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Abstract. Multi-channel, high throughput experimental methodologies
for flow cytometry are transforming clinical immunology and hematol-
ogy, and require the development of algorithms to analyze the high-
dimensional, large-scale data. We describe the development of two
combinatorial algorithms to identify rare cell populations in data from
mice with acute promyelocytic leukemia. The flow cytometry data is
clustered, and then samples from the leukemic, pre-leukemic, and Wild
Type mice are compared to identify clusters belonging to the diseased
state. We describe three metrics on the clustered data that help in iden-
tifying rare populations. We formulate a generalized edge cover approach
in a bipartite graph model to directly compare clusters in two samples to
identify clusters belonging to one but not the other sample. For detect-
ing rare populations common to many diseased samples but not to the
Wild Type, we describe a clique-based branch and bound algorithm. We
provide statistical justification of the significance of the rare populations.

Keywords: flow cytometry, edge cover, clique, mixture modeling, KL
divergence, acute promyelocytic leukemia (APL).

1 Introduction

We describe two algorithms to identify rare cell populations characteristic of dis-
eases such as leukemia by analyzing flow cytometric data obtained from diseased
and healthy samples. The recent development of high-throughput, multi-channel
flow cytometry creates high-dimensional and large-scale data that requires the
concomitant development of algorithms for comparative analyses of data from
diseased and healthy samples, and from diseased samples at various stages of
disease. Specifically, we need algorithms that can match cell populations among
diseased samples, and differentiate between cell populations that belong to dis-
eased and healthy states. Such studies could distinguish cancer cells from healthy
cells, and identify cancer stem cells that are responsible for generating new can-
cerous cells, which could lead to therapies targeting such cells.

In flow cytometry, fluorescently labeled antibodies are bound to antigens
on the cell, and on excitation with a laser as cells flow in a fluid stream,
the fluorochrome emits light of a specific wavelength, thus identifying the cell
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populations that express the antigen. Flow cytometry is routinely used in the
diagnosis of diseases and has many applications in clinical practice and research.
Initially flow cytometry permitted the investigation of only one fluorophore, but
recent advances allow close to twenty parallel channels to be monitored [5,12].
Various techniques have been developed in the past [7,10] to analyze this high
dimensional data. A recent survey of data analysis methods in flow cytometry
is provided in [2].

Early work on analyzing this high dimensional data has relied on project-
ing the data to lower dimensions and manual gating, which is labor intensive
and influenced by analyst bias. Hence the development of efficient and accurate
algorithms for analyzing the large-scale, high dimensional data is a critical need.

Performing comparative analysis of samples at the cell level is computationally
expensive, and hence a more practical approach is to cluster cells in each sample
first, and then perform the comparative analyses across the samples. Various
techniques have been proposed to cluster flow cytometry data and form groups
of cells [3,4,7], but there has been little work on the post-processing of the
clustered data to identify common and distinct cell populations among diseased
and healthy states.

A recent approach for downstream analysis of clustered data, flow analysis
with automated multivariate estimation (FLAME), was proposed by Pyne et
al. [10]. The fluorescense intensity matrix with rows corresponding to cells and
columns corresponding to antibodies is first clustered into cell populations using
the skew t distribution. The clusters across all samples are then pooled and
a set of global metaclusters are obtained from them using an approach called
Partitioning across Medoids. Each sample is then compared with the set of global
metaclusters using an integer programming formulation of a weighted b-matching
in a bipartite graph with additional constraints.

Our work is closest to the FLAME approach, while differing from it in signif-
icant ways. First, we use a non-parametric infinite mixture model in clustering
phase, whereas FLAME used the skew t mixture model. Second, we compare
clusters in two or more samples directly without creating metaclusters from the
clusters in all samples. We propose a generalized edge cover formulation in a
bipartite graph as a model for discovering outlying clusters using pairwise com-
parisons of samples. Third, we propose a weighted clique approach to compare
multiple samples to identify outlying clusters and classify them further into dis-
tinctive and common outliers.

