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Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) is a
SciDAC Institute established to harness terascale and petascale performance for
scientific simulations critical to DOE’s mission. The Institute will develop and
deploy fundamental enabling technologies in high-performance computing that
employ algorithms from combinatorial or discrete mathematics. CSCAPES is also
committed to educating the next generation of researchers who will develop and
apply combinatorial techniques to problems in computational science. 

The CSCAPES Institute
We live in a discrete universe. People, molecules,
and bits come in integral numbers. It is not surpris-
ing, then, that although computational models in
science and engineering are expressed using the lan-
guage of continuous mathematics, such as differ-
ential equations and linear algebra, techniques from
discrete or combinatorial mathematics play an
important role in solving these models efficiently. 

Combinatorial scientific computing (CSC) is the
name for the interdisciplinary field in which
researchers identify combinatorial subproblems
that arise in computational science and engineer-
ing (CSE), design graph and hypergraph algorithms
to solve these subproblems, and create high-per-
formance software implementing the algorithms.
CSC plays a crucial enabling role in applications
requiring parallelization, differential equations,
optimization, eigenvalue computations, and man-
agement of large-scale datasets. 

While work has been ongoing in CSC since the
1970s, it is only in the past few years that CSC
researchers, realizing their common intellectual
and aesthetic interests, have organized to form a
community of their own. Three international
workshops in CSC have been held since 2004, with
broad participation from academia, government
laboratories, and industry from several countries.
Scientists from the DOE laboratories have been
leaders in this effort, organizing the meetings, pre-
senting talks and posters, and engaging in interna-
tional collaborations. 

The Combinatorial Scientific Computing and
Petascale Simulations (CSCAPES, pronounced
“seascapes”) Institute is a natural outgrowth of the
research activities undertaken by several members
of the CSC community. Researchers from Old
Dominion University, Ohio State University, Col-
orado State University, and two national laborato-
ries—Sandia National Laboratories (SNL) and
Argonne National Laboratory (ANL)—serve as the
co-principal investigators of the CSCAPES Insti-
tute. CSCAPES is led by Dr. Alex Pothen, a profes-
sor of computer science and computational science
at Old Dominion University. 

The major research tasks to be undertaken by the
CSCAPES Institute are illustrated in figure 1. A typ-
ical CSE application might require a sequence of
numerical optimization problems to be solved,
eigenvalues and eigenvectors to be computed,
and/or nonlinear and linear systems of equations
to be solved. Solving this application on a parallel
computer would require the computational work
to be equally distributed on the processors of the
parallel machine.  In an adaptive computation, the
work distribution would change during the com-
putation, and the work and data would need to be
redistributed among the processors to enable it to
be solved quickly. Several computational tasks
would need to be scheduled to maximize the uti-
lization of the processors and to reduce the idle
time processors spend waiting for data or synchro-
nizing. The memory access times needed by CSE
codes working with unstructured meshes and
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Figure 1.  This diagram shows the key problems in combinatorial scientific computing that the CSCAPES Institute researchers will work on. The
solution of a SciDAC application on a parallel computer requires scientific computing tools (the second row of the figure), and involves high-
performance computing tasks (the fourth row). The fundamental combinatorial problems that need to be solved by these tools and tasks are
shown in the third row. An arrow from A to B indicates that A in some sense uses B.
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sparse data structures could be reduced by reorder-
ing the data accesses and computations. Several
combinatorial problems, namely, graph and hyper-
graph partitioning, vertex and edge reordering, ver-
tex and edge coloring, and graph matching arise in
these contexts. 

Similarly, automatic differentiation (AD) tools
are needed to ease the task of computing deriva-
tive matrices of multivariate functions in nonlin-
ear models. The computation of such functions
can be represented as the composition of unary or
binary arithmetic operations and intrinsic func-
tions in a mathematical software library, governed
by a directed acyclic graph (DAG). The function can
then be differentiated using the chain rule with the
help of the graph representation, by composing the
derivatives of the elementary arithmetic opera-
tions. Vertices and edges of these graphs can be
eliminated from the DAG representations to
reduce storage and computational costs. Several
graph coloring models help to exploit sparsity and
symmetry inherent in the derivative matrices to
compute their elements quickly. 

In the remainder of this article, we provide brief
overviews of the research areas alluded to in figure
1. For each, we describe the research problems,
current capabilities, some applications, and future
goals.

Load Balancing 
Large-scale scientific simulations are typically run
on high-performance parallel computers with
thousands of processors. Even desktop computers

now have multiple cores, and petascale machines
will consist of thousands of multicore processors.
An important task is to distribute data and work
of a large-scale computation among the processors
to minimize total execution time. This problem
is known as “load balancing” or “partitioning.” We
assume that the “owner computes” strategy is used,
which is common in large-scale computational sci-
ence problems, since the datasets are huge, and
communication costs are larger than computation
costs on current distributed-memory architec-
tures. In this scheme, each data item is assigned
to a unique processor, the owner, which performs
the computations associated with it. Most data
items are mapped only to the owner, but items on
the boundaries of a partitioned data structure
could be mapped to more than one processor.
Communication is required when a computation
needs access to data items that reside on different
processors.

There are two goals, often conflicting, in load
balancing. First, the work that can be performed
concurrently should be evenly distributed among
the processors in order to avoid processors that fin-
ish early having to wait for the slowest processor
to finish its task. Second, communication between
processors is relatively slow compared to compu-
tation, and so it should be as small as possible. The
communication requirements are dictated by the
data dependencies in the application at hand.
These goals are conflicting since the first drives the
data to be distributed among the processors, while
communication costs are lowest if the data reside
on one processor.

The load balancing problem is pervasive in par-
allel scientific computing, and is critical for achiev-
ing high performance in many SciDAC
applications. Examples include structural mechan-
ics, chemical engineering, groundwater flow, bio-
logical systems, electronic circuit simulations, and
molecular dynamics (examples in figures 2 and 3).

Most simulations are based on some underlying
geometry and mathematical equations. The math-
ematical model typically uses a mesh-based dis-
cretization, such as finite differences or finite
elements. One can then use the geometry in the
load balancing. Alternatively, the discretized sys-
tem of equations can be considered as a sparse
matrix and the load balancing can be applied to
operations on this matrix.

For static problems where the structure does not
change during the simulation, the load balancing
can be accomplished by a single partitioning step.
This may be done on one processor if the descrip-
tion of the problem fits in the memory. However,
large problems need to be partitioned in parallel.

For dynamic or adaptive problems, the situation
is more complex. Often the problem changes over
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Figure 2.  A simulation of a can crushed by a falling brick. This is a multiphysics
simulation where two different partitioning methods are used. Graph partitioning is
applied to the mesh to reduce communication in the finite element computations,
while a geometric method (RCB) is used for faster contact detection. The colors show
how parts of the mesh are assigned to processors. The top row shows the RCB
partitioning at three different times. The bottom left figure shows the graph partitioning
decomposition. The bottom middle and right figures show the RCB decomposition on
the original geometry (without the deformation).  Some data must be mapped back
and forth between the two data decompositions in the crash simulation. This
simulation was performed at SNL using the PRONTO code.

Automatic differentiation
(AD) tools are needed to
ease the task of
computing derivative
matrices of multivariate
functions in nonlinear
models.
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time, for example by adaptive mesh refinement. In
such cases, the load balance may deteriorate over
time making rebalancing necessary. The idea is to
periodically call the load balancer to see if a bet-
ter data distribution can be achieved. If so, the
application data are moved to the new distribution
and the simulation continues. This procedure is
known as dynamic load balancing. Used in this
context, each load balancing (partitioning) step
must be performed at run time, so the partitioner
should be fast. Furthermore, in order to reduce
data migration costs, the old and new data distri-
butions should be similar. 

Several different algorithms have been designed
for load balancing. Roughly, they can be divided
into two groups: geometric- and connectivity-
based methods. The geometric methods use geo-
metric coordinates to partition space into regions,
while the connectivity methods use a graph or
hypergraph to represent data and their dependen-
cies. Figure 2 provides an example that uses both
approaches. Geometric partitioning algorithms are
fast, but graph/hypergraph algorithms typically
reduce the communication volume more.
CSCAPES members have shown in earlier work
that hypergraph models are more expressive than
graph models for load balancing, and can model
communication costs more accurately. Zoltan is a
software toolkit for load balancing and parallel data
management, developed mainly at SNL, and sup-
ported in part by the CSCAPES SciDAC Institute.

Zoltan contains implementations of the most
important algorithms for partitioning and load
balancing, relieving application developers from

the burden of implementing their own load bal-
ancing, and making it possible to try different
strategies with minimal effort. A recent addition to
Zoltan is a parallel hypergraph partitioner, which
can replace traditional graph partitioners in many
applications, and often reduce communication
volume and execution time. We anticipate the
hypergraph partitioner to be particularly effective
for applications with more irregular structures
than unstructured meshes, such as circuit simula-
tion. Zoltan also contains several other useful tools
for parallel data management, such as an unstruc-
tured communication library to do coarse-grain
communication and a distributed data directory
to keep track of parallel data. Zoltan uses a flexi-
ble, data-structure-neutral interface that may also
be used for other graph and hypergraph algo-
rithms, like coloring. 

CSCAPES researchers and colleagues at
Lawrence Livermore National Laboratory (LLNL)
are currently evaluating the scalability and limi-
tations of partitioning tools like ParMETIS and
Zoltan. Preliminary results indicate that these load
balancing tools work well on hundreds and maybe
up to a few thousand processors, depending on the
method being used and the computing platform.
A challenge that CSCAPES researchers will address
in future years is to provide robust and scalable
load balancing tools for massively parallel petas-
cale platforms. There is a critical need for further
research into better models and algorithms for load
balancing. For example, while current graph and
hypergraph models minimize communication
volume, in practice other factors, such as latency
and number of messages, are also important.

Performance Improvement
Unstructured meshes are popular because they dis-
cretize space more flexibly than do structured
meshes. However, one drawback to unstructured
meshes is that computational performance is poor
relative to structured meshes because the mesh
data structure does not directly map to a data array
of the same dimension. Instead, the data associated
with the nodes and the elements of an unstruc-
tured mesh must be linearized in some way. When
a computation visits an element in the mesh, indi-
rect memory references are needed to access the
data associated with each node in the element. The
indirect memory references lead to twice as many
memory loads.  Additionally, since the accesses to
the data array are not sequential, they have poor
spatial locality.

Previous work has shown that reordering the
nodes and elements within a mesh so that neigh-
boring nodes and elements are local within the lin-
earized layout improves the serial performance of
such computations. Reorderings based on space

Figure 3.  A particle-based simulation of organelles in a
rod-shaped Synechococcus cyanobacterium. The inner
clumps of particles are carboxysome organelles where
carbon fixation reactions take place. This is a snapshot of
a metabolic cycle that converts inorganic carbon to
organic sugar. A mesh is used to triangulate the outer
membrane (not shown here). The domain is partitioned
into six regions using a geometric method, shown by green
lines, to balance the number of particles per processor.
This simulation was performed with ChemCell and Zoltan.

Several different
algorithms have been
designed for load
balancing. Roughly, they
can be divided into two
groups: geometric, and
connectivity-based
methods.
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filling curves, breadth-first-search on the graph, and
graph partitionings have been employed earlier to
improve performance. CSCAPES researchers have
created hypergraph models for the problem of
reordering nodes and edges of the mesh to
enhance data locality. One application where
reordering the nodes and elements in a mesh
improves performance is a mesh optimization
application called FeasNewt developed by Dr. Todd
Munson at ANL. FeasNewt improves mesh qual-
ity by repositioning the nodes of a mesh geomet-
rically, so that each simplex in the mesh more
closely matches the ideal simplex of the same
dimension. Figure 4 shows an example mesh
before and after mesh improvement. A good
reordering of the nodes and simplices in the mesh
enables FeasNewt to run twice as fast relative to an
ordering provided by the mesh generator.

We are continuing to investigate reordering
heuristics for graph and hypergraph models for
spatial and temporal locality in unstructured mesh
computations. Our goal is to determine the mesh
and machine characteristics that can guide the
reordering strategy. 

Automatic Differentiation
AD is a technique for transforming subprograms
that compute some mathematical function into
subprograms that compute the derivatives of that
function. The resulting derivatives are used for
uncertainty quantification, optimization algo-
rithms, nonlinear solvers for discretized differen-
tial equations, and solution of inverse problems
using nonlinear least squares. AD techniques com-
bine rules for differentiating the functions intrin-
sic to a given programming language with

strategies for applying the chain rule while respect-
ing the control flow of the original program.

The computation of a function and its deriva-
tives via the chain rule can be represented by a
DAG; vertices of this DAG represent variables or
intermediate expressions, and the edge weights
correspond to partial derivatives. The associativ-
ity of the chain rule of differential calculus leads to
exponentially many possible “modes,” sequences
for combining intermediate operands to compute
partial derivatives. This choice of modes can be
used to reduce the number of operations and stor-
age needed for computing the partial derivatives.
Choosing a mode can be interpreted as selecting
an order in which vertices and edges are “elimi-
nated” (corresponding to partial evaluation of the
associated variables) on the DAG. Finding an opti-
mal mode—one that minimizes the number of
operations—for evaluating a Jacobian matrix is
intractable (NP-complete). In practice, heuristics
are used to identify accumulation strategies with
low operations counts and/or storage require-
ments. CSCAPES researchers are pursuing new
combinatorial heuristics to further reduce the cost
of gradient, Jacobian, and Hessian computations.
Coloring algorithms, discussed later in this article,
will also be used to reduce the computational effort
associated with evaluating Jacobians and Hessians.

The AD tools developed by ANL researchers
over the years with support from DOE’s Office of
Science, and now supported in part by the
CSCAPES Institute, have been applied to a broad
range of applications: modeling breast cancer, cli-
mate, weather, semiconductor devices, power net-
works, and groundwater; atmospheric chemistry;
computational fluid dynamics; the network-
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Figure 4.  A mesh of poor quality (left), and an improved mesh (right), using the optimization tool FeasNewt
developed by Dr. Todd Munson of ANL. Good reorderings of the mesh data structures enable FeasNewt to run twice
as fast relative to an ordering provided by the mesh generator.

CSCAPES researchers
are pursuing new
combinatorial heuristics
to further reduce the
cost of gradient,
Jacobian, and Hessian
computations.
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enabled optimization server (NEOS); water reser-
voir simulation; and chemical kinetics. The wide-
spread use of the tools helps ensure their
robustness and guides future work on theory and
implementation. AD software has played an
enabling role with both the Toolkit for Advanced
Optimization (TAO) project (sidebar “Toolkit for
Advanced Optimization” ) and the MIT General
Circulation Model (sidebar “The MIT General Cir-
culation Model,” p32).  

Graph Coloring 
In many large-scale CSE problems, the Jacobian
and Hessian matrices that need to be computed are
typically sparse, meaning that many of the matrix
entries are zero. This inherent sparsity (and when
applicable, symmetry) available in the derivative
matrices can be exploited to compute the nonzero
entries efficiently. One efficient way of computing
a sparse Jacobian or Hessian using AD is compu-
tation via “compression.” The idea is to reduce the
computational effort in AD by calculating sums of
columns at a time, instead of calculating each col-
umn separately. Columns that are to be computed
together are determined by exploiting structural

properties of the matrix; in particular, the struc-
tural information is used to partition the set of
columns into a small number of groups of
columns. The specific criterion used to partition
columns depends on whether the nonzero entries
of the matrix are to be retrieved from its com-
pressed representation directly or indirectly, via
substitution. Partitioning criteria for direct meth-
ods are stricter than those for substitution meth-
ods. Thus, the latter require fewer groups and
typically result in more efficient overall compu-
tation. 

Structural orthogonality is a basic partitioning
criterion used for direct methods. Two columns
are structurally orthogonal if they do not have a
nonzero at the same row position. A structurally
orthogonal partition of the columns of a Jacobian
or a Hessian can be modeled using a distance-2 col-
oring of an appropriate graph—a bipartite graph
for a Jacobian and an adjacency graph for a Hess-
ian. In a distance-k coloring, vertices in every path
of length k edges receive distinct colors. In the sim-
plest case, distance-1 coloring, every pair of adja-
cent vertices is required to receive different colors.
Figure 7 illustrates how distance-1 and distance-2
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AD is used to compute gradients and Hessians for the
parallel solution of optimization problems in the Toolkit for
Advanced Optimization (TAO) project at ANL.  TAO focuses
on scalable software for optimization problems, including
nonlinear least squares, unconstrained minimization,
bound constrained optimization, and general nonlinear
optimization. 

Many of the algorithms employed by TAO require first-
order, and sometimes second-order, derivatives, and AD has
been used to compute these derivatives. Figure 5 shows a
sequence of solutions and their deviation from the optimal
solution for a bound-constrained minimization problem.

Read more about the TAO project online at:
http://www.mcs.anl.gov/tao
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Figure 5.  A sequence of solutions (top) and their deviation from the optimal solution (bottom) for a bound
constrained minimization problem. The objective is the surface with minimal area that satisfies Dirichlet boundary
conditions and is constrained to lie above a solid plate.

The idea is to reduce the
computational effort in
AD by calculating sums
of columns at a time,
instead of calculating
each column separately.
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colorings can be used to evaluate Jacobians.
Symmetry exploitation in Hessian computation

gives rise to less restrictive coloring variants: star
coloring (direct method) and acyclic coloring (sub-
stitution method). A star coloring is a distance-1
coloring in which every path on four vertices uses
at least three colors. An acyclic coloring is a dis-
tance-1 coloring in which every cycle uses at least
three colors. These variant colorings are illustrated
in figure 8. The names here are due to the structure
of two-colored induced subgraphs: in the first case
the structure is a collection of stars, in the latter it
is a forest. Investigators in CSCAPES (in an effort
that began in an earlier National Science Founda-
tion-funded project) have exploited these struc-
tures to design novel algorithms that have been
shown to be superior to previously known
approaches. Deploying these algorithms to com-
pute sparse Hessians using an AD tool reduced its
execution times by three orders of magnitude over
a computation that ignores sparsity.

For some sparsity structures, computing a Jaco-
bian by partitioning both columns and rows (bi-
directional partitioning) is more effective than a
computation based on either columns or rows
exclusively (unidirectional partitioning). Bidirec-
tional computation furnishes yet other coloring

variants—star and acyclic bicoloring. These require
colors for row-vertices to be disjoint from colors
for column-vertices. In a recent journal article,
CSCAPES members have provided a comprehen-
sive review of graph coloring models and algo-
rithms in derivative computation. Serial coloring
software they have developed has in part been
incorporated into an operator-overloading-based
AD tool. CSCAPES is currently engaged in devel-
oping parallel versions of the coloring software
and its integration with source-transformation-
based automatic differentiation tools. 

Graph coloring is also a useful model in the dis-
covery of concurrency in parallel scientific com-
puting. In particular, when computational
dependency among subtasks is modeled using a
graph, a distance-1 coloring can be used to iden-
tify the subtasks that can be computed simultane-
ously. The number of colors used would then
correspond to the computational steps required
and therefore is desired to be as small as possible.
Since the graph to be colored in such a context is
often already distributed among the processors of
a machine, the coloring needs to be performed in
parallel as well. CSCAPES researchers have recently
developed a framework for parallelizing greedy dis-
tance-1 coloring algorithms on distributed-mem-
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AD is being applied to the MIT General Circulation Model
(MITgcm). Figure 6 displays a map of sensitivities of
zonal volume transport through the Drake Passage to
changes in bottom topography everywhere in a barotropic
ocean model. The model is based on the shallow water
model used by Dr. Martin Losch and Dr. Carl Wunsch,
and extended to a global configuration at 2 x2 degree
horizontal resolution with realistic topography. Enhanced
sensitivities are manifested both locally and remotely, for
example, over the Kerguelen Plateau, over the South
Pacific Ridge, and in the Indonesian Throughflow.
Sensitivities are mediated through the flow field
represented by the model dynamics. 

This sensitivity map was achieved through a single
adjoint model integration. Generating this map using
only the forward mode (one of the modes of computing
partial derivatives, as discussed in the main article)
would have required over 23 cpu-days. A naive adjoint
computation (another mode) required approximately
2.5 hours. An improved adjoint computation,
incorporating combinatorial heuristics based on
problem structure and domain-specific compiler
analysis to reduce storage requirements, lowered the
runtime to 22 minutes. 
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Figure 6.  Sensitivities of zonal volume transport through the Drake Passage with
respect to changes in ocean depth.

Investigators in CSCAPES
have exploited these
structures to design novel
algorithms that have
been shown to be
superior to previously
known approaches.
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ory parallel computers. Message passing interface
(MPI) implementations of the framework have
been incorporated in the Zoltan parallel data man-
agement and load balancing library. Computa-
tional results on modest-sized PC clusters show
good scalability, and future plans include extend-
ing the work to petascale machines.

Matching 
A matching in a graph is a pairing of the two end-
points of some edges. Each vertex can be paired
exclusively (matched) with one other vertex, or
not paired at all. A matching is illustrated by the
green edges in the graph in figure 9 (p35). An
important task in many scientific computing
problems is to compute a matching that is largest

according to some objective function. The sim-
plest objective is to find a matching in a graph with
the maximum number of edges, known as the
maximum cardinality matching problem. A vari-
ant of the matching problem has non-negative
weights associated with the edges; the weight of a
matching is the sum of the weights of the edges in
the matching. In the maximum-edge-weighted
matching problem, we are required to compute
a matching with the maximum weight. A less
studied variant assigns weights to the vertices,
with the weight of a matching defined as the sum
of the weights on the vertices that are endpoints
of the matched edges. In a maximum-vertex-
weighted matching, the goal is to compute a
matching of maximum vertex weight.
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Figure 7.  The evaluation of a sparse Jacobian can be made efficient by computing several structurally orthogonal
columns together. Out of this simple observation arises the need for partitioning the columns of a large Jacobian into
as few groups of structurally orthogonal columns as possible. This partitioning problem can be modeled and
effectively solved using graph coloring, an idea introduced by Tom Coleman and Jorge Moré in the 1980s. In the
illustration, the original Jacobian (a) is partitioned into groups of structurally orthogonal columns in two different
ways (b), the lower being better since it uses fewer groups. The corresponding compressed representations, where
columns in the same group are put together, are shown in (c). Each partition is also represented as a distance-1
coloring in the column intersection graph (d), and as a partial distance-2 coloring in the bipartite graph (e). The
distance-1 coloring formulation is due to Coleman and Moré; CSCAPES members introduced and advocate the use of
the distance-2 coloring formulation, since it is more flexible and computationally more economical.
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Figure 8.  From left to right: a distance-1, an acyclic, a star, and a distance-2 coloring of a graph. In a distance-1
coloring, a vertex receives a color distinct from its neighbors; in a distance-2 coloring, every path on three vertices
uses three colors; in a star coloring neighbors get different colors and every path on four vertices uses at least three
colors; in an acyclic coloring, neighbors get different colors and every cycle uses at least three colors.

Computational results on
modest size PC clusters
show good scalability,
and future plans include
extending the work to
petascale machines.
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All three maximum matching problems can be
solved in polynomial time in the size of the graph,
and hence from a theoretical perspective these
problems are considered to be “well-solved.” How-
ever, the best-known algorithms compute optimal
matchings in superlinear time, and these can be
prohibitively slow for massive graphs with mil-
lions of vertices and edges. Hence, in the past few
years several approximation algorithms that com-
pute matchings, which can be proved to be within
some factor, say half or two-thirds, of the weight
of an optimal matching have been designed. These
approximation algorithms are theoretically and
practically much faster than the algorithms for
computing optimal matchings. Furthermore, they
are more amenable to parallelization, and
CSCAPES members propose to develop parallel
algorithms for matching on petascale machines.

Computing a matching in an edge-weighted
graph is a key computational step in the load bal-
ancing problems that CSCAPES members will
work on. Matching is a fundamental problem
with many other applications in computer sci-
ence and computational science.

One application of matching that we highlight
is in the context of a circuit simulation problem.
Dr. Rob Hoekstra, Dr. David Day, and colleagues
on the Xyce project at SNL have used matchings
in analog models of circuits, in which networks

of devices are coupled via Kirchhoff’s current and
voltage laws. The nonlinear devices generate stiff,
coupled differential algebraic equations, which
lead to linear systems of equations with ill-con-
ditioned coefficient matrices. However, for
steady-state solutions, the coefficient matrix can
be decomposed into a collection of smaller sub-
matrices, obtained from the block triangular
form (btf) of the matrix. The btf of a sparse matrix
is illustrated in figure 9. These researchers found
that the computational work to solve the sparse
system of linear equations is reduced by two
orders of magnitude when the btf is employed. As
an example, on a circuit problem with 682,712
rows and columns, the KLU solver developed by
Dr. Tim Davis of the University of Florida took
1,918 seconds without the btf, but the system was
solved in 9 seconds with the btf. The KLU solver
is part of the Trilinos software package being
developed at SNL by Dr. Mike Heroux and col-
leagues. Also, the condition numbers of the diag-
onal blocks in the btf are much smaller than that
of the original matrix, enabling the circuit model
to be solved when methods that work with the
entire matrix break down numerically. In the
future, the Xyce group needs the capability of
modeling circuits with 100 million rows and
columns; parallel matching algorithms will
become critical for such problems.

As part of our outreach mission, the CSCAPES
Institute will collaborate with other SciDAC
applications and enabling technology groups that use
CSC software tools, as well as create new algorithms
and software for combinatorial problems that arise in
their work. We are collaborating with enabling
technology groups working on solvers, meshing,
performance, and other areas, to provide integrated
software tools for SciDAC applications. We have a few
ongoing conversations with some of the SciDAC
application groups; other groups desirous of working
with us can contact us directly and through the
SciDAC Outreach Center.

CSCAPES also works with partners from Europe and
Asia to fulfill our mission of being an international center
for excellence in CSC research. In parallel sparse matrix
software, we collaborate with colleagues from the
European Center for Research and Advanced Training in
Scientific Computation (CERFACS) in Toulouse, France,
and Tel Aviv University in Israel. Researchers from the
Universities of Bergen (Norway) and Utrecht (The
Netherlands) work with us on load balancing, coloring,
and matching problems. We also interact with leading

groups in AD from the Universities of Dresden and
Aachen in Germany.

CSCAPES researchers led the organization of the
Society for Industrial and Applied Mathematics (SIAM)
Workshop on CSC in 2007 (CSC07), and two earlier
international workshops on CSC in 2004 and 2005, as
part of their outreach. Two of the workshops organized in
the U.S. were supported by the DOE, and a third was
organized at CERFACS, in Toulouse, France.
Participation from scientific and engineering
communities that make use of CSC algorithms and
software to solve problems in CSE has been a
significant hallmark of these past workshops. We will
continue to organize international workshops in this
area, offer tutorials at the annual SciDAC meeting and
at other venues, and work with applications researchers
to ease the adoption of combinatorial software in the
CSE community. The CSCAPES Institute will work
through the SciDAC Outreach Center in these efforts to
make other research communities aware of the SciDAC
program.

Visit the SciDAC Outreach Center online at:
http://outreach.scidac.gov/

C o l l a b o r a t i o n s ,  O u t r e a c h ,  a n d  E d u c a t i o n  

As part of our outreach
mission, the CSCAPES
Institute will collaborate
with other SciDAC
applications and
enabling technology
groups that use CSC
software tools, as well as
create new algorithms
and software for
combinatorial problems
that arise in their work.



Summary
CSCAPES focuses on algorithm and software
development in three specific areas for complex
SciDAC applications: load balancing and paral-
lelization toolkits, automatic differentiation
capabilities, and parallel graph and sparse matrix
computations. As the era of petascale comput-
ing looms, these areas  are becoming increas-
ingly critical for achieving high performance for
many SciDAC applications involving irregular
computations and large datasets. The Institute
is also committed to developing new collabora-
tions and outreach opportunities (sidebar “Col-
laborations, Outreach, and Education” ), as well
as educating the next generation of researchers
who will ultimately develop and apply combi-
natorial techniques to future problems in com-
putational science (sidebar “Training the Next
Generation”). 

Many scientific breakthroughs occur at the
boundaries between fields where ideas and tech-
niques cross-fertilize each other; we believe that
CSC lies at one of these fruitful boundaries. As
SciDAC applications grow in complexity and
size, optimal algorithmic efficiency becomes
paramount, and research in exact and approxi-
mation algorithms for CSC problems offers the
potential for dramatic advances in simulation
capability.  ●

This article is dedicated to the memory of Ken Kennedy.

Contributors: Dr. Alex Pothen (PI), Dr. Assefaw H.
Gebremedhin, and Dr. Florin Dobrian at Old Dominion
University; Dr. Erik G. Boman, Dr. Karen D. Devine, and
Dr. Bruce A. Hendrickson at SNL; Dr. Paul Hovland,
Dr. Boyana Norris, and Dr. Jean Utke at ANL; Dr. Umit V.
Catalyurek at Ohio State University; and Dr. Michelle Mills
Strout at Colorado State University

Further Reading
http://www.cscapes.org
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CSCAPES members will train the next generation of inter-
disciplinary computational scientists in CSC algorithms
and software at pre-doctoral and post-doctoral levels. In
the Fall 2006 and Spring 2007 semesters, CSