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This paper employs Automatic Differentiation (AD) in the compressive sensing-based gen-
eralized polynomial chaos (gPC) expansion, which computes a sparse approximation of the
Quantity of Interest (Qol) using orthogonal polynomials as basis functions. An earlier ap-
proach without AD relies on an iterative procedure to refine the solution by approximating
the gradient of the Qol. With AD, the gradient can be accurately evaluated, and a set of
basis functions of the gPC expansion associated with new random variables can be efficiently
identified. The computational complexity of the algorithm using AD is independent of the
number of basis functions, whereas an earlier algorithm had complexity proportional to the
square of this number. Our test problems include synthetic problems and a high-dimensional
stochastic partial differential equation. With the new basis, the coefficient vector in the gPC
expansion is sparser than the original basis. We demonstrate that introducing AD can greatly
improve the performance by computing solutions two to ten times faster than an earlier ap-
proach. The accuracy of the gPC expansion is also improved; sparse gpC expansions are
obtained without iterative refinement, even for high dimensions when an earlier approach
fails.
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1. Introduction

In this paper we introduce Automatic Differentiation (AD) to improve the efficiency
and the effectiveness of compressive sensing-based generalized polynomial chaos expan-
sion, which has become a powerful tool in uncertainty quantification in recent years.
Uncertainty quantification (UQ) characterizes uncertainties in both computational and
real world applications by illuminating the effect of the uncertainties on the quantity
of interest (Qol). Let w be an event in a complete probability space €2, let &(w) be a
d-dimensional random vector &(w) = (£1(w), &(w), -+, &a(w)) and let the Qol be u(€).
In the remainder of the paper, we will write £ instead of £€(w) and &; instead of §;(w) for
simplicity. The Qol u(£€) can be approximated by a generalized polynomial chaos (gPC)
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expansion [1, 2]:

Mz

ann €(§), (1)

where €(£) is the truncation error. Here {¢,} are coefficients, {¢,,(€)} are the basis
functions of the gPC, and N is the number of basis functions. These polynomials are
orthonormal with respect to the density of &, i.e,

| w@rs (&0l = 5 ¢l

where p(§) is the probability density function (PDF) of £ and 6;; is the Kronecker
delta. When u(€) is in the Hilbert space (the space of square-integrable functions) with
respect to the measure of &, the approximation converges in Lo space as the order of the
polynomials goes to infinity.

The coefficients ¢ = (c1,- -, cn) can be evaluated by a stochastic collocation approach
[3, 4]. The first step is to generate samples of the input &%,¢ = 1,2,---, M, based
on the PDF p(&). Then the values of the Qol u? = u(£€7) are evaluated using a prior
computational model. The coefficients ¢ in the gPC expansion can be computed using
&7 and u?, q=1,2,--- , M, by solving a linear system:

Yc=u-+e (3)
In the equation, u = (u',u? - ,uM)T is the vector of M output samples, ¥ is an
M x N matrix with ¥;; = 1;(£%), and € is a vector of error samples. In many application
problems, the computation model for Qol u(§) may be expensive to evaluate, and so
the number of samples M will be few. When M < N, the linear system Eq. 3 is under-
determined. The compressive sensing approach finds a sparse solution of ¢ to this under-
determined linear system efficiently. Several approaches have been proposed for solving
Eq. 3 in UQ applications [5-11]. In this paper, we aim to enhance one of the methods,
the iterative rotation method [11], by introducing Automatic Differentiation.

The remainder of this paper is organized as follows. A brief review of the iterative
rotation method is given in Section 2. In Section 3, we describe an algorithm to enhance
the sparsity in the gPC expansion, in which Automatic Differentiation is employed to
compute a gradient matrix. To illustrate its performance, three numerical case studies
are discussed in Section 4. Conclusions and future work are included in Section 5.

2. Brief Review of The Iterative Rotation Method

2.1 Hermite Polynomial Chaos Expansion

We assume that the Qol u(§) depends on d-dimensional i.i.d Gaussian random variables,
i.e, & ~ N(0,I). Then the basis functions will be products of univariate orthonormal
Hermite polynomials. That is, each multi-index o = (a1, a2, - -+ , g), o € N corresponds
to a basis function:

Va(§) = Ya, (£1)Va,(&2) -+ Yoy (§a), (4)
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where v, is the a;-th order Hermite polynomial,

B
Yol = T A (5)

2 -e
Ozi! dff“

One can check that the function 14 is orthogonal w.r.t the Gaussian PDF p(§).

R d}ai (E)waj (E)p(é)dé = 5011'(1]‘ = 60&1‘104]‘15041'20412 o 5aidajd7 (6)

where

d
1 G+8+--+&
p(§) = (@) €$p< - 9 d)- (7)
d

The sum p = ) «; is the order of the basis function 1. For a given dimension d and a
i=1

maximum order p, the total number of basis functions N is (d;p).

2.2 Compressive Sensing-based gPC method

Before we introduce compressive sensing, we need a quantitative definition of sparsity.
The coefficient vector ¢ is considered sparse when it contains few nonzero entries. This
can be quantified by the number of nonzeros in ¢

nnz(c) = [{i: ¢; # 0} (8)

The vector c is called s-sparse if the number of nonzeros is not greater than s.

The compressive sensing-based gPC method tries to find a sparse vector c, a solution
to the linear system Eq. 3. However, finding a sparsest solution c¢ to this system is
intractable [12]. So we relax the definition of “sparse” to signify that the vector c¢ has
only few entries that significantly contribute to its {; norm. Hence ||c — c|1 is small,
where the vector c, consists of the s entries of ¢ with the largest absolute values. Candes,
Wakin and Boyd [13] have proved that in many cases, solving the problem with the [y
norm yields similar results to finding a sparsest solution.

Hence we will approximate the solution vector ¢ of Eq. 3 by solving the following
optimization problem:

c =argmin||¢|, s.t. [|[¥e —ullz <e¢, 9)
C

where € = ||€||2. In practice, the error term € is not known a priori, and a cross-validation
procedure is needed to estimate it. One such algorithm is given in [14]. Algorithm 1
describes the compressive sensing-based gPC method.

2.3 Iterative Rotation for Enhancing Sparsity

The sparsity of the vector ¢ in the compressive sensing-based gPC can be further en-
hanced by finding another set of random variables n = (11,72, - ,14)", which depends
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Algorithm 1 Compressive sensing-based gPC
1: Generate M sample points £€9,¢ = 1,2,--- , M, based on the distribution of &.
2. Evaluate M samples u? = u(£?) via the complete model.
3. Compute gPC basis functions {1,,}{ from the PDF p(£); compute the measurement
matrix ¥ by ¥;; = 1;(£"); compute the estimated error e.
4: Solve the optimization problem:
¢ = argmin ||¢||1, subject to ||[¥¢ —ul|z <e.
Cc

5. Construct the gPC expansion, u(§) ~ zgzl cntn(§).

on & [11]. Hence we write

N N
n=1 n=1

We expect the vector ¢ to be sparser than c¢. That is, for a small s, we have
lle — ¢sll1 < [le — cslfs. (11)

In this case, the s leading entries are more significant in ¢ than in c, since the /1 norm
of the remaining entries are smaller. Denote the mapping from € to n by g : R* — R¢,
n = g(&). We've assumed that & ~ N(0,I); let us further assume n to be i.i.d Gaussian
random variables also, i.e, n ~ N(0,I) to reduce the complexity. Then, the mapping g
is a linear transformation

n =g(§) = A¢, (12)

where A is an orthonormal matrix. In order to compute the matrix A, we adopt the active
subspace approach of Constantine, Dow and Wang [15, 16]. First, a “gradient matrix”
G is defined and its eigen-decomposition is computed:

G =E|Vu(¢) - Vu©)"| =UAUT, UUT =1, (13)

where Vu(¢) is the gradient vector of u(§), G is symmetric, and UAU” is the eigen-
decomposition of GG. The eigenvalue \; represents the expectation of the ls norm of the
directional derivative along the direction specified by the corresponding eigenvector Us.
Consequently, when there is a large gap in the spectrum, the dependence of u(€) on
£ is primarily determined by the projection of £ on a subspace spanned by the eigen-
vectors corresponding to the dominant eigenvalues. The subspace determined by these
eigenvectors is called the active subspace. In [15, 16], a low-rank approximation of u(&)
is constructed by restricting the dependence of u(€) only on the active subspace.

Here, in the context of compressive sensing-based gPC, the mapping n = g(§) = A&
can be defined by choosing A = UT [11]. Then the dependence of u on an eigenvector
U; is transformed to the dependence on the new random variable 7;. Since the first few
variables 7; correspond to the active subspace of u(§), we expect ¢ to be sparser than c.