2 Problem Formulation

2.1 Description of Data

We analyze two different flow cytometry datasets on mouse bone marrow cells
from Brigham and Women’s Hospital in Boston [15]. In this work, an oncogene
PML-RARα, was expressed in mice leading to acute promyelocytic leukemia
(APL) in a course of weeks. Each dataset consists of flow cytometry data of
cells from three leukemic mice (P i), one pre-leukemic mouse (H) that has the
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oncogene expressed but has not developed APL yet, and a Wild Type (WT)
sample that does not have the oncogene expressed. Each sample consists of
multidimensional (6- or 7-dimensional) flow cytometry data of cells from a single
mouse with each dimension representing a specific characteristic of the cell. A
sample is represented as a matrix of size N × d, where N is the number of cells,
and d is the dimension of data. The data is shown in Table 1. We normalize
each column of the matrix by converting it to a vector with mean equal to zero
and standard deviation equal to one, and then apply a clustering method to be
described in Sec. 3.1.

2.2 Model of the Data

Let each dataset consist of samples from N patients, labeled P 1 P 2, . . ., PN , and
one WT . The i-th patient P i has nP i clusters P i = {ui

1, u
i
2, . . . , u

i
nPi

}, where
ui

j is the j-th cluster in the i-th patient data. Similarly, WT has nWT clusters
WT = {w1, w2, . . . , wnW T }. If multiple WT samples are available they can be
combined beforehand to construct a unique WT model.

We use the Kullback-Leibler divergence as the measure of distance between
two clusters. The KL-divergence [6], also known as the relative entropy, between
two probability density functions p(x) and q(x) is:

KL(p‖q) = −
∫

p(x)ln
{

q(x)
p(x)

}
dx. (1)

For two d-dimensional Gaussian distributions N0 and N1 with means μ0, μ1 and
covariance matrices Σ0, Σ1, respectively, the KL divergence has a closed-form
expression:

KL(N0‖N1) =
1
2

[
ln

(
detΣ1

detΣ0

)
+ tr(Σ−1

1 Σ0)

+ (μ1 − μ0)T Σ−1
1 (μ1 − μ0) − d

2

]
. (2)

We make the distance measure symmetric by setting the average of KL(p‖q) and
KL(q‖p) as the distance d(p, q) between two clusters p and q. A few additional
terms are needed to discuss our objective function.

2.3 Basic Definitions

Definition 1. Cohesion Index(CI): Given a set of clusters from N patients,
S = {u1, u2...uN} such that ui ∈ P i, and d(ui, uj) is the distance between
clusters ui and uj , the Cohesion Index of the set S is the average distance
between pairs of clusters (ui, uj) in the set S:

CI(S) =
2

N(N − 1)

∑
ui,uj∈S

i<j

d(ui, uj). (3)
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A small value of CI means that the clusters in S are similar, while large values
indicate that they are dissimilar. The Cohesion Index CI for set S consisting of
clusters represented by the large filled circles (within the circles denoting the P i

vertices) in Fig. 1 is the sum of the weights of the edges joining these clusters
divided by ten.

P1 P2

P4

WT

P5
P3

Fig. 1. Graph model of data with 5 patients and 1 Wild Type. The data from each
individual has been clustered; vertices in the graph are the clusters, and the edge
weights are derived from the Kullback-Leibler divergences between clusters.

Definition 2. Divergence Index(DI): Given a set of clusters from N patients,
S = {u1, u2...uN} such that ui ∈ P i, and d(w, ui) is the KL-divergence between
clusters w ∈ WT and ui ∈ S, the Divergence Index (DI) is the minimum sum of
distances between each pair (w, ui) in the set S:

DI(S) =
1
N

min
w∈WT

{ ∑
ui∈S

d(w, ui)

}
. (4)

A large value of DI means clusters in S are dissimilar from any WT cluster, while
a small value of DI means the clusters in S are similar to some cluster in WT.
In Fig. 1, the central grey circle represents the WT sample, the large filled circle
within it corresponds to a cluster in WT with the least sum of distances from a
set S of patient clusters denoted by the filled circles, and the average length of
the edges between the WT and patient clusters yields DI for the set S.

To identify groups of similar outliers we look for sets of clusters S with low
values of CI(S) and high values of DI(S). However, maximizing (DI(S)−CI(S))
does not suffice to guarantee both a low value of CI and a high value of DI. This
observation leads to the next definition.

Definition 3. Coherence Confidence (CC): Given a set of clusters S =
{u1, u2...uN} such that ui ∈ P i, the Coherence Confidence (CC) is the product
of the normalized difference between DI(S) and CI(S) and a damping factor:

CC(S) =
DI(S) − CI(S)
DI(S) + CI(S)

[
1 − a−(CI(S)+DI(S))

]
, (5)

where a is a constant greater than one. The damping factor prevents the ratio
from becoming unstable for small values of the sum CI(S) + DI(S). If this sum
is small, then the factor is small enough to keep the value of CC(S) low. As
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the sum increases, the factor increases to its maximum value of one, and does
not significantly influence the CC value. The range of values of CC is [−1, 1].
The constant a in the damping factor is chosen so that it should not grow too
quickly to its maximum value. We tried various values for the constant and
a ∼ 1.2 worked reasonably well with the data here. We will identify groups
S consisting of similar outlying clusters from sets with large positive values of
CC(S).

2.4 Objectives

We now state the objectives of our analysis.

1. Pairwise Outliers: Identify dissimilar clusters in a diseased sample by pair-
wise comparison with WT. These are pairwise outliers which contain both
distinctive and common outliers described below.

2. Distinctive Outliers: Identify the clusters in a diseased sample that are
dissimilar to any WT clusters as well as clusters from other diseased samples.
These are distinctive outliers that fail to form groups with low values of CI.

3. Common Outliers: Identify group of similar outliers, i.e., groups with
members similar to each other in diseased samples but dissimilar to any WT
cluster. These common outliers have high values for CC.

3 Methods

3.1 Clustering

We denote the flow cytometry data from a sample as X = [xT
1 , xT

2 , . . . , xT
N ],

where xT
i corresponds to the data from the i-th cell. We assume the data are

generated from a hierarchical Bayesian model. First, the observation xi is sam-
pled from a likelihood function f(θi) where θi is the likelihood parameter for
the i-th observation. Second, the parameter θi follows a distribution G, which
is sampled from a Dirichlet process DP (α, G0) with a concentration parameter
α and a base distribution G0. Note that the use of a Dirichlet prior will make
many {θi}’s share the same value, naturally inducing clustering of data. The
model is known as the Dirichlet Process Mixture (DPM) model [1,9] and can be
summarized as follows:

xi|θi ∼ F (θi), θi|G ∼ G, G ∼ DP (α, G0), (6)

where X ∼ S means that X follows the distribution S. Since G is a distribution,
G ∼ DP (α, G0) suggests that the Dirichlet Process DP (α, G0) is a distribution
over distributions.

We used a publicly available Matlab implementation of DPM clustering by
Teh [14], which is based on a Chinese Restaurant Process representation of the
DPM model and uses simple Gibbs sampling. The computational cost per it-
eration is O(Nd2k), where N is the number of rows in a data sample matrix
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X , d is the number of columns of X , and k is the number of clusters in the
current iteration (k changes with iterations). The value of N is large (see Table
1 in Sec. 4), which makes each iteration computationally expensive even for a
small number of clusters. Moreover, the quality of clustering improves with the
number of iterations. In our experiments, a hundred iterations work reasonably
well for the data as the clustering changes relatively little after that.

Although the DPM inference is expensive for large samples, we prefer the
nonparametric model, DPMs, over classical parametric cluster methods, e.g, K-
means. The reason is that the computational cost of selecting the number of
clusters for a parametric model is prohibitively expensive for flow cytometry
data analysis. DPMs circumvents the model selection problem by automatically
determining the number of clusters for each sample, making it well suited as a
clustering tool before the application of our outlier detection algorithms.

The DPM model is an infinite model in the sense that it contains a mixture of
countably infinite components. For example, if F (·) is a Gaussian distribution,
the DPM model can be viewed as a mixture of infinite Gaussians [11]. Given
a finite number N data points, however, we compute the posterior distribution
of the DPM model using Bayes theorem; the expected number of components
in the posterior distribution is always finite and, often, much smaller than the
number of data points.

3.2 Pairwise Comparison: Generalized Edge Cover

One method we used to identify outliers in the clustered data is pairwise com-
parison between samples. We model a pair of samples, say A1 and A2, using a
complete bipartite graph with each cluster represented by a vertex, and edges
joining pairs of clusters in different samples. Formally G = (V1, V2, E) is a com-
plete bipartite graph, where V1 contains all clusters from A1, V2 contains all the
clusters from A2, and the edge weight function is c : E → R where cij is the
weight of edge {ui, uj}, with ui ∈ V1 and uj ∈ V2. The weight of an edge is the
average KL divergence of its endpoint clusters. In this bipartite graph we seek
to identify clusters that are common to samples A1 and A2, and also those that
belong to only one sample.

