately and efficiently by using automatic differentiation (AD) in combination with
a four-step procedure involving matrix compression and de-compression. For the detection of
sparsity pattern (step 1), we employ a new operator overloading-based implementation of a
technique that relies on propagation of index domains. To obtain the seed matrix to be used
for compression (step 2), we use a distance-2 coloring of the bipartite graph representation
of the Jacobian. The compressed Jacobian is computed using the vector forward mode of AD
(step 3). A simple routine is used to directly recover the entries of the Jacobian from the com-
pressed representation (step 4). Experimental results using ADOL-C show that the runtimes
of each of these steps is in complete agreement with theoretical analysis, and the total runtime
is found to be only about a hundred times the time needed for evaluating the function itself.
The alternative approach of computing the Jacobian without exploiting sparsity is infeasible.

Key words: Sparse Jacobians, Graph coloring, Sparsity patterns, Simulated Moving Bed
chromatography

1 Introduction

Automatic Differentiation (AD) has become a well established method for computing deriva-
tive matrices accurately and reliably. This work focuses on a set of techniques that constitute
a scheme for making such a computation efficient in the case where the derivative matrix is
large and sparse. The target scheme, outlined in Algorithm 1 in its general form, has been
found to be an effective framework for computing Jacobian as well as Hessian matrices [2, 7].
The input to Algorithm 1 is a function F whose derivative matrix A ∈ R

m×n is sparse. The
seed matrix S determined in the second step of the algorithm is such that s jk, its (j,k) entry, is
one if the jth column of the matrix A belongs to group k and zero otherwise. Since this corre-
sponds to a partitioning of the columns of A, in every row r of the matrix S there is exactly one
column c in which the entry src is equal to one. There exist approaches that use a seed matrix
where a row-sum is not necessarily equal to one [11], but they will not be considered here.

2 Gebremedhin et al.

Algorithm 1 A scheme for computing a sparse derivative matrix.
procedure SPARSECOMPUTE(F : R

n→R
m)

1. Determine the sparsity structure of the derivative matrix A ∈R
m×n of F .

2. Using a coloring on an appropriate graph of A, obtain an n× p seed matrix S with
the smallest p that defines a partitioning of the columns of A into p groups.

3. Compute the numerical values of the entries of the compressed matrix B≡ AS.
4. Recover the numerical values of the entries of A from B.

The specific set of criteria used to define a seed matrix S—the partitioning problem—
depends on whether the derivative matrix A to be computed is a Jacobian (nonsymmetric) or a
Hessian (symmetric). It also depends on whether the entries of the matrix A are to be recovered
from the compressed representation B directly (without requiring any further arithmetic) or
indirectly (for example, by solving for unknowns via successive substitutions). In previous
works, we had provided a comprehensive review of graph coloring models that capture the
partitioning problems in the various computational scenarios and developed novel algorithms
for the coloring models [6, 8]. The efficacy of the coloring techniques in the overall process of
Hessian computation via AD had been demonstrated in [7]. Implementations in C++ of all our
coloring and related algorithms for Jacobian and Hessian computation have been assembled
in a package called COLPACK [9]. Currently COLPACK is being interfaced with ADOL-C,
which is an operator overloading based tool for the differentiation of functions specified in
C/C++ [12].

In this paper, using a model from a chromatographic separation process as a test case
and ADOL-C as an AD tool, we demonstrate the efficacy of the scheme in Algorithm 1 in
computing a sparse Jacobian via a direct recovery method. In Section 2 we discuss an effi-
cient implementation of a technique for sparsity pattern detection based on propagation of
index domains that we have incorporated into ADOL-C and used in the first step of Algo-
rithm 1. In Section 3 we discuss the distance-2 coloring algorithm we used in the second step
to generate a seed matrix. To compute the compressed Jacobian in the third step, we used the
vector forward mode of ADOL-C. We discuss Simulated Moving Beds, the context in which
the Jacobians considered in our experiments arise, in Section 4 and present the experimental
results in Section 5. The experimental results show that sparsity exploitation via coloring en-
ables one to affordably compute Jacobians of dimensions that could not have been computed
otherwise due to excessive memory or runtime requirements. The results also show that the
index domain-based sparsity detection technique now available in ADOL-C is several orders
of magnitude faster than the bit vector-based technique used earlier.

