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Abstract 

Background:  We have initiated an effort to exhaustively map interactions 

between HTLV-1 Tax and host cellular proteins.  The resulting Tax interactome will 

have significant utility toward defining new and understanding known activities of this 

important viral protein.  In addition, the completion of a full Tax interactome will also 

help shed light upon the functional consequences of these myriad Tax activities.  The 

physical mapping process involved the affinity isolation of Tax complexes followed by 

sequence identification using tandem mass spectrometry.  To date we have mapped 

250 cellular components within this interactome.  Here we present our approach to 

prioritizing these interactions via an in silico culling process.   

Results:  We first constructed an in silico Tax interactome comprised of 46 

literature-confirmed protein-protein interactions.  This number was then reduced to four 

Tax-interactions suspected to play a role in DNA damage response (Rad51, TOP1, 

Chk2, 53BP1).  The first-neighbor and second-neighbor interactions of these four 

proteins were assembled from available human protein interaction databases.  Through 

an analysis of betweenness and closeness centrality measures, and numbers of 

interactions, we ranked proteins in the first neighborhood.  When this rank list was 

compared to the list of physical Tax-binding proteins, DNA-PK was the highest ranked 

protein common to both lists.  An overlapping clustering of the Tax-specific second-

neighborhood protein network showed DNA-PK to be one of three bridge proteins that 

link multiple clusters in the DNA damage response network.   

Conclusion:  The interaction of Tax with DNA-PK represents an important 

biological paradigm as suggested via consensus findings in vivo and in silico.  We 



present this methodology as an approach to discovery and as a means of validating 

components of a consensus Tax interactome. 

 

Background 

Human T-cell Leukemia Virus type 1(HTLV-1) is the causative agent of Adult T-

cell Leukemia (ATL), HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis 

(HAM/TSP) as well as other subneoplastic conditions [1-5].  Although the development 

of ATL is the culmination of complex events, it appears that the viral oncogene product, 

Tax, may provide the impetus for the transformation process.  This protein has been 

studied extensively since 1982 when Tax was discovered to be a transactivator of the 

cognate viral promoter [6].  Since that time many activities and subsequent functions 

have been assigned to the Tax protein [7-9].  The critical importance of this protein to 

human disease makes it a fascinating protein as a research target; however, the result 

of such focused research efforts has been thousands of articles and a healthy dose of 

controversy.  These qualities also make Tax an ideal candidate for the development of a 

complete list of interacting proteins as an effort to define potential protein functions.   

There have been a number of published accounts of cellular proteins that bind to 

Tax.  For example, Jin et al described the binding of Tax to MAD1 as a result of a 

comprehensive yeast two-hybrid approach [10].  Immunoprecipitation and western 

analysis has been used to identify specific Tax-protein interactions, for example IKKγ 

[11, 12], CRM1 [13], Dlg1 [14] and components of the APC [15, 16].  Recently, 

Kashanchi and co-workers conducted a major effort using 2D gel separation followed by 

MALDI-MS to identify a 32-member Tax interactome [17].  A combined listing of Tax 



binding proteins with accompanying literature citations can be found by visiting the 

publicly accessible Tax website (http://htlv-tax.com). 

As data accumulates regarding Tax-protein interactions, a system for analysis 

and validation of these interactions is needed.  This is especially true given the 

exponential increase in technical ability to identify protein-protein interactions, 

compounded by the inherent increases in false-positives (protein-protein interactions of 

no functional consequence).  We describe a two-pronged approach for identification and 

selection of functionally significant Tax-protein interactions.  The study begins with the 

construction of a comprehensive physical interactome using affinity isolation of Tax 

complexes coupled to MS/MS analysis.  Next, we utilized knowledge gained in existing 

literature that defined a physical interaction between Tax and a cellular protein, to 

comprise an in silico Tax interactome.  This interactome was then restricted to proteins 

with a putative role in DNA repair response.  The final steps expanded the in silico 

interactions into a nearest neighbor network to identify groups of proteins with greatest 

functional impact to DNA repair response.  Our analysis identified DNA-PK as a top 

candidate protein for further analysis into the mechanism of action for Tax-induced 

defects in the cellular DNA damage repair response.   

 

Results 

Assimilation of an interaction database for Tax 

We conducted a manual literature search for articles with reference to “Tax 

Interaction”.  This list of research articles was then limited to those that could be 

manually confirmed as containing evidence of Tax binding via physical interaction.  The 

manual filtering resulted in a confirmed list of 67 proteins (see Table 1).  As we have 



alluded to earlier, Tax has many putative functions but for this exercise we have limited 

our analysis to the DNA damage repair response.  Thus, we asked which of these 

known protein interactions has a known function that would potentially impact the 

cellular DNA repair response process.  Our analysis suggested a starting point of four 

confirmed Tax-binding proteins; Rad51, TOP1, Chk2, and 53BP1. 