Since low edge weight implies high similarity among clusters we could find
a minimum-weight matching among all maximum cardinality matchings in the
graph G and declare unmatched vertices to be outliers. However, this attempt
at a model for outlier detection has a significant drawback. Since the number of
clusters in the two samples is generally not the same, some clusters will remain
unmatched even if they are highly similar to another cluster, and should not
be identified as outliers. We address this issue by formulating the problem as a
minimum-weight edge cover on a complete bipartite graph. An edge cover is a
subset of edges such that each vertex in the graph has at least one edge incident
on it, whereas a matching is a subset of edges such that each vertex in the
graph has at most one edge incident on it. However, even an edge cover fails to
accurately model the problem since clusters that represent outliers should not
be covered in an edge cover. Hence we find a generalized edge cover that permits
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some vertices not to be covered, at the cost of a penalty, by adding a weight
λ for each uncovered vertex to the weight of an edge cover. Thus λ acts as a
cut-off value for long edges that would not be included in a generalized edge
cover. This leads to a generalized edge cover formulation of the problem, where
the cover EC leaves some uncovered vertices Vuc ⊆ V1 ∪ V2, while minimizing
the objective function:

min

⎛
⎝ ∑

(vi,vj)∈EC

cij + λ ∗ |Vuc|
⎞
⎠ . (7)

A generalized edge cover in G can be computed from an edge cover in a
transformed graph G′. Let the graph G′ be obtained from G by introducing two
new distinguished vertices v1 ∈ V1 and v2 ∈ V2, and adding an edge {v1, v2} with
c({v1, v2}) = 0, and edges {v1, u2} for each u2 ∈ V2, {v2, u1} for each u1 ∈ V1,
with c({u1, v2}) = c({u2, v1}) = λ. If a minimum-weight edge cover includes
added edges with weight λ, for each such edge, we leave the original vertex in G
incident on this edge uncovered in a generalized edge cover of the original graph,
thus paying a price of λ for the vertex, without changing the weight or structure
of the remaining edge cover.

A minimum-weight edge cover in a graph can be computed in polynomial time
by making a copy of the graph and connecting each vertex to its twin in the copy
by an edge with weight equal to twice the minimum weight among original edges
incident on it. A minimum-weight perfect matching in this graph can be used to
compute a minimum-weight edge cover in the original graph [13].

Following the above discussion, our pairwise comparison algorithm for outlier
detection can be formulated in the following stages:

1. Pre-processing: Add distinguished vertices v1 ∈ V1 and v2 ∈ V2, and an
edge {v1, v2} with c({v1, v2}) = 0. Given a cut-off value λ, add edges {v1, u2}
for each u2 ∈ V2, and {v2, u1} for each u1 ∈ V1, all with a weight of λ. Let
G′ = (V ′, E′) be the resulting graph.

2. Duplicate Graph: Let G̃′ = (Ṽ ′, Ẽ′) be a disjoint copy of G′. Let Ḡ be
the the graph formed by taking the union of G′ and G̃′ and adding an edge
{v, ṽ} connecting every v ∈ V ′ with its twin ṽ ∈ Ṽ ′. Let c({v, ṽ}) = 2μ(v) for
each v ∈ V ′, where μ(v) is the minimum weight of the edges of G′ incident
on v.

3. Matching: Compute a minimum-weight perfect matching M in Ḡ.
4. Edgecover: Obtain a minimum-weight edge cover EC′ of G′ by replacing

every edge {v, ṽ} ∈ M by an edge of weight μ(v) in G′ incident on v.
5. Post-processing: Remove all edges {v1, o}, {v2, o} from EC′, where o de-

notes an original vertex in V1∪V2; add each vertex o to the set of outliers O.
Remove the distinguished vertices v1 and v2 from EC′. The resulting edge
cover EC∗ together with the set of uncovered vertices O is a solution to the
generalized edge cover problem in G.

Lemma: The Algorithm described above computes an optimal generalized edge
cover in G.
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Proof: The correctness of the algorithm for computing the edge cover EC′ in
the graph G′ was shown in [13]. We obtain a generalized edge cover in G by
deleting, the vertices v1 and v2, the edges incident on these vertices in EC′, and
all vertices adjacent to these vertices in EC′. Let O be the set of the deleted
vertices adjacent to v1 and v2, which will be identified as outliers. Let EC′′ be
the edges remaining from the edge cover EC′ in the modified graph G′′ = G\O.