In [11], the gradients are approximated by differentiating the current polynomial ap-
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proximation the Qol.

G~E

N N T
n=1

n’'=1

The algorithm begins with the solution ¢ of the Algorithm 1. Then using Eq. 15 (see
below), it approximates the gradient matrix G and finds a better solution ¢ of the com-
pressive sensing-based gPC. This procedure is iteratively repeated until a satisfactory
solution is found. Algorithm 2 summarizes the iterative procedure.

Algorithm 2 Compressive sensing-based gPC with iterative rotations
1: Call Algorithm 1 to get the initial gPC coefficients c.
2 k=000 =¢ ¢ =c.
3. Compute G*+D according to Eq. 15; then compute the eigen-decomposition of G as

Gk+1) — pr(k+1) A (k+1) (U(k-i-l))T’ {y(k+1) (U(k+1))T -7
4: Use the relation n+1) = (U(kﬂ))Tn(l) to compute samples (p*+1))? =
(U(k+1))T(n(k))q,q = 1,2,---, M, and the new measurement matrix W*+D ag
\I/E;?H) = 1; ((n*+Y)?). Update the estimated error e*+1).
5: Solve the optimization problem:
¢+ = grgmin ||€]]1, subject to |[FEHe — |y < k1),
(¢
6: Stop if ‘HU(’““) [l — d’ < 0 or maximum number of iterations is reached. Otherwise,
set kK =k + 1 and go to step 3.

In Algorithm 2, one termination condition is based on the [y norm of the rotation
matrix U*+1) | which is satisfied when U®*+1) is close to the identity matrix. Another
termination condition is to set a maximum number of iterations. In practice, these two
conditions are used together. Also the estimated error e(**1) is updated in each iteration.
The gradient matrix G is computed from

N N o N o o
= ;;C”C"'E[ %f(f) | waffa} = K. 1)

where K;; is a “stiffness” matrix with entries

Oi(§) 81#1(5)]‘

(Kij)et = E[ 96, 9%,

(16)

The entity K itself can be considered as a 4-dimensional tensor, whose size depends on
the number of basis functions N, and the dimension of the problem d. The orthogonality
of the Hermite polynomials v, allows K;; to be pre-determined.
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3. Enhancing Sparsity in gPC Expansion with Automatic Differentiation

In Algorithm 2, the key idea is to use the gradient matrix G to find a sparser basis for
the gPC expansion. The iterative rotation procedure is introduced to refine the approx-
imation of the gradient matrix G. The gradient of the gPC expansion 27]1\[:1 cnn(€) is
used as an approximation of the gradient of the QoI u(§).

However, in many problems the Qol u(£) is obtained from a computational model, i.e, it
is evaluated by executing a computer program. Then applying Automatic Differentiation
(AD) can analytically compute the gradient of u(£) at any point. Here we use the reverse
mode of AD since the Qol u(£) is a scalar function and we need its gradient Vu(§).

Automatic Differentiation is a technique that augments a computer program to evalu-
ate the objective function as well as its gradient (and higher order derivatives) [17]. AD
decomposes the original program into a sequence of elemental function evaluations that
reflects how the function is computed by using the independent variables and intermedi-
ate variables. The chain rule of calculus is applied to this sequence of elemental functions
to compute derivatives. The major benefit of AD is that it evaluates the derivatives to
machine precision accuracy with only a small constant factor of overhead relative to eval-
uating the objective function itself. AD has two major modes: forward mode and reverse
mode. The forward mode of AD evaluates the directional derivative of the objective func-
tion; the reverse mode of AD evaluates the gradient of a scalar objective function. More
details about AD can be found in the textbooks [17, 18]; here we use it as an external
tool. For this problem, the independent variables are the random variables &, --- ,&q.
The only dependent variable is the Qol u(£). So, the reverse mode of AD can evaluate
the gradient vector within a constant factor of the cost of the Qol evaluation, with the
constant bounded by three [17, 18].