2 Automatic differentiation and sparsity pattern detection

AD provides exact derivative information about a smooth function F : R
n→ R

m, x 7→ F(x),
given as a computer program by breaking down the computation of F into a sequence of el-
ementary evaluations upon which the chain rule of calculus is systematically applied. The
decomposition of the function F into its elementary components can be formalized as shown
in Algorithm 2. There the precedence relation j≺ i denotes that variable vi directly depends on
variable v j. The derivative of each elementary function ϕi(v j) j≺i with respect to its arguments
v j , j≺ i, is obtained easily, by a call to a library function. Then the chain rule is applied to the
overall decomposition to obtain the derivatives of the function F with respect to the input vari-
ables x ∈R

n. Depending on the starting point of this process—either at the beginning or at the

Exploiting Sparsity in Jacobian Computation 3

Algorithm 2 Decomposition of function evaluation into elementary components.
procedure FUNCTION EVALUATION(y = F(x))

for i = 1 to n do : vi−n← xi . independent variables
for i = 1 to l do : vi← ϕi(v j) j≺i . intermediate variables
for i = 1 to m do : yi← vl−i+1 . dependent variables

end of the respective chain of computational steps—one gets the forward or the reverse mode
of AD. The forward mode propagates derivatives from independent to dependent variables,
and the reverse mode propagates derivatives from dependent to independent variables.

Under the framework followed in this paper, the task of making the computation of sparse
derivative matrices via AD efficient begins with sparsity pattern detection. Several techniques
for sparsity pattern detection have been suggested in previous studies for both of the major AD
implementation paradigms, source transformation and operator overloading. The techniques
could be classified as static and dynamic, depending on whether analysis is performed at com-
pile time or run time. An example of a static technique in the context of source transformation
is available in [16]. For dynamic techniques, two major approaches could be identified in the
literature: sparse vector-based and bit vector-based. As exemplified by the SparsLinC library
[2], a module in the source transformation AD tools ADIFOR and ADIC, a sparse vector
based approach uses sparse data structures, instead of dense arrays, to execute a fundamen-
tal operation in AD codes, a (mathematical) linear combination of vectors. (Strictly speaking,
the ADIFOR/SparsLinC combination is a mechanism for transparently exploiting sparsity in
derivative computation; sparsity detection is a byproduct.) SparsLinC uses three different data
structures to represent sparse vectors (one for vectors with at most one nonzero, a second
for vectors with a few scattered nonzeros, and a third for vectors with a contiguous block of
nonzeros) and heuristically switches from one representation to another as needed to reduce
the large runtime overhead observed in earlier sparse vector based approaches [1].

Bit vector based approaches avoid the need for dynamic memory management, at the
cost of increased memory requirement. When bit vectors are used, say, in the forward mode,
the Jacobian is multiplied from the left by n bit vectors, where n is the number of indepen-
dent variables; each arithmetic operation in the forward sweeps then corresponds to a logical
OR, yielding the overall sparsity pattern of the Jacobian. Since one Jacobian-vector prod-
uct needs to be performed for each independent variable, the complexity of this approach is
O(n ·OPS(F)), where OPS(F) is the number of operations involved in the evaluation of the
function F . This time complexity can be reduced via Bayesian probing [13]. In terms of mem-
ory, the bit vector approach in its simplest form requires 1/64th of the space needed to store
a Jacobian, assuming representation of doubles and integers needs 64 bits. Thus far ADOL-C
had a Jacobian sparsity pattern detection capability based on the use of bit vectors in such a
manner. Bit vectors have also been used in the source transformation AD tool TAF [10].

In this work we develop a technique that could be viewed as a variant of the sparse-
vector approach that minimizes dynamic memory management cost in the context of operator
overloading. The idea is to extend the basic operations and intrinsic functions such that they
propagate index domains in addition to function values. In particular, with each variable vi
computed during the function evaluation, an index domain Xi satisfying the following condi-
tion is associated; see [11] for details.

{

0≤ j ≤ n :
∂vi

∂x j
6≡ 0

}

⊆Xi. (1)

4 Gebremedhin et al.

Algorithm 3 Propagation of index domains.
procedure COMPUTEINDEXDOMAINS(Xi)

for i = 1 to n do : Xi−n← {i} . independent variables
for i = 1 to l do : Xi ←

⋃

j≺i X j . intermediate variables
for i = 1 to m do : Xi ←Xl−i+1 . dependent variables

Here equality holds as long as no degeneracy arises in the function evaluation. Once the index
domains of the dependent variables are obtained, the sparsity pattern of the corresponding
Jacobian is readily available.

Using the internal function representation generated via operator-overloading, the index
domains can be computed at runtime using the simple method outlined in Algorithm 3. Note
that if a proper subset relation occurs in (1), then Algorithm 3 would yield an overestimate
for the sparsity pattern. This results in an increase in runtime and space but not in incorrect
numerical results. In Algorithm 3, for each operation, only the entries of the index domains of
the operands are involved in the set union operation. The number of entries of the new index
domain is bounded above by the maximum number of nonzeros per row of the Jacobian, ρmax.
Hence, the complexity of Algorithm 3 is O(ρmax ·OPS(F)); see [11] for details.

We have incorporated into ADOL-C an array-based implementation of Algorithm 3 that
has the complexity just mentioned. In the implementation, an integer array of fixed size (that
could potentially be increased during the course of the algorithm) is used for each intermediate
variable. The first two entries of an array are reserved for storing the current number of ele-
ments of the index domain and the current size of the array, respectively. If a variable occurs
on the left side of an assignment, the corresponding array is updated to reflect the change in
the index domain. If the size of the array becomes no longer large enough to store all indices,
then the array is reallocated at runtime to increase its size. Since sparse Jacobian matrices in
practice have only few nonzero entries per row, the initial (default) size of the arrays needs to
be set at a fairly small value, and reallocation at later stages is hardly needed; in this study,
20 was used as the initial value. In the event that the initial estimate on array size is not large
enough, note that one need not recompile the entire ADOL-C code, as the array reallocation
happens at runtime. Note also that the sparsity structure determined by ADOL-C through this
technique is correct so long as the control flow does not change. If the control flow changes,
ADOL-C alerts the user via an appropriate error message. Runtime comparisons between
this array-based implementation of Algorithm 3 and the bit vector-based approach previously
available in ADOL-C will be presented in Section 5.

3 Compression via coloring

Once the sparsity pattern is determined, a sparse Jacobian can be computed efficiently using
the compression-decompression scheme outlined in Algorithm 1. Curtis, Powell, and Reid [4]
were the first to observe that a structurally orthogonal partition of a Jacobian matrix A—a
partition of the columns of A in which no two columns in a group share a nonzero at the same
row index—gives a seed matrix S where the entries of A can be directly recovered from the
compressed representation B ≡ AS. Coleman and Moré [3] modeled the associated problem
of partitioning the columns of the Jacobian into the fewest possible groups as a distance-1
coloring problem on its column intersection graph.

As we have shown in [6], a structurally orthogonal partition of a Jacobian can equiv-
alently, but more conveniently, be modeled as a partial distance-2 coloring on the bipartite

Exploiting Sparsity in Jacobian Computation 5

Algorithm 4 A greedy partial distance-2 coloring algorithm.
procedure GREEDYPARTIALD2COLORING(Gb = (V1,V2,E))

Let u1, u2, . . ., un be a given ordering of V2, where n = |V2|
Initialize forbiddenColors with some value a 6∈V2
for i = 1 to n do

for each vertex w such that (ui,w) ∈ E do
for each colored vertex x such that (w,x) ∈ E do

forbiddenColors[color[x]]← ui
color[ui]← min{c > 0 : forbiddenColors[c] 6= ui}

graph representation of the structure of the Jacobian. The bipartite graph Gb(A) = (V1,V2,E)
of a Jacobian matrix A is a graph in which the vertex set V1 corresponds to the rows of A, the set
V2 corresponds to the columns of A, and an edge joining a row vertex ri and a column vertex c j
exists whenever the matrix element ai j is nonzero. A partial distance-2 coloring of the graph
Gb on the vertex set V2 is an assignment of colors (positive integers) to vertices in V2 such that
every pair of vertices from V2 at a distance of exactly 2 edges from each other receives distinct
colors. Clearly, two column vertices that receive the same color in a partial distance-2 coloring
are at a distance greater than two edges from each other, and hence are structurally orthogonal.
Thus, a partial distance-2 coloring is a partitioning of the columns of the matrix into groups of
structurally orthogonal columns. In contrast to the column intersection graph, which has size
proportional to the number of nonzeros in AT A, the size of the bipartite graph of a Jacobian A
is proportional to the number of nonzeros in A. Primarily for this reason, the partial distance-2
coloring formulation uses less storage space and runtime compared to a distance-1 coloring
formulation [6].

Finding a partial distance-2 coloring with the fewest colors is known to be an NP-hard
problem. In this work, we used GREEDYPARTIALD2COLORING (outlined in Algorithm 4
and discussed in detail in [6, Section 3]) to find an approximate solution. The complexity of
GREEDYPARTIALD2COLORING is O(|E| ·∆ (V1)), where ∆ (V1) is the maximum degree in
the row vertex set V1 of the input bipartite graph Gb(A) = (V1,V2,E). Note that, ∆ (V1), which
is the same as the maximum number of nonzeros per row ρmax in the underlying Jacobian A,
is a lower bound on the optimal number of colors needed.

4 The Simulated Moving Bed process

As a case study for evaluating the performance of the sparsity detection and coloring tech-
niques discussed in the previous two sections in the context of Algorithm 1, we conducted
experiments on Jacobians that arise in a model for liquid chromatographic separation. We
review this model in the current section.

Liquid chromatographic separation is used in many chemical industrial processes as an
efficient purification technique, since thermal methods such as distillation cannot be used for
thermally unstable products or those with high boiling points. In liquid chromatography, a
feed mixture is injected into one end of a column packed with adsorbent particles, and then
pushed toward the other end with a desorbent (such as water or organic solvent). The mixture
is separated by making use of the differences in the migration speeds of components in the
liquid. In True Moving Bed (TMB) chromatography, the adsorbent moves in a counter-current
direction to the liquid in a column. Since the transport of the adsorbent causes difficulties (such

6 Gebremedhin et al.

as axial mixing of components), Simulated Moving Bed (SMB) chromatography, a pseudo
counter-current process that mimics the operation of a TMB process, is used instead [14].

An SMB unit consists of several columns
connected in a series. Fig. 1 shows a sim-
plified model of an SMB unit with six
columns, arranged in four zones, each of
which consists of Ndis compartments. In
the figure, feed mixture and desorbent are
supplied continuously to the SMB unit at
inlet ports, while two products, extract and
raffinate, are withdrawn continuously at
outlet ports. The four streams, feed, des-
orbent, extract, and raffinate, are switched
periodically to adjacent inlet/outlet ports,
and rotate around the unit. Due to this cyclic
operation, SMB never reaches a steady
state, but only a Cyclic Steady State (CSS),
where the concentration profiles at the begin-
ning and at the end of a cycle are identical.

PSfrag replacements

Q1

Q2,3

Q4,5

Q6

!Feed (QFe)Raffinate (QRa)

Desorbent (QDe) !Extract (QEx)

Ndis comp.
︷ ︸︸ ︷

︸ ︷︷ ︸

Ndis comp.

Fig. 1: A simple model of an SMB unit.

Several different goals could be identified in an SMB process, maximizing throughput be-
ing a typical one. This objective is modeled mathematically as an optimization problem with
constraints given by partial differential algebraic equations (PDAEs).

Numerical solution of the PDAEs requires efficient discretization and integration tech-
niques. A straightforward approach here is to integrate the model until it reaches the CSS,
update the operating parameters and repeat until the optimal values are found. To reduce the
computational effort associated with the calculation of the CSS, approaches tailored for cyclic
adsorption processes, where concentration profiles are treated as decision variables, have been
developed. These approaches can be divided into two classes: those that discretize PDAEs only
in space (single discretization) and those that discretize both in space and time (full discretiza-
tion). Single discretization is well suited for complicated SMB processes, since it allows for
the use of sophisticated numerical integration schemes. It results in comparatively small but
dense derivative matrices [5, 18]. Full discretization is the method of choice if the step-size
of the numerical integration can be fixed at a reasonable value [15]. The derivative matrices
involved in the use of full discretization are typically sparse. We consider the computation of
a sparse Jacobian for such a purpose. We use a standard collocation method for the full dis-
cretization of the state equation with nonlinear isotherms. The objective we have considered
here is maximizing the feed throughput, which is achieved by finding optimal values for the
four flow parameters Q1, QDe, QEx, and QFe (see Fig. 1) and the duration T of a cycle.

5 Experimental results

We considered ten Jacobians of varying sizes in our experiments. Table 1 lists the number
of rows (m), columns (n), and nonzeros (nnz) in each Jacobian as well as the maximum,
minimum, and average number of nonzeros per column (κ). The maximum, minimum, and
average number of nonzeros per row in every problem instance are ρmax = 6, ρmin = 2, and
ρ̄ = 5.0. The last column of Table 1 shows the number of colors p used by the two partial
distance-2 coloring algorithms we experimented with—the implementation of Algorithm 4

Exploiting Sparsity in Jacobian Computation 7

available in COLPACK and an implementation of a similar algorithm previously available in
ADOL-C. In both of these greedy algorithms, the natural ordering of the vertices was used
since it gave fewer colors compared to other ordering techniques.

The right part of Fig. 2 depicts the sparsity pattern of the smallest matrix in our collection
(P1). The remaining nine instances have similar, but appropriately enlarged structures. As can
be deduced from column κmax of Table 1, there is a column in each of our test problems
that contains nearly 10% of all the nonzeros in the matrix and is itself nearly 50% filled with
nonzeros. This column, which is the fifth in each matrix, corresponds to the integration time
(parameter T) of the system in the SMB model. Since the structure of this column and its
neighborhood is hardly visible in the main plot at the right in Fig. 2, we have included the plot
at the left where one “zooms” in the first eight columns.

Table 1 Matrix statistics and number of colors used by a
greedy algorithm (last column).

P m n nnz κmax κmin κ̄ p
1 4,370 4,380 24,120 2,375 1 5.0 8
2 8,570 8,580 47,340 4,655 1 5.0 8
3 17,145 17,155 95,670 9,555 1 5.0 8
4 25,545 25,555 142,590 14,235 1 5.0 8
5 50,745 50,755 283,350 28,275 1 5.0 8
6 76,115 76,125 426,470 42,775 1 5.0 8
7 101,495 101,505 569,600 57,275 1 5.0 8
8 152,245 152,255 855,860 86,275 1 5.0 8
9 270,195 270,205 1,520,360 153,435 1 5.0 8
10 506,095 506,105 2,850,320 287,995 1 5.0 8

0 7 0 4000

Fig. 2 Sparsity pattern of problem P1.

Table 2 shows run times in seconds of various phases: the evaluation of the function F
being differentiated (eval(F)) and the four steps S1, S2, S3, and S4 (see Algorithm 1) in-
volved in the computation of the Jacobian using the vector forward mode of ADOL-C. The
experiments were conducted on a Fedora Linux system with an AMD Athlon XP 1666 Mhz
processor and 512 MB RAM. The gcc 4.1.1 compiler was used with -02 optimization.

For the sparsity detection step S1, results for both the new approach (propagation of in-
dex domains) and the previous approach used in ADOL-C (bit vectors) are reported in Table 2.
For the coloring step S2, results for the routines from COLPACK and ADOL-C are reported.
Both of these routines implement Algorithm 4, but their implementations and the data struc-
tures used to represent graphs differ. COLPACK uses the Compressed Storage Format, which
consists of two integer arrays, one corresponding to vertices and the other to edges, to repre-
sent a graph. ADOL-C on the other hand uses linked structures to store a graph. The last two
columns in Table 2 show the times spent in building these graph data structures by reading
files specifying sparsity patterns from disk.

Figure 3 summarizes the trends suggested by the data in Table 2 (excluding the graph build
routines) in the cases where the new sparsity detection method and the coloring functionality
of COLPACK are used for steps S1 and S2, respectively. We make the following observations
from the experimental results. Our observations involve comparisons with time complexities
that were discussed in Sections 3 and 4. To ease reference here, we provide a summary of the
complexities in Table 3.

Function evaluation. As expected, the runtime of function evaluation grows linearly with
problem size (see left part of Figure 3).

8 Gebremedhin et al.

S1 S2 graph build
P eval(F) old new ADO COL S3 S4 total ADO COL
1 0.0001 0.4 0.016 0.007 0.004 0.0044 0.0009 0.0270 0.4 0.1
2 0.0002 1.2 0.018 0.006 0.004 0.0096 0.0017 0.0333 0.4 0.1
3 0.0004 3.6 0.038 0.014 0.009 0.0188 0.0033 0.0774 1.5 0.2
4 0.0007 7.8 0.062 0.020 0.013 0.0276 0.0050 0.1144 8.0 0.3
5 0.0017 29.4 0.104 0.040 0.026 0.0526 0.0095 0.1926 45.5 0.8
6 0.0032 67.4 0.159 0.060 0.040 0.0828 0.0151 0.2971 110.3 1.0
7 0.0045 122.3 0.238 0.082 0.053 0.1078 0.0205 0.4191 202.5 1.8
8 0.0063 275.7 0.332 0.121 0.080 0.1659 0.0309 0.6088 469.4 2.4
9 0.0108 870.7 0.580 0.233 0.142 0.2732 0.0435 1.0394 1,496.7 4.4

10 0.0199 3,050.9 1.072 0.416 0.266 0.5038 0.0834 1.9252 5,282.2 7.8

Table 2. Time in seconds spent on function evaluation and on the steps S1, S2, S3, and S4.
The column total lists the sum (S1-new + S2-COL + S3 + S4). The last two columns list
time spent on reading files from disk and building the bipartite graph data structures.

0 1 2 3
0

0.005

0.01

0.015

0.02

m/100,000

runtime(F)

0 1 2 3
0

50

100

150

200

250

m/100,000

ru
nt

im
e(

ta
sk

)/r
un

tim
e(

F)

total
S1
S2
S3
S4

Fig. 3. Plots of time required for function evaluation (left) and time spent on the various steps
normalized by the time for function evaluation (right).

S1
eval(F) old new S2 S3 S4

O(nnz(∇F)) O(n ·OPS(F)) O(ρmax ·OPS(F)) O(ρmax ·nnz(∇F)) O(p ·OPS(F)) O(nnz(∇F))

Table 3. Summary of time complexity results.

S1: Sparsity pattern detection. Table 2 shows that the approach based on propagation of
index domains is several orders of magnitude faster than the approach based on bit vectors.
This agrees well with the complexities given in Table 3. Focusing on the former, as the right
part in Fig. 3 shows, the runtime for sparsity detection normalized relative to runtime for
function evaluation remained constant as problem size increased. This agrees well with the
theoretical result derived in [11, Section 6.1], where the operation count for the determination

Exploiting Sparsity in Jacobian Computation 9

of sparsity pattern is bounded by γ ·ρmax ·OPS(F), where γ is a small constant. Since ρmax
equals six in each of our test cases, one can deduce from Fig. 3 that γ is only around nine.

S2: Coloring and generation of seed matrix. The coloring algorithms invariably used
just eight colors for all the problem sizes considered. These results are either optimal or at
most only two colors off the optimal, since the lower bound in each case, ρmax, is six. This
is an impressive result, since Fig. 2 shows that the sparsity patterns of the Jacobians is fairly
complex when compared with Jacobians of structured grids. In terms of runtime, the observed
results for the COLPACK function completely agree with the complexity given in Table 3. As
can be seen from Table 2, the coloring routine previously available in ADOL-C is somewhat
slower than the COLPACK routine. The big difference between the two, however, lies in the
time needed to build the graph data structures: the last two columns of Table 2 show that the
ADOL-C routine is up to three orders of magnitude slower than the COLPACK routine.

S3: Computation of the compressed Jacobian. Theoretically, the ratio between the num-
ber of operations involved in the evaluation of a compressed Jacobian with p columns and
the number of operations involved in the evaluation of the function itself is expected to be
bounded by 1+1.5p; see [11, Section 3.2] for details. Since p equals eight for each of our test
problems, the expected (constant) bound is 13. As can be seen from Fig. 3, the observed ratio
is indeed a constant and at most only twice as much; for the larger problems it is about 25.
But, considering the large sizes of these problems and considering that memory access times
are not accounted for, the deviation from the theoretical value is minimal.

S4: Recovery of original Jacobian entries. The recovery step involves a straightforward
row-by-row mapping of nonzero entries from the compressed to the original Jacobian. The
observed run time behavior reflects this fact.

Total runtime. As one can see from Fig. 3, for the problems we experimented with, the
ratio between the total runtime needed to compute a sparse Jacobian and the runtime for the
function evaluation is observed to be a constant around 100. This fairly small number shows
that the sparse approach is effective for large-scale Jacobian computations. The alternative
“dense” approach is not feasible at all: out of the ten Jacobians in our test bed, only the smallest
could be computed without exploiting sparsity due to excessive memory requirement. It is
interesting to note that the multiplicative factor 100 observed in our experiments is distributed
among the four involved steps in the ratio 55 : 25 : 15 : 5 for the steps S1 : S3 : S2 : S4,
respectively. This shows that the coloring (S2) and recovery (S4) steps are by far the cheapest.

6 Conclusion

We demonstrated that automatic differentiation implemented via operator overloading to-
gether with efficient coloring algorithms constitute a powerful approach for computing sparse
Jacobian matrices. One of the contributions of this work is an efficient implementation of a
sparsity detection technique based on propagation of index domains. The approach can be
extended to detect sparsity pattern of Hessians [17]. We also plan to develop similar sparsity
detection techniques for derivative matrices in the context of source transformation based AD
tools being developed within the framework of OpenAD.

Acknowledgments. We thank Paul Hovland for helpful discussions on sparsity detection
in AD and Christian Bischof and the anonymous referees for their valuable comments on
earlier versions of this paper. This work is supported in part by the U.S. Department of Energy
through grant DE-FC-0206-ER-25774 awarded to the CSCAPES Institute and by the U.S.
National Science Foundation through grant CCF-0515218.

10 Gebremedhin et al.

References

1. Bartholomew-Biggs, M.C.B.B.L., Christianson, B.: Optimization and automatic differen-
tiation in ADA. Optimization Methods and Software 4, 47–73 (1994)

2. Bischof, C.H., Khademi, P.M., Bouaricha, A., Carle, A.: Efficient computation of gra-
dients and Jacobians by transparent exploitation of sparsity in automatic differentiation.
Optimization Methods and Software 7, 1–39 (1996)

3. Coleman, T., Moré, J.: Estimation of sparse Hessian matrices and graph coloring prob-
lems. Math. Program. 28, 243–270 (1984)

4. Curtis, A., Powell, M., Reid, J.: On the estimation of sparse Jacobian matrices. J. Inst.
Math. Appl. 13, 117–119 (1974)

5. Diehl, M., Walther, A.: A test problem for periodic optimal control algorithms. Tech.
Rep. MATH-WR-01-2006, TU Dresden (2006)

6. Gebremedhin, A., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring
for computing derivatives. SIAM Rev. 47(4), 629–705 (2005)

7. Gebremedhin, A., Pothen, A., Tarafdar, A., Walther, A.: Efficient computation of sparse
Hessians using coloring and automatic differentiation. INFORMS J. Comput. Under re-
view, submitted in 2007.

8. Gebremedhin, A., Tarafdar, A., Manne, F., Pothen, A.: New acyclic and star coloring
algorithms with application to computing Hessians. SIAM J. Sci. Comput. 29, 1042–
1072 (2007)

9. Gebremedhin, A., Tarafdar, A., Pothen, A.: COLPACK: A graph coloring package for
supporting sparse derivative matrix computation (2008). In preparation.

10. Giering, R., Kaminski, T.: Automatic sparsity detection implemented as source-to-source
transformation. In: Lecture Notes in Computer Science, vol. 3394, pp. 591–598 (1998)

11. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia (2000)

12. Griewank, A., Juedes, D., Utke, J.: ADOL-C: A package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 131–167 (1996)

13. Griewank, A., Mitev, C.: Detecting Jacobian sparsity patterns by Bayesian probing. Math.
Program. Ser. A 93, 1–25 (2002)

14. Kawajiri, Y., Biegler, L.: Large scale nonlinear optimization for asymmetric operation and
design of Simulated Moving Beds. J. Chrom. A 1133, 226–240 (2006)

15. Kawajiri, Y., Biegler, L.: Large scale optimization strategies for zone configuration of
simulated moving beds. Tech. rep., Carnegie Mellon University (2007)

16. Tadjouddine, M., Faure, C., Eyssette, F.: Sparse Jacobian computation in automatic dif-
ferentiation by static program analysis. In: Lecture Notes in Computer Science, vol. 1503,
pp. 311–326 (1998)

17. Walther, A.: Computing sparse Hessians with automatic differentiation. ACM
Trans. Math. Softw. 34(1) (2008). Article No 3

18. Walther, A., Biegler, L.: A trust-region algorithm for nonlinear programming problems
with dense constraint Jacobians. Tech. Rep. MATH-WR-01-2007, Technische Universität
Dresden (2007). (submitted to Comput. Opt. Appl.)