We claim that EC′′ together with O is an optimal solution for the generalized
edge cover problem in G. Assume that there is an optimal solution in G consisting
of a set of outliers O and an edge cover EC∗ in G\O. Clearly c(EC′′) = c(EC∗),
for otherwise one of the solutions could be improved upon, thereby contradicting
their minimality in G′′ or G \ O respectively. It remains to prove that there is
no solution in G with a different outlier set and smaller cost. Let EC∗′

together
with O′ be such a solution for G having a smaller cost c′ < c(EC′). Then EC∗′

together with an edge {o, v1} or {o, v2} for every o ∈ O′ and the edge {v1, v2}
is an edge cover in G′ with cost c′ < c(EC′), contradicting the optimality of
EC′. 	

Thus we obtain a generalized edge cover. Note that a vertex u ∈ Vk, where k = 1
or 2, and μ(u) is the minimum weight among the edges of G incident on u, will
always be an outlier if μ(u) ≥ 2λ, and can never be an outlier if μ(u) < λ.
Otherwise, it will be an outlier if and only if it is not matched to a vertex in G′

during step 3 of the algorithm.
For a graph with n vertices and m edges, an edge cover of minimum weight

can be computed in time O(n(n + m log n)) [13]. In this context, since there are
at most K clusters in each patient, n ≤ 2K, and m ≤ K(K − 1)/2, and thus the
time complexity of pairwise comparison to identify outliers is O(K3 log K).

3.3 Comparing Multiple Clusters

Formation of Coherent Groups. We now consider an approach that com-
pares multiple diseased samples to identify clusters common to them but not
belonging to the Wild Type. A group of clusters S is a set of distinct clusters
from each patient, S = {u1, u2...uN}, with ui ∈ P i. In Sec. 4.5 we relax this
to form groups that do not cover all patients. To identify common outliers we
find such groups that exhibit high similarity among their clusters while being
dissimilar to the Wild Type.

A graph representation of a group S of clusters is a clique consisting of one
cluster from each patient. The cost of a group S is the average weight of all the
edges of the corresponding clique, which is the Cohesion Index CI(S). It is easy
to show that finding a group with minimum CI score is NP-hard via a reduction
from MAX-CLIQUE. To identify groups with low CI score we use a branch and
bound technique, which provides good performance for a reasonable number of
clusters and patients. We omit the details here due to space considerations.

The branch and bound procedure is called once with each cluster as seed, and
it finds a group with minimum cost CI(S) containing the seed cluster, resulting
in NK groups in total. The method works very well in practice, although it has
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a worst-case running time exponential in N . Since the distance measure is not
metric, no obvious approximation guarantee exists.

Once we have obtained coherent groups of clusters with small CI scores, we
calculate the DI and CC scores for those sets. Since we have a single Wild Type
sample with K clusters we can find the minimum Divergence Index for a group
S in O(NK) time. The decision about distinctive and common outliers is based
on the following rules:

Distinctive Outliers: If a group has high value for CI, then declare the seed
cluster of that set as a distinctive outlier, since it fails to form a close group with
clusters from other patients.

Common Outliers: Among the remaining groups with small CI scores, find
those groups having large CC values. These sets are close to one another while
being distinct from any WT cluster.

4 Results

4.1 Clustering Results

We cluster each normalized sample using a DPM clustering algorithm and the
results are shown in Table 1. All subsequent downstream analysis is built upon
these clustering results.

Table 1. Clustering the flow cytometry data for two datasets. WT represents the Wild
Type, P i denotes a leukemic mouse, and H is a pre-leukemic mouse with an oncogene
expressed.

Dataset-1 Dataset-2

Sample Dimension #Cells #Clusters Sample Dimension #Cells #Clusters

WT 6 115,407 18 WT 7 49,316 21
H 6 131,850 23 H 7 68,886 22
P 1 6 107,299 22 P 1 7 78,406 21
P 2 6 131,575 28 P 2 7 6,050 12
P 3 6 236,392 31 P 3 7 48,998 21

The computational cost of the clustering step using the Matlab DPM code
is about six to ten hours depending on the dataset size, while the edge cover
and branch and bound computations run under a minute on a 3 GHz PC. The
DPM clustering code should be much faster when it is implemented efficiently
in a non-interpreted environment, but it would still be the dominant cost of the
current computation. Improving its performance was not the scope of this work.