 

Construction of a physical Tax interactome map 

Our approach to defining the physical Tax interactome began with the selective 

isolation of Tax-containing multi-protein complexes from mammalian cells.  The isolation 

of multi-protein complexes was facilitated by the use of affinity tagged Tax protein.  The 

S-Tax-GFP vector expresses full length TAX protein fused to amino-terminal His6 and 

S-tags, and carboxyl-terminal GFP protein.  A critical property in such a system is the 

recapitulation of Tax-associated activity in the fusion protein.  We have previously 

demonstrated that the expressed S-Tax fusion protein is fully functional when compared 

to wild type Tax protein [18, 19].  The S-Tax-GFP vector was transiently transfected into 

293T cells, and the expression of GFP used to assess correct cellular localization and 

to monitor the transfection efficiency.  The S-Tax-GFP protein was purified on S-

agarose beads and incubated with Jurkat nuclear extracts.  We used the nuclear 

extracts to increase the relative abundance of Tax binding proteins to Tax.  A series of 

preliminary experiments were conducted in order to titer the best proportions between 

nuclear lysate concentration and the amount of Tax such that the Tax protein 

concentration does not either overwhelm the binding partners or disappear from the 

complex. In an effort to increase the binding specificity of Tax associated proteins, we 

pre-incubated the nuclear lysate with the S-agarose beads as a “pre-clear” step.  This 



resulted in a significant reduction of nonspecific protein hits such as HSP’s and common 

nuclear structural proteins like tubulin and actin.  The resulting isolated protein 

complexes were then trypsinized and subjected to LC-MS/MS analysis.  When each of 

the three experimental runs was analyzed individually and then compared, we observed 

that 86% of the proteins were present on all three runs.  The control experiments with 

the S-GFP protein alone resulted in a list of approximately 25 proteins consisting mainly 

of HSP’s, actin and tubulin.  Only 10% of these proteins were shared with the S-Tax-

GFP experiments.   

One approach to assigning value to any single protein-protein interaction is by 

determining the strength of interaction.  A comparable evaluation in mass spectrometry 

would be measurements that imply the relative sequence coverage of a particular 

protein within a complex.  The number of peptides with sequence unique to the protein 

(unique peptides), the sum of the relevant peptide confidence scores (protein score), 

the percentage of sequence coverage (coverage) and the relative abundance of 

predicted peptides from a protein (emPAI) were used for ranking the Tax-binding protein 

identities.  Such confidence values would be directly influenced by the amount of 

measurable protein and indirectly influenced by strength of binding.  Thus, we combined 

the data, in which the Tax interactome was analyzed as described above, from three 

separate experimental runs into one data set.  Each of the LC-MS/MS runs contained 

approximately 23,000 scans.  The top 5 protein “hits” as determined via multiple 

measures of confidence are shown in table 2.  This analysis resulted in the identification 

of a novel interaction between Tax and DNA-PK.  We note that one possible 

explanation for our approach uniquely identifying DNA-PK is the enrichment of nuclear 

proteins in the binding reaction.  



 

Defining first neighbor interactions of the known Tax-binding proteins 

In this section we conducted a query for immediate binding partners of a selected 

group of known Tax-binding proteins.  Our starting group of Tax-binding proteins, 

Rad51, TOP1, CHEK2 (Chk2), and TP53BP1 (53BP1), known to play a role in the DNA 

repair response, was referred to as the set C1.  The goal was to carefully extend the 

four protein dataset outward to include the first neighbors of known Tax-binding 

proteins.  We then created a network consisting of the first neighbor interactions of 

these four proteins with the world of proteins within the HRPD, which we call G1= 1NN 

(C1).   This sub-network, G1, consists of a set of 50 proteins involved in 112 interactions 

as shown in figure 1.  The G1 sub-network has a diameter of 5, and average path length 

of 2.7, which are consistent with a small-world network. 

Several features in the network G1 and other sub-networks of G1 described 

below, suggest a significant role for PRKDC(DNA-PKcs). The maximum core (a group 

of proteins with the most intra-group interactions) of G1 is 6, and DNA-PKcs is a 

member of the 5-core; the 5-core is a highly interacting group of 12 proteins (DNA-

PKcs, TOP1, PCNA, RPA1, DDX9, CDK4, CDKN1A (p21), CDK5, ADPRT (PARP), 

XRCC5 (Ku70), XRCC6 (Ku86), NCOA6 (TRBP)), all of which are related to the DNA-

repair process.  Interestingly 6 of these 12 proteins (DNA-PKca, TOP1, DDX9, ADPRT, 

XRCC5, XRCC6) were also among the Tax-binding proteins observed in the mass 

spectrometry analysis.  We also note that active DNA-PK consists of the catalytic 

subunit (DNA-PKcs) and the two regulatory subunits (Ku70 and Ku86) each of which is 

a member of this highly interactive core.  Furthermore, DNA-PKcs ranks eighth in 



degree (the number of interactions) and in the top 30% in two centrality measures 

(betweenness and closeness).  

We next considered the structure of the G1 sub-network after the removal of the 

four initial Tax-binding proteins comprising C1.  This would allow for an assessment of 

the degree and centrality of neighbors without interference from the original four 

proteins.  The largest connected component of the resulting network consisted of 29 

proteins and 60 interactions as shown in figure 2.  This network has a diameter of 6 and 

a small average path length of 2.6.   In this sub-network, DNA-PKcs is among the top 

six proteins in degree and betweenness centrality.  Thus, the critical role of DNA-PKcs 

as determined through our clustering process is independent of the presence of the four 

initial proteins. 

We then created a sub-network of G1 restricted to those involved in DNA repair 

response, referred to as G1*.  Specifically, we removed those proteins that lacked the 

primary function of DNA repair as listed in the HRPD.  This network consisted of 26 

proteins and 42 interactions as shown in figure 3.  The G1* network has a diameter of 5 

and an average path length of 2.5.  In this restricted network, DNA-PKcs ranks fourth in 

degree and ninth in betweenness centrality.  The maximum core of this network is the 4-

core, which consists of six proteins of which DNA-PKcs is a member (DNA-PKcs, 

PCNA, PARP, Ku70, Ku86, and TRBP).  Thus, DNA-PKcs demonstrates an increased 

rank when consideration is refocused toward protein interactions involved in DNA 

damage response. 

 

Definition of the second neighbors of C1 refined to DNA repair 



In our next exercise, we attempt to assign value to the proteins identified in the 

prior networks by examining their context in the “larger world” of second neighbors.  Our 

assumption was that key proteins from the first neighbor analysis should retain their 

central role as defined by interactions in the large second neighbor population.  

Specifically, in this exercise we first extend the database of Tax-interacting proteins 

outward to include second neighbor proteins (a protein that binds a protein that is 

known to bind Tax).  We considered the first and second neighborhood of the initial set 

of proteins in C1, which we refer to as G2 = 2NN (C1).  The G2 network consisted of 

667 proteins and 3827 interactions.  From the proteins in the G2 network, we created a 

smaller network by restricting to proteins involved in DNA repair, and refer to this sub-

network as G2*.  There were 114 proteins in G2*.  Once this group is developed we use 

a clustering analysis in an attempt to identify the presumed most critical members of the 

Tax-interacting world restricted to DNA repair response proteins.  The clustering 

process ranks components of the network based upon the intra-group interactions.  We 

show the 3-core of the G2* network, which consists of 54 proteins, in figure 4.   All 3-

core proteins will have three or more interactions in order to be included in the network.  

By application of our clustering approach, we expose the structure of this subnetwork.  It 

consists of five clusters of proteins, with the largest cluster having 22 proteins, and the 

smallest cluster consisting of 3 proteins.  Adding proteins of lower degree clearly 

generates a larger G2* network, but did not change the integrity of the structure of the 

network (data not shown).  We can also observe from the clustering that three proteins, 

DNA-PKcs, PCNA, and P53 (TP53) link the various clusters to each other.  We call 

these three proteins “bridges”, since they connect the different clusters together.  



Hence, DNA-PKcs is a bridge protein in this second neighborhood network that links 

clusters 1, 4, and 5, and is also linked to the bridge protein PCNA. 

The five clusters depicted in figure 4, anchored to the three prominent bridge 

proteins (TP53, PCNA and PRKDC), include proteins that play key roles in DNA repair, 

stress-induced signaling pathways and cell cycle controls. In general, these proteins are 

discretely associated with the clusters. For example, Cluster 1 includes four members of 

the Fanconi anemia complementation group (FANCA, D2, E and G).  FANC genes 

mediate a stress related signaling pathway that allows a normal cell to surmount certain 

types of damage induced in DNA, principally interstrand crosslinks [20].  In contrast, 

Cluster 2 includes key genes whose proteins mediate cell cycle arrest in response to 

genotoxic and other cellular stresses. Thus, if these protein interactions reflect a true 

subset of the proteins that are directly, or indirectly, affected by Tax-1, then this key viral 

protein has command over some of the principal cellular stress response pathways that 

might otherwise inhibit cell growth following HTLV1 infection. 

 

Endogenous DNA-PK co-precipitates with affinity isolated Tax 

As a final verification of the binding between Tax and DNA-PKcs, we performed 

an affinity pull-down of endogenous cellular Tax protein complexes.  In this study, we 

expressed either S-Tax or S-GFP via transient transfection of 293T cells and 

normalized for S-fusion protein amount.  The extracts were then isolated by affinity 

purification of the S peptide and the complexes separated on SDS-PAGE and subjected 

to immunoblotting with anti-DNA-PKcs.  Endogenous DNA-PKcs specifically associates 

with the Tax containing protein complex and is detected by staining with anti-DNA-PKcs 



(Figure 5).  These results confirm the identification of DNA-PKcs as a Tax-binding 

protein. 

 

Discussion 

The HTLV-1 Tax protein has been defined by the proteins with which it interacts 

[21].  Therefore, it stands to reason that defining the functional properties of this protein 

will require an understanding of which cellular proteins it interacts with.  Clearly, 

uncovering all potential interactions will include those with functional significance.  

However, determining which interactions support function and which interactions are of 

no consequence is an obvious and critical question.  We have taken the approach that if 

we assume that Tax impacts the DNA damage repair process, as many studies support, 

then those interactions that are critical to the DNA damage repair process will hold 

greater promise of functional significance.  Given this hypothesis, we devised a 

computational biology approach to help define which physical interactions warrant 

further study. 

One of the challenges in computational systems biology is to create a tool to 

identify functional modules and the interactions among them from large-scale protein 

interaction networks. There are three major clustering approaches that have been 

employed to identify functional modules in proteomic networks. The first approach 

searches for sub-graphs with specified connectivity, called network motifs, and 

characterizes these as functional modules or parts of them.  This approach is not 

scalable for finding larger clusters in large-scale networks. The second approach, an 

example of which is work by Bader and Hogue [22], identifies a seed vertex, around 

which to grow a cluster.  The seed vertex is identified by choosing a vertex of largest 



weight, where the weight of a vertex is a measure of the number of edges that join the 

neighbors of the vertex, the clustering coefficient.  A vertex in the neighborhood of a 

cluster is added to it as long as its weight is close (within a threshold) to the weight of 

the seed vertex. Once a cluster has been identified, the procedure is repeated with a 

vertex of largest weight that currently does not belong to a cluster as the seed vertex. 