With the help of AD, we can analytically evaluate the gradients to replace the iterative
rotation procedure. The gradient matrix G is defined as an expectation in Eq. 13, which
can be computed via the Monte Carlo method. Recall that we need M sample points
€1,€2,- - €M to evaluate the Qol as u? = u(&9), for ¢ = 1,2,--- , M. We use the same
M sample points and apply reverse mode AD on the procedure for evaluating the Qol
u(€) to obtain also the gradients Vu(&€9),q = 1,2,---, M. Then the gradient matrix G
could be computed as:

1

~ > Vu(e) (vu(5Q))T. (17)

M=

G
1

However, since we directly evaluate the gradients on the sample points
Vu(€h), -, Vu(gM), we can use the singular-value decomposition instead of the eigen-
value decomposition to achieve better numerical stability in the algorithm. The singular-
value decomposition-based approach has been used in related work such as [15, 16]. A
matrix C' consisting of all the sampled gradients is defined as:

1

VM

Then the singular-value decomposition of C' is computed,

C [Vu(gh) - Vu(E). (18)

C =UVAV. (19)
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Computing the singular-value decomposition of C' is numerically more stable than com-
puting the matrix G = CCT and then its eigen-decomposition. Mathematically, both
methods give the same transformation matrix U. Algorithm 3 describes the compressive
sensing method that employs AD.

Introducing AD has several advantages. First of all, it evaluates the gradient of the Qol
u(&) analytically, and then the gradients at the sample points can be used to compute the
transformation from & to n. This removes the iterative refinement needed to compute the
gradient by differentiating a best polynomial approximation to the Qol available at each
iteration. Hence we expect this methodology to provide a more accurate gPC expansion.

Secondly, since the Qol u(€) is a scalar function, the overhead of using reverse mode
AD to evaluate the gradient vector is only a constant factor more expensive than eval-
uating the Qol. To be more specific, we pay O(M - Fval(u)) computation to evaluate
the gradients using AD, where Fval(u) is the cost of evaluating the quantity of interest
u(&). The number of samples M increases asymptotically only at a rate log(d) [19] for the
Monte Carlo method to get a good approximation. This complexity does not depend on
the order of the Hermite polynomials. On the other hand, the iterative rotation method
needs O(d?N?) operations in each iteration for Eq. 15. The “stiffness” matrix Eq. 16 that
needs to be stored has size O(d>N?). Considering that N increases exponentially with
the order of the polynomials p, the complexity and storage requirements of the iterative
rotation method prohibit it from scaling to high order polynomials.

Algorithm 3 Compressive sensing method with Automatic Differentiation

1: Given a given random vector £ and the quantity of interest u, collect M samples
1,2 M
u, U, ut

2. While sampling, using AD to compute Vu(&!), Vu(g2),--- , Vu(gM).

3: Construct C = \/%Wu(ﬁl) -« Vu(&gM)]. Then compute the singular value decompo-

sition C' = UVAV.
4: Define n = UT¢, and compute samples n? = UT¢9,1 < g < M. Also, construct the
new measurement matrix ¥ with ¥;; = ¢;(n"), and compute the estimated error e.
5: Solve the optimization problem to obtain c:
¢ = argming, ||c||, subject to ||Pc — u|| < e.

4. Numerical Results and Performance Evaluation

In this section, we evaluate the performance of the compressive sensing-based gPC with
iterative rotation and AD. For the iterative rotation method, we use the implementation
in Yang et al. [11] and set the maximum number of iterations to be 9. For the reverse
mode of AD, we use the implementation in ReverseAD [20]. For both methods, we set a
threshold 6 to be 107° such that any coefficient smaller than ¢ in the gPC will be con-
sidered as zero. The number of nonzeros in the solution vector ¢ indicates the sparsity,
or effectiveness of the compressive sensing method. For accuracy of the method, we com-
pare the mean and the variance of the Qol u(&) and the gPC expansion ny:l cnn(€).
The mean and the variance of the Qol u(§) are computed by drawing a large number
(100,000) of samples from the distribution p(&). The gPC expansion has the property
that the first coefficient ¢; is the mean, and the sum of squares of the other coefficients

ZnN:2 c? is the variance, of the random variable it represents.
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4.1 Synthetic function with compressibility

Our first test set consists of two synthetic functions, which are both compressive, i.e, u
can be represented with only a few nonzero coefficients under another basis 1. The first
problem (F1) has equally weighted random variables:

d d 2 d 3
S &+025( &) +0.025( Y&
u(€) = =1 <i:1 3{ <i:1 ) 7 (20)

and the second problem (F2) has random variables & with decreasing weights.

QL

d d
B i & )2
u(€) = ;1 +0.25(i§1 m) . (21)

Both functions have closed form expressions for the gradient. We use them here only to
show the effectiveness of AD. One can expect that AD is the technique to use in cases
when the gradient does not have a closed form expression or it is not easily written down
in a program.

We set the order of the gPC expansion p, i.e, the maximum order of ¥4, to be 3.
We set values of the dimension d to 12 and 30, which corresponds to the number of
basis functions equal to 455 and 5456, respectively. We fix the number of samples M to
be 360, and thus the problem is under-determined. The results of the two methods are
summarized in Table 1. First, we see that by applying AD, the performance is improved
as the runtime is reduced by a factor of three to four. Secondly, when d = 12, both
methods get almost the same accuracy. That is, the random variables generated by the
gPC expansion have the same mean and variance with the Qol u(&). When d = 30, the
AD-based method computes good approximations of the Qol u(&) for both F1 and F2.
But the iterative rotation method failed on F1. Figure 1 plots the error in the mean
and variance of F1 for both methods with dimension d from 10 to 30 respectively. As
the problem becomes more under-determined, the errors get larger. The error of the
iterative rotation method has a big jump around d = 21, but the error of the AD-based
method remains below 0.02 for d up to 30, which demonstrates the robustness of the
proposed AD-based method. Figure 2 gives the errors in the mean and variance of F2.
Both methods compute gPC expansions with very small errors.

Both synthetic functions F1 and F2 are within the space of the gPC expansion, and
hence an exact gPC expansion without truncation error exists for both functions. More-
over, there is a transformation that can map the dependence of u(£€) onto only the first
variable n; for F1, that is, u(&) = w(n1(€)) where n; = ﬁ Zle &;. Then the synthetic
function F1 becomes a third order polynomial in the variable n; alone. So the gPC expan-
sion w.r.t the new variables n will only have four nonzero coefficients. Similarly, we can
argue that the dependence of u(€) for F2 can be transformed onto two variables 7y, 72,
and since F2 is a second order polynomial, so the exact gPC expansion will only have
six nonzero coefficients. The results in Table 1 show that the method employing AD can
find these exact gPC expansion solutions for both functions F1 and F2. The analytical
gradient matrix computed by AD can capture this information, whereas the iterative
rotation method fails to do so, especially when the dimension is high, i.e, d = 30.
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Table 1.

uQ

on the two synthetic functions.

Numerical results for the compressive sensing-based gPC methods with AD and with iterative rotation

Figure 1.
10 to 30.

d=12 d =30
| F1 F2 | F1 | F2
Qol u(€) Mean 0.2486 | 0.0638 Mean 0.2470 | 0.0326
Variance | 0.4696 | 0.0917 || Variance | 0.5673 | 0.0353
Time(s) | 30.17 | 13.13 | Time(s) | 171.56 | 136.92
With AD | 1nz(c) 4 6 nnz(c) 4 6
Mean 0.2500 | 0.0646 Mean 0.2500 | 0.0333
Variance | 0.4708 | 0.0917 || Variance | 0.5896 | 0.0355
Time(s) | 41.14 18.88 Time(s) | 683.50 | 442.69
Iterative | nnz(c) 4 16 nnz(c) 513 241
Rotation Mean 0.2500 | 0.0646 Mean 0.1514 | 0.0330
Variance | 0.4708 | 0.0917 || Variance | 0.2276 | 0.0353
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Figure 2. Errors in the mean (top) and variance (bottom) of both methods for problem F2 with dimensions from
10 to 30.

4.2 Korteweg-de Vries equation

To apply our new method to a more complicated and nonlinear differential equation, we
consider the Korteweg-de Vries (KdV) equation with time-dependent additive noise:

ut(xa t; 5) - GU(SU’ t; E)uﬂc(xv t; E) + uxmf(xv i 5) = f(t; E)v S (—OO, OO)’ (22)
u(z,0;€) = —2sech®(x).
Let
t
W(t;§) = / f(y; €)dy, (23)
0
then the analytical solution of Eq. 22 can be written as:
t
u(z, t; &) = W(t; €) — 2sech? | x — 4t + 6/ W(z;€)dz (24)
0

10
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Table 2. Numerical results for the compressive sensing-based gPC methods with AD and with iterative rotation
on the Korteweg-de Vries equation.

d=10 d =20
| p=4 [ p=5 | p=4
Mean -0.3976 Mean -0.2998
Qol u(§) . )
Variance 0.7314 Variance | 0.7210

Time(S) | 143.2 288.0 | Time(S) | 171.6
With AD | Mean | -0.3870 | -0.3918 || Mean | -0.2822
Variance | 2.0586 | 0.9947 | Variance | 0.5333
Iterative | Time(s) | 311.4 953.3 || Time(s) | 2,401
Rotation Mean -0.3935 | -0.4003 Mean -0.2611
Variance | 2.0765 | 0.9615 | Variance | 0.4478

In this experiment, we use a linear combination of random Gaussian fields defined by
d
&8 =0 Vi), (25)
i=1

where o is a constant and {\;, ¢; (t)};’l:1 are the leading eigenpairs of the Karhunen-Loeve
(KL) expansion kernel [21]:

Clx,a") = ea:p<|x l_cx,’> (26)

In this application we set I, = 0.25, 0 = 0.1 and choose the Qol to be u(z,t; &) at
x = 6,t = 1. We use three settings of the Hermite basis : p =4, d = 10; p = 4, d = 20;
and p = 5, d = 10. The number of basis functions are N = 1,001; N = 10,626; and
N = 3,003; respectively, for the three settings. The results are summarized in Table 2.
We make the following observations about the results. Firstly, the method using AD is
faster compared with the iterative rotation method, with the performance gap increasing
with the number of dimensions. When d = 10, the speedup is between two and three,
and when d = 20, the speedup is more than fourteen. Secondly, both methods give good
approximations of the mean of the distribution of the Qol, but fail to provide good
approximations to the variance. Part of the reason is that the Qol cannot be exactly
represented by the basis functions (Hermite polynomials of order up to four), and thus
the truncation error is not negligible. As shown in the table when d = 10, the error in
the variance is reduced when the order of the Hermite polynomial increases from 4 to
5. Also for the same reason, the gPC coefficients computed by both methods are dense.
Figure 3 plots the magnitudes of the gPC coefficients computed by the two methods for
the setting p = 4 and d = 10. It shows similar distributions for the two solutions. Figure 4
plots the [; norms of the first s leading terms ||cs||; and the remainder terms ||c — cs||1 of
the gPC coefficients under the same setting. The result shows that the gPC coeflicients
computed with AD have larger values for the ten largest terms in the expansion, while
the {1 norm of the remainder terms is smaller. This is because an accurate estimation of
the gradients using AD helps to concentrate the dependence of u on a few basis functions,
which further enhances the sparsity. For example, in the setting d = 10 and p = 4, only

11
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Figure 3. The magnitude of the gPC coefficients computed with AD (top) and iterative method (bottom) for the
KdV equation with p =4, d = 10.

the first two singular values (0.1117, 0.0149) are greater than 107F.

5. Conclusion and Future Work

In this paper we studied the effectiveness of Automatic Differentiation in compressive
sensing-based uncertainty quantification. The iterative rotations method computes the
gradients by differentiating the best polynomial approximation available at each itera-
tion, and then it employs an iterative refinement process to achieve convergence, whereas
the gradients are evaluated directly by reverse mode AD when a computational model
for the Qol is available and it is differentiable. This replaces an O(d?N?) computation
per iteration with a global O(M - Eval(u)) computation and removes the iterative re-
finement procedure (where Ewval(u) is the cost of computing the Qol u(£)). AD also
evaluates the gradient matrix more accurately than the iterative rotation method. The
numerical results demonstrate that with AD, we can increase the performance, sparsity,
and accuracy of the Hermite polynomial expansion that represents the Qol.

These results are based on the property of AD that it computes the gradient within
machine precision at a cost of a constant factor overhead of evaluating the Qol u(&)

12
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Figure 4. The [; norms of the first s leading terms ||cs||1 (top) and the remaining terms ||c — cs||1 (bottom) of
the gPC coeflicients for the KdV equation with p =4, d = 10.

itself. The limitation is that it requires the Qol u(§) to be evaluated using a computer
program, which is available only when there is a computational model for it. In this work,
we restrict both & and 1 to be i.i.d Gaussian random variables, so that the transformation
n = g(&) is a linear orthogonal transformation. When such constraints are relaxed, i.e,
when ¢(€) is nonlinear, we expect that introducing AD would be even more advantageous.

When AD is employed, we can consider how to improve the accuracy of gPC expansion
while using fewer sample points. Some work in this direction has been done in [22]. We
can also consider the possibility of high order gPC expansions, where we approximate
the values of the Qol and also the derivatives, as:

N
u€) = > enthn(€),
n=1
uE) . Oal8)
o ; o
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