4.2 Pairwise Comparison Results

The generalized edge cover approach compares leukemic mouse samples with
WT and identifies outliers depending on a cut-off value λ. The optimal cut-off
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value is dependent on the Kullback-Leibler divergences of the clusters involved.
The number of outliers is inversely related to λ in that a large value of λ yields
very few outliers, and vice versa. A plot is shown in Figure 2.
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Fig. 2. Outliers from pairwise comparison between WT and leukemic samples with
different cut-off (λ) values for two datasets.

The outlier profile in both datasets shows a sharp change approximately at
λ = 20, which we choose to be a good cut-off value for the detection of extreme
outliers. Table 2 shows all the outliers obtained for two different values of λ.
Note that pairwise comparison of a leukemic sample with the WT sample cannot
distinguish between distinctive and common outliers.

Table 2. Outlying clusters in leukemic samples (Dataset 1) for two cut-off λ values

Sample Outliers at λ = 20 Outliers at λ = 10

P 1 2,10,13,14 2,3,10,12,13,14,16,17,18,19,21
P 2 4,12,17,18,20,24,25,28 2,3,4,11,12,16,17,18,19,20,21,22,24,25,26,27,28
P 3 11,12,13,16,17,18,19,20,21,29 8,9,11,12,13,15,16,17,18,19,20,21,23,24,26,28,29,31

4.3 Coherent Groups

Every cluster in each sample is used as a seed cluster to construct a group
S with a minimum value of the Cohesion Index. The significance of the CI
scores of the identified groups can be assessed using the permutation test [8].
We randomly select one cluster from each leukemic mouse to form a group and
construct Nperm = 100, 000 random groups in total. For any (non-randomly
constructed) group S, let NS be the number of random groups (Srand) having
CI(Srand) ≤ CI(S). The significance measure, the p-value of S, can then be
calculated as p(CI(S)) = (NS + 1)/(Nperm + 1). Groups with small p(CI(S))
values are significant since the chance of finding them at random is small. The
histogram of the Nperm permutations is shown in the left subfigure in Figure 3
with the broken vertical line indicating 5% confidence level. We observe that
most of the non-random groups fall within the 5% confidence interval.
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Fig. 3. Histogram of the permutation tests for CI (left) and CC (right) scores from
Dataset 1. Groups at a 5% confidence level are to the left of the broken vertical line
for CI scores, and to the right of the broken vertical line for CC scores.

Table 3. Groups with CI scores and p-values of CI scores. Seed clusters are shown in
grey and distinctive outliers are shown in boxed squares.

Dataset-1 Dataset-2

P1 P2 P3 CI p(CI) P1 P2 P3 CI p(CI)

1 7 8 0.62 0.00024 3 6 4 1.232 0.00064

2 4 18 296.7 - 6 8 9 24.495 -
4 7 8 1.404 0.0002 8 10 14 1.204 0.00043

10 26 18 154.658 - 10 10 7 0.627 0.00012

11 13 14 1.27 0.00013 11 4 12 44.63 -

14 1 30 74.604 - 12 5 15 3.397 0.00815
15 11 28 3.031 0.00335 13 5 15 3.918 0.01196

15 11 21 49.91 - 14 4 10 107.167 -
17 21 17 1.675 0.00046 18 5 15 3.326 0.0076
18 26 31 3.054 0.00345 21 12 21 7.234 0.053099

Several representative groups with their p-values are presented in the Ta-
ble 3, where seed clusters are highlighted in grey. Notice that multiple seeds may
construct the same group (e.g., {4, 7, 8} in dataset-1). Such groups are usually
tight with low p-values. Also notice the three groups in {12, 5, 15}, {13, 5, 15},
{18, 5, 15} in Dataset-2, where the same clusters from P 2 and P 3 are grouped
with different clusters from P 1 with similar CI scores. If clusters 12, 13, 18 from
P 1 all have small KL divergence from each other, then merging these three clus-
ters produces a unified cluster. Thus we can use the group formation approach
to refine clusters obtained from the clustering algorithm.

4.4 Distinctive and Common Outliers

Seed clusters that fail to form a group with significantly low CI scores are
declared as distinctive outliers and are shown in boxed squares in Table 3. The
p-values for such groups will be large, bearing little significance in this context.
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Common outliers are groups of clusters with high Cohesion Confidence (CC)
values, and do not have a distinctive outlier as a member. We performed the
permutation test on the CC value to assess its significance in the same way as
we did for the CI score. However, we are now interested in the confidence limit to
the right side of the broken vertical line in the histogram in the right subfigure
of Figure 3. Again, we find that groups with high CC values are significant
since the chance of finding them at random is small. We report distinctive and
common outliers discovered by the clique approach in Table 4. All distinctive and
common outliers identified by this approach were also identified by the pairwise
comparison approach (Table 2), but the converse is generally not true. Hence
the clique approach is more powerful in detecting and classifying outliers than
the edge cover approach.

Table 4. Distinctive and Common Outlying clusters identified by the weighted clique
approach. Here ui is a cluster belonging to a leukemic mouse P i.

Distinctive Outliers Common Outliers

Dataset-1 Dataset-2 Dataset-1 Dataset-2

Sample Clusters Sample Clusters {u1, u2, u3} CC p(CC) {u1, u2, u3} CC p(CC)

P 1 2,10,14,16 P 1 6,11 17,21,17 0.64 0.00007 10,10,7 0.78 0.00013
P 2 4,20 P 2 4 1,7,8 0.63 0.00011 4,9,1 0.64 0.00078
P 3 12,16,19,20,21 P 3 5,10 9,5,3 0.58 0.00015 17,2,6 0.612 0.0016

4.5 Probabilistic Model for Groups

We describe a probabilistic model to refine the groups by relaxing our initial
requirement that a group must necessarily include one cluster from each patient.
Let fij be the number of times two clusters ui and uj are grouped together, and
let fi =

∑
j �=i fij be the number of times cluster ui appears in any group. Then

for a group S = {u1, u2...uN} the probability of ui being a member of S, P (ui|S),
and the probability of the whole group, P (S) can be calculated by

P (ui|S) =

∑
uj∈S
i�=j

fij

fi
, and P (S) =

∏
ui∈S

1≤i≤N

P (ui|S). (8)

Within a group, a low P (ui|S) value and high P (uj |S) value for all j = i,
suggests that ui is a member with weak cohesion to S. We can refine the group
S by deleting the weak member ui, and inserting a gap in that position. A high
P (ui|S) and low P (uj |S), for all j = i, also indicates a weakly formed group.
In this case, we allow ui to form a group by itself deleting all other members
of S, making ui a distinctive outlier. We present several representative groups
from Dataset-1 in Table 5, where clusters with high support are marked in grey.
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Consider the groups in rows 2 and 3 of the Table. Each has one weak member(u1

and u3, respectively) that can be safely removed from the corresponding groups.
However, rows 4 and 5 show groups with only one strong member (u2 and u1,
respectively), which can be declared as a distinctive outlier by removing all other
members from the groups. The group in the sixth row has a low probability.

Table 5. Group-uniqueness probabilities for Dataset-1. Clusters in grey have the high-
est probabilities of belonging to the group.

u1 P (u1|S) u2 P (u2|S) u3 P (u3|S) P (S)

11 1 13 1 14 1 1
17 .29 16 1 6 1 .29
19 .83 22 .83 28 .33 .23
2 .33 4 1 18 .33 .11
21 1 6 .20 27 .25 .05
18 .17 19 .23 27 .25 .01

4.6 Effect of APL on Bone Marrow Cells

Wojiski et al. [15] compared the populations of a number of cell types in the
bone marrow of WT, leukemic and pre-leukemic (with oncogene PML-RARα ex-
pressed in the latter two groups) mice. They reported that WT and pre-leukemic
(H) mice had similar cell populations of hematopoietic stem cells (LSKs),
common myeloid progenitor cells (CMPs), granulocyte-monocyte progenitor
cells (GMPs), and megakaryocyte erythrocyte progenitor cells (MEPs); but in
leukemic mice (P) cell populations of LSKs, CMPs and MEPs are reduced and
GMPs are increased, relative to the WT and pre-leukemic mice. They also found
that mature granulocytes were increased in pre-leukemic mice relative to WT.

In a pairwise comparison of flow cytometry data from WT and H using the
edge cover approach, we found that of the 18 clusters in WT and 23 clusters in
H in the first data set, only 3 clusters from each set were left uncovered when
a value λ = 20 was used. Similar results were obtained for the second data set
also, confirming the general correspondence of populations of various cell types
in these two kinds of mice. Generally, a group of clusters from leukemic mice that
has a high value of CC (hence it is distant from any cluster in the WT) also has a
high value of CC when clusters from a pre-leukemic mouse are used in the place
of WT. However, we found some clusters in the pre-leukemic mouse that were
closer to the leukemic mice rather than the WT. We performed this experiment
by treating the pre-leukemic sample as an additional leukemic sample, and using
the branch and bound algorithm to identify sets with high CC values. In Dataset-
1, we found the clusters {8, 14, 15, 5} and {17, 21, 17, 18}; and in Dataset-2, we
found the clusters {4, 9, 1, 4} and {10, 10, 7, 8}; here in each set the first three
clusters are from leukemic mice and the last is from the pre-leukemic mouse,
and these clusters are all distant from any cluster in the WT. Identifying these
specific cell types through further experimental work could shed light on disease
progression in the murine model of APL.



Identifying Rare Cell Populations in Comparative Flow Cytometry 175

Acknowledgments. This research was supported through a PRF grant from
the College of Science at Purdue, NSF grant CCF-0830645, and Department of
Energy grant DE-FC02-08ER25864 (CSCAPES Institute).

References

1. Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian non-
parametric problems. Annals of Statistics 2(6), 1152–1174 (1974)

2. Bashashati, A., Brinkman, R.: A survey of flow cytometry data analysis methods.
In: Advances in Bioinformatics, pp. 1–19 (December 2009)

3. Boedigheimer, M., Ferbas, J.: Mixture modeling approach to flow cytometry data.
Cytometry A 73, 421–429 (2008)

4. Chan, C., Feng, F., Ottinger, J., et al.: Statistical mixture modeling for cell subtype
identification in flow cytometry. Cytometry A 73(A), 693–701 (2008)

5. Herzenberg, L., Tung, J., Moore, W., et al.: Interpreting flow cytometry data: A
guide for the perplexed. Nature Immunology 7(7), 681–685 (2006)

6. Kullback, S.: Information Theory and Statistics. Dover Publications Inc., Mineola
(1968)

7. Meur, N., Rossini, A., Gasparetto, M., Smith, C., Brinkman, R., Gentleman, R.:
Data quality assessment of ungated flow cytometry data in high throughput ex-
periments. Cytometry A 71A, 393–403 (2007)

8. Moore, D., McCabe, G.: Introduction to the Practice of Statistics. W. H. Freeman
& Co., New York (2006)

9. Neal, R.: Markov chain sampling methods for Dirichlet process mixture models.
Journal of Computational and Graphical Statistics 9, 249–265 (2000)

10. Pyne, S., Hu, X., Wang, K., et al.: Automated high-dimensional flow cytometric
data analysis. PNAS 106(21), 8519–8524 (2009)

11. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Solla, S., Leen, T.,
Muller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12.
MIT Press, Cambridge (2000)

12. De Rosa, S., Brenchley, J., Roederer, M.: Beyond six colors: A new era in flow
cytometry. Nature Medicine 9(1), 112–117 (2003)

13. Schrijver, A.: Combinatorial Optimization — Polyhedra and Efficiency, Volume A:
Paths, Flows, Matchings. Algorithms and Combinatorics, vol. 24. Springer, New
York (2003)

14. Teh, Y.W.: DPM Software (2010),
http://www.gatsby.ucl.ac.uk/~ywteh/research/software.html

15. Wojiski, S., Gubal, F.C., Kindler, T., et al.: PML-RARα initiates leukemia by confer-
ring properties of self-renewal to committed promyelocytic progenitors. Leukemia 23,
1462–1471 (2009)

http://www.gatsby.ucl.ac.uk/~ywteh/research/software.html

	Lecture Notes in Computer Science
	Introduction
	Problem Formulation
	Description of Data
	Model of the Data
	Basic Definitions
	Objectives

	Methods
	Clustering
	Pairwise Comparison: Generalized Edge Cover
	Comparing Multiple Clusters
	Formation of Coherent Groups.


	Results
	Clustering Results
	Pairwise Comparison Results
	Coherent Groups
	Distinctive and Common Outliers
	Probabilistic Model for Groups
	Effect of APL on Bone Marrow Cells




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /DEU <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