However, our experience comparing this approach with the spectral algorithms we 

employed in this study indicates that this method is less stable (i.e., the clusters 

obtained depend strongly on the seed vertices chosen). We used an improved 

clustering method [23] to reveal proteins that form functional modules, i.e., multiple 

proteins involved in the same biological function.  This approach was used to apply an 

objective measure to the functional significance of a protein.  Specifically we use this to 

both cluster proteins into specific functional domains as well as to objectively measure 

each individual protein’s value to that functional domain.   

When we compared these results to the Tax-binding proteins generated from our 

physical mapping efforts, DNA-PK was in the top five best represented binding proteins 

and occupied a top tier ranking via our functional clustering for DNA damage proteins.  

Clearly, DNA-PK is a critical component in cellular processes that mediate response to 

damage and thus the fact that our clustering analysis places high value on this protein is 

as much a validation of the process as it is novel information.  However, we began with 

a network of known Tax-binding proteins and their neighbors and second-neighbors, 

and DNA-PK was selected, through our functional clustering approach, whereas other 

equally critical damage response proteins were not.  For instance, among the PI3K 

protein family members ATM and ATR hold positions of prominence in the DNA 

damage-response arena equal to DNA-PK [24].  In fact, the three proteins are 



considered redundant in specific pathways and are sometimes able to substitute 

functionally [25-27].  However, neither of the other two proteins was reflected in the 

upper tier interactions when using the Tax-designated protein networks.  Furthermore, 

ATM and ATR were not found among the list of Tax-binding proteins identified in the 

physical isolation of Tax complexes, again verifying the novelty of the DNA-PK finding. 

This is not the first time that DNA-PK has been targeted as a cellular protein 

through which Tax might mediate genomic instability [28].  It is clear that DNA-PK is 

known to mediate functions associated with reported Tax activities.  Specifically, Tax 

has been shown to cause constitutive activation of Chk2, a downstream target of DNA-

PK [19].  DNA-PK can phosphorylate the tumor suppressor p53 at S15 and S37 [29] 

whereas Tax expression results in phosphorylation at S15 and S392 [30, 31].  In 

addition, we have recently shown that Tax interaction with DNA-PK results in saturation 

of the damage response (manuscript submitted).  Thus, the Tax-DNA-PK interaction 

satisfies several previous observations regarding Tax function and provides a unifying 

model for all of these activities.  Thus, although Van et al. [32] demonstrated that the 

Tax-p53 nexus was intact in a DNA-PK knock-out line, it may well be worth examining 

this protein as a mediator of other Tax activities. 

Clearly HTLV-1 Tax presents a biological model for an interesting protein with an 

overwhelming amount of associated published literature.  A recent review by Boxus et al 

highlights this complexity and presents an exhaustive compilation of all known Tax-

interacting proteins [33].  The growth in the Tax knowledge base requires constant 

surveillance and verification if this body of work is to be useful in understanding how 

Tax functions.  Additionally, as proteomic techniques continue to mature, the data 

generated in experimental studies is increasing exponentially.  We have described a 



parallel process for combining in silico analysis with experimental proteomic analysis so 

that information gained in each process facilitates data mining of the orthogonal 

process.  Further building of the Tax interactome should reveal other critical proteins 

that play key roles in mediating the biologically significant Tax functions within the host 

cell.   

 

Methods 

Cell culture and transfection 

 293T cells were maintained at 37°C in a humidified atmosphere of 5% CO2 in 

air, in Iscove’s modified Dulbecco’s medium supplemented with 10% fetal bovine serum 

and 1% penicillin-streptomycin.  Transient transfections were performed by standard 

calcium phosphate precipitation.  The plasmid used for expression of S-Tax-GFP has 

been described previously [18].  For expression of S-Tax and S-GFP the tax or EGFP 

open reading frame was inserted into the SmaI site of pTriEx4-Neo (Novagen, Madison, 

WI).  Cells were plated in 150-mm plates at 4x106 cells per plate.  The following day, 20 

µg of plasmid DNA in 2M CaCl2 and 2X HBS were added drop wise to cells in fresh 

medium.  Cells were incubated at 37°C for 5 h and fresh medium was added.  The cells 

were harvested 48 h later. 

 

Purification of S-fusion proteins 

S-Tax-GFP, S-Tax, or S-GFP protein was isolated following a single wash with 

1X PBS, in 500 µl M-Per mammalian protein extraction reagent (Pierce, Rockford, IL) 

supplemented with protease inhibitor cocktail (Roche, Palo Alto, CA) and immediately 

frozen at –80°C. The cell lysate (2.5 mL) was incubated with 200 µl bed volume of S-



protein™ agarose (Novagen, Madison, WI) for 30 min at room temperature as per 

manufacturer’s suggestion. The bound S-tagged protein was then washed 3 times with 

1 mL Bind/Wash Buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% TritonX-100).   

 

Isolation of Tax-complexes 

Freshly prepared S-Tax-GFP or S-GFP beads were washed 3X in incubation 

buffer (25 mM HEPES, pH 7.5, 150 mM NaCl, 1% NP-40, 10 mM MgCl2, 1 mM EDTA, 

1% glycerol) and placed on ice.  A working stock of Jurkat nuclear lysate (Active Motif, 

Carlsbad CA) was prepared by diluting 25 µg lysate to a total volume of 75 µL in 

incubation buffer.  The lysate was pre-cleared by adding 30 µL of S-bead slurry and 

incubating on ice for 30 minutes with occasional mixing.  The pre-cleared slurry was 

spun down at 2000g for 3 minutes and the lysate (70 µL) transferred to a fresh 0.5 ml 

tube containing 10 µL of the S-Tax-GFP or S-GFP protein bound to beads.  This slurry 

was incubated at 4°C for 60 minutes on a shaker.  The beads were centrifuged at 2000g 

for 3 minutes, lysate removed, and beads washed 1X with 250 µL incubation buffer 

followed by 4 washes with 250 µL ice cold PBS. 

 

Isolation of endogenous DNA-PK-Tax protein complex 

In some cases, S-Tax or S-GFP expression plasmids were transfected into 293T and 

protein complexes isolated as described above from a single T75 flask.  In these 

experiments no nuclear extracts were added.  The protein lysates were subjected to 

purification on S-beads, 50 µL of sample loading buffer (Bio-Rad, Hercules, CA) with β-

mercaptoethanol was added to the S-bead pellet and boiled for 10 min.  The whole 



protein sample that was bound to the S-bead was separated by 4-12% SDS-PAGE and 

analyzed by Western Blot as described below.   

 

LC-MS/MS of protein complexes 

S-Tax-GFP or S-GFP beads were washed 3X with ice cold 50 mM ammonium 

bicarbonate, pH 8 and subsequently resuspended in 50 µL of 50 mM ammonium 

bicarbonate, 10% acetonitrile containing 3.12 ng/µL sequencing grade modified trypsin 

(Promega Corp., Madison, WI).  The digest was incubated for 6 hours at 37°C with 

occasional mixing, transferred to a 0.2 µm centrifuge tube filter and spun at 5000 rpm 

for 3 minutes.  The flow through was recovered and peptides dried in a speed vac.  

Digests were resuspended in 20 µl Buffer A (5% Acetonitrile, 0.1% Formic Acid, 0.005% 

heptafluorobutyric acid) and 10 µl were loaded onto a 12-cm x 0.075 mm fused silica 

capillary column packed with 5µM diameter C-18  beads (The Nest Group, 

Southborough, MA) using a N2 pressure vessel at 1100 psi.  Peptides were eluted over 

300 minutes, by applying a 0-80% linear gradient of Buffer B (95% Acetonitrile, 0.1% 

Formic Acid, 0.005% HFBA) at a flow rate of 150 µl/min with a pre-column flow splitter 

resulting in a final flow rate of ~200 nl/min directly into the source.  A LTQ™ Linear Ion 

Trap (ThermoFinnigan, San Jose, CA) was run in an automated collection mode with an 

instrument method composed of a single segment and 5 data-dependent scan events 

with a full MS scan followed by 4 MS/MS scans of the highest intensity ions.  

Normalized collision energy was set at 28%, activation Q was 0.250 with minimum full 

scan signal intensity at 1 x 105 with no minimum MS2 intensity specified.  Dynamic 

exclusion was turned on utilizing a three minute repeat count of 2 with the mass width 

set at 1.0 m/z.  Protein searches were performed with MASCOT version 2.2.0v (Matrix 



Sciences, London GB) using the SwissProt version 51.3 database.   Parent ion mass 

tolerance was set at 1.5 and MS/MS tolerance 0.5 Da.  

 

Western analysis 

Total protein concentrations were determined by Protein Assay (Bio-Rad, 

Hercules, CA).  An equal volume of sample loading buffer (Bio-Rad, Hercules, CA) with 

β-mercaptoethanol was added to the lysate and boiled for 5 min.  Samples were 

normalized to total protein and separated through a 10% SDS-polyacrylamide gel.  The 

proteins were transferred onto Immobilon-P (Millipore, Billerica, MA) membrane using a 

Trans-blot SD semi-dry transfer cell (Bio-Rad, Hercules, CA) at 400 mA for 50 min.  

Following blocking in 5% non-fat milk in PBS/0.1% Tween-20, blots were incubated in 

primary antibody overnight, followed by 1 h incubation in secondary horseradish-

peroxidase conjugated anti-mouse or anti-rabbit antibody (Bio-Rad, Hercules, CA).  

Immunoreactivity was detected via Immunstar enhanced chemiluminescence protein 

detection (Bio-Rad, Hercules, CA).  The following primary antibodies were used in the 

analysis: mouse monoclonal antibody of DNA-PKcs (Upstate), 1:1000; rabbit polyclonal 

antibody of Tax, 1:5000; mouse monoclonal antibody of GFP (Santa Cruz), 1: 2000.  

 

Sources of data for in silico analysis 

 Interaction data were gathered from three types of information sources: manual 

extraction from Pubmed, laboratory derived physical interactions, and protein interaction 

databases.  In the first database source, the information was extracted by manually 

searching the Pubmed literature to obtain a list of known Tax binding proteins.  The 

criterion for acceptance in this group was physical verification of binding in the 



referenced publication.  For the second database source, the physical interactions 

utilized in this study were all derived from the experimental efforts described elsewhere 

in this article. For the final database source, we queried a human protein interaction 

database; The Human Protein Reference Database (HPRD) [34].  The HPRD 

(http://www.hprd.org) contains interactions of proteins in the human proteome manually 

extracted from the literature by expert biologists who read, interpret and analyze the 

published data.  

 

Terms and definitions for in silico analysis 

For our topological studies of interaction networks, we utilized a novel 

overlapping clustering approach [23] that exposes the modular structure of the network.  

We define bridges as proteins that belong to multiple clusters due to the overlap among 

them.  We also employed centrality measures of networks known as betweenness and 

closeness. To define these measures, first we need to define some network concepts. 

The distance of a protein v from another protein w is the number of edges in a shortest 

path between them.  The diameter of a network is the maximum distance between any 

pair of vertices.  The average path length of a network is the average distance over all 

pairs of vertices. The closeness centrality measure for a protein, v, is the reciprocal of 

the sum of the distances of v to all other proteins in the network.   

The dependence of a protein s on a protein v is the sum over all proteins t in the 

network of the ratio of the number of distinct shortest paths between proteins s and t 

that includes v as an intermediate vertex, and the number of distinct shortest paths 

between s and t.  The betweenness value of a protein v is the sum of the dependence 



values  of all proteins s on the protein v.  This is equivalent to the following equation for 

betweenness.  

�
Here V is the set of proteins in the network.  The numerator in the fraction shows 

the number of distinct shortest paths joining s and t on which v is an intermediate 

vertex; the denominator is the number of distinct shortest paths joining s and t.  Further 

details on centrality measures are available in [35].  

As in earlier work [36], we define hubs as all proteins that are ranked in the top 

20% with respect to degree in the network (the number of interactions a protein is 

involved in).  Similarly bottlenecks are all the proteins that are ranked in the top 20% of 

betweenness values. To calculate betweenness values for proteins, we used an 

algorithm provided by Yu et al. [37]. 

In the clustering approach to be described next, we use the concept of a k-core 

of a graph. The k-core of a graph is obtained by repeatedly deleting all vertices which 

are joined to the vertices remaining in the graph by fewer than k edges.  This procedure 

begins by deleting all vertices whose degree is less than k.  The deletion of such 

vertices could decrease the degrees of the remaining vertices.  If some of these vertices 

have degrees less than k, they would be deleted as well.  This process is repeated until 

the subgraph that remains has every vertex with degree at least k; this subgraph is the 

k-core of the graph. All the deleted vertices belong to the (k-1)-shell. Computing the k-

core of a graph helps with denoising the interaction network by removing many false 

positives, and also reduces the initial size of the network to be clustered.  The deleted 

vertices will be added to the clustering obtained in a subsequent step. 



 

Spectral clustering and modules identification 

 We now summarize the technique we used for clustering the protein interaction 

networks [23].   The protein interaction network is represented by a graph G= (V, E), 

with the proteins constituting a set of proteins V, and interactions constituting the set of 

edges E.  We obtain clusters in the interaction network by identifying a number of 

subgraphs of G that  have a relatively large number of edges joining vertices in each 

subgraph and fewer edges to vertices outside the subgraph.  We permit these clusters 

to overlap (have some vertices in common), since proteins have multiple functions and 

could be involved in more than one biological process.   

The details of the clustering algorithm will be described elsewhere, but here we 

provide an overview.  Clusters are obtained by dividing a subgraph at each step into two 

subgraphs based on the ratio of the number of edges that join vertices in the subgraph 

to the total number of edges, a measure called the cohesion of the subgraph. Given the 

initial graph G, we recursively split it into subgraphs until the value of cohesion of a 

subgraph is above a threshold value, or the subgraph has number of vertices fewer than 

a threshold size.  We have used a spectral algorithm that uses the components of an 

eigenvector of the Laplacian matrix of the graph to divide each subgraph into two. Once 

the eigenvector is computed (its components correspond to the vertices of the graph), 

those vertices whose component values are below some specified value are included in 

one subgraph and the others belong to the second subgraph. The choice of the value 

where the split should be made is based on computing the cohesion.  

We have found that the overall clustering approach described above needed to 

be adapted to protein interaction networks, which are small-world and modified power-



law networks.  Initially we decompose the vertices of the network into three sets; hubs 

or high degree vertices (those in the top 20% of the degrees); low-shell vertices 

(vertices not in the 3-core of the network); and the residual sub-network, which forms a 

3-core of the network from which the hubs have been removed.  We call the last 

subnetwork as the local network.  We have found it advantageous to cluster the local 

and hub sub-networks separately using the spectral clustering method described above.  

The clusters from both sub-networks are then merged together if a large number of 

edges join clusters from the two networks.  We check to see if nodes that belong to a 

cluster are significantly connected to other clusters, and if so, they are included in such 

clusters as well. The statistical significance of the connections is computed using a p-

value based on the hypergeometric distribution.  Finally, the low-shell nodes are added 

to clusters; each such node could be added to none, one, or more than one cluster, 

based on whether it has a statistically significant number of connections to the clusters 

that have been found. If a node belongs to three or more clusters, we call it a bridge 

node. 
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Figure Legends 

Figure 1.  The G1 first neighborhood network for Rad51, TOP1, Chk2 and 53BP1.  

The four initial proteins (yellow) were used to generate a network via interrogation of the 

Human Protein Reference Database.  Protein-protein interactions are indicated by lines.  

Proteins with two or more shared interactions will form a core.  PRKDC (DNA-PK) is 

also highlighted.  

 

Figure 2.  The largest interacting network remaining in G1 after removal of Rad51, 

TOP1, Chk2 and 53BP1.  The components that populated the first neighborhood 

network were depleted of rad51, top1, chk2 and 53bp1.  The remaining components 

with the highest degree of interaction are shown.  DNA-PK (PRKDC) is indicated 

(yellow). 



 

Figure 3.  The G1* first neighborhood network restricted to proteins documented 

to play a role in the DNA-repair response.  The components of the entire first 

neighborhood network were filtered to remove those not known to have a role in the 

DNA-repair response.  The remaining components are displayed to reveal interactions 

and a central core. 

 

Figure 4.  The 3-core representation of the G2* second neighborhood network 

restricted to DNA damage repair response.   Shown is the result of clustering the 

components of the G2* second neighborhood network arising from the original four Tax 

binding proteins known to be involved in the cellular DNA damage response.  There are 

five clusters with three bridge proteins; DNA-PK is one of the bridge proteins.  For clarity 

in drawing the network, we do not show edges from these three proteins to the 

individual proteins in the clusters.  The numbers on the edges from these proteins to the 

clusters count the number of edges from each protein to proteins in each cluster.  

 

Figure 5.  HTLV-1 Tax binds to DNA-PKcs.  The fusion proteins S-Tax and S-GFP 

were isolated from 293T cells as described and analyzed for co-precipitation with DNA-

PKcs.  Shown is the pre-isolated total cell extract (input) for S-GFP (lane 1) and S-Tax 

(lane 3).  Also shown is the affinity purified protein complexes for S-GFP (lane 2) and S-

Tax (lane 4).  Experimental normalization was achieved by using equal amounts of 

purified protein.
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Tables 

Table 1 

Tax interacting 
protein 

Evidence for 
interaction 

Alternate names Reference 

PCAF GST pulldown; co-IP p300/CBP-associated 
factor     

Jiang H, MCB 1999 19(12):8136-45 

PSAP GST pulldown Sap-1 Shuh M, J. Virol 2000 74(23):11394 
ELK1 GST pulldown ETS family Shuh M, J. Virol 2000 74(23):11394 
SRF GST pulldown serum response factor Shuh M, J. Virol 2000 74(23):11394 
SUV39H1 GST pulldown; co-IP KMT1A  Kamoi K, Retrovirology 2006 3:5 
ATF4 yeast two hybrid; GST 

pulldown 
TAXREB67, CREB-2 Reddy TR, Oncogene 1997 

14(23):2785 
MSX2 co-IP CRS2, FPP, HOX8, 

MSH, PFM 
Twizere JC, JBC 2005 280(33):29804 

ZFP36 GST pulldown; co-IP; 
Colocalization 

tristetraprolin, TTP, 
NUP475 

Twizere JC, JNCI 2003 95(24):1846 

CREBBP GST pulldown; co-IP; CoCREB binding protein, 
CBP 

Bex F, MCB 1998 18(4):2392 

p300 GST pulldown; co-IP; co p300, KAT3B         Bex F, MCB 1998 18(4):2392 
MAP3K1 co-IP MEKK, MAPKKK1 Yin MJ, Cell 1998 93(5):875 
ACTL6A co-IP BAF53, Arp4, INO80K Wu K, JBC 2004 279(1):495 
SMARCE1 co-IP BAF57, SWI/SNF 

related 
Wu K, JBC 2004 279(1):495 

SMARCC1 co-IP BAF155, SWI/SNF 
related         

Wu K, JBC 2004 279(1):495 

BRG1 co-IP SMARCA4, SWI/SNF 
related     

Wu K, JBC 2004 279(1):495 
 

RAD51 co-IP BRCC5 Wu K, JBC 2004 279(1):495 
RAG2  co-IP  Wu K, JBC 2004 279(1):495 
Actin  co-IP ACTA Wu K, JBC 2004 279(1):495 
CDK2 co-IP  Wu K, JBC 2004 279(1):495 
CDC42 co-IP G25K Wu K, JBC 2004 279(1):495 
RHOA  co-IP  Wu K, JBC 2004 279(1):495 
RAC1  co-IP TC-25, p21-Rac1 Wu K, JBC 2004 279(1):495 
GSN co-IP gelsolin Wu K, JBC 2004 279(1):495 
RASA2 co-IP  GAP1M Wu K, JBC 2004 279(1):495 
TAX1BP1 yeast two hybrid,  

GST pulldown, 
Co-localisation 

TXBP151, CALCOCO3 Reddy TR, PNAS 95(2): 702 

CHEK2  Co-IP, co-localization CDS1, CHK2 Haoudi A, JBC 2003 278(39):37736 
RB1 GST pulldown retinoblastoma 1 Kehn K, Oncogene 2005 24(4):525 
CCND2 in vitro binding Cyclin D2 Fraedrich K, Retrovirology 2005 2:54 
CDK4 in vitro binding,  

mammalian two  
hybrid 

PSK-J3    Fraedrich K, Retrovirology 2005 2:54 

IKBKB  co-IP IKK-beta, IKK2, 
FKBIKB 

Harhaj EW, JBC 274(33):22911 

IKBKG  co-IP IKK-gamma, NEMO, 
FIP3 

Harhaj EW, JBC 274(33):22911 

CREB1 co-IP  Zhao LJ, PNAS 89(15):7070 
MAD1  yeast two hybrid TXBP181, MAD1L1, 

PIG9          
Jin DY, Cell 93(1):81 

CDC27 co-IP  APC3 Liu B, PNAS 2005 102(1):63 



CDC20 co-IP p55CDC, CDC20A Liu B, PNAS 2005 102(1):63 
RELA co-IP NFKB3; p65 Lacoste, Leukemia 1994 8 Suppl 1:S71 
NFYB yeast two hybrid; 

GST pulldown; co-IP 
CBF-A, HAP3 Pise-Masison CA, MCB 1997 

17(3):1236 
NFKB1 co-IP KBF1, p105 Beraud C, MCB 1994 14(2):1374 
RAN GST pulldown; co-IP; 

Colocalization 
ARA24, TC4, Gsp1 Peloponese JM, PNAS 2005 

102(52):18974 
RANBP1 GST pulldown; co-IP; 

Colocalization 
HTF9A  Peloponese JM, PNAS 2005 

102(52):18974 
CEBPB  GST pulldown LAP, CRP2, NFIL6, 

TCF5 
 Tsukada J, Blood 1997 90(8):3142 

TBP GST pulldown TFIID Caron C, EMBO J 1993 12(11):4269 
TAF11  GST pulldown; co-IP TAF(II)28, RNA 

polymerase II   
Caron C, PNAS 1997 94(8):3662 

HDAC1 co-IP, GST pulldown HD1, GON-10  Ego T, Oncogene 2002 21(47):7241 
ATF5 yeast two hybrid, co-IP ATFx Forgacs E, J Virol 2005 79(11):6932 
NRF1 GST pulldown EWG, ALPHA-PAL Moriuchi M, AIDS Res Hum 

Retroviruses 1999 15(9):821 
CDK9 GST pulldown; co-IP PITALRE, C-2k, TAK Zhou M, J Virol 2006 80(10):4781 
MAGI3 co-IP; colocalization  Ohashi M, Virology 2004 320(1):52 
DNAJA3 GST pulldown; TID1, hTid-1 Cheng H, Curr Biol 2001 11(22):1771 
HSPA2  GST pulldown; 

Colocalization 
HSP70-2 Cheng H , Curr Biol 2001 11(22):1771 

 
HSPA1B GST pulldown; 

Colocalization 
HSP70-2 Cheng H, Curr Biol 2001 11(22):1771 

TOP1  yeast two hybrid;  
co-IP 

DNA topoisomerase 1 Suzuki T, Virology 2000 270(2):291 
 

CHUK co-IP IKK-alpha, IKK1, IKKA Chu ZL, JBC 1999 274(22): 15297 
SPI1 GST pulldown p16INK4A; MTS1, 

p19ARF 
Tsukada J, Blood 1997 90(8):3142 

CDKN2A GST pulldown; co-IP p16INK4A; MTS1, 
p19ARF        

Suzuki T, EMBO J 1996 15(7):1607 

GTF2A1 yeast two-hybrid; 
GST-pulldown; co-IP 

TFIIA Clemens KE, MCB 1996 16(9):465 

CDKN1A co-IP p21CIP1/WAF1, 
CAP20 

Haller K, MCB 2002 22(10):3327 

NFKB2 co-IP  LYT-10  Murakami T, Virology 1995 206(2):1066 
VAC14 co-IP  TAX1BP2; TRX Mireskandari A, BBA 1996 1306(1):9 
GPS2 yeast two hybrid; 

GST pulldown 
TXBP31 Jin DY,  JBC 1997 272(41):25816 

CCND3 co-IP Cyclin D3 Haller K, MCB 2002 22(10):3327 
PSMB4  yeast two hybrid;  

co-IP 
HN3 Haller K, MCB 2002 22(10):3327 

PSMA4 yeast two hybrid;  
co-IP 

HC9; PSC9    Rousset R, Nature 1996 381(6580):328 

CARM1 GST pulldown; co-IP; 
Colocalization 

PRMT4  Jeong SJ, J Virol 2006 80(20):10036 

GNB2 yeast two hybrid;  
co-IP; Colocalization 

transducin beta chain 2 Twizere JC, Blood 2007 109(3):1051 

GNB5 co-IP; colocalization GB5 Twizere JC, Blood 2007 109(3):1051 
GNB1  co-IP; colocalization  transducin beta chain 1 Twizere JC, Blood 2007 109(3):1051 
IL16  co-IP, colocalization LCF Wilson KC, Virology 2003 306(1):60 
PPP2CA co-IP, GST pulldown PP2A catalytic subunit Fu DX, JBC 2003 278(3):1487 
MAP3K14 co-IP  NIK  Xiao G, EMBO J 2001 20(10):6805 
TP53BP1 co-IP, colocalization  53BP1, p202 Haoudi A, JBC 2003 278(39):37736 

 



 

Table 2.  Tax binding proteins sorted by number of unique peptides 

Protein Unique peptides Protein score Coverage emPAI 
DNA-dependent Protein 
Kinase 

25 1391 9% 0.27 

Vimentin 11 1387 44% 7.54 
Gamma interferon-inducible 
protein 

19 1116 24% 1.7 

PARP 15 1414 34% 1.78 
H2A.1 7 569 30% 1.25 
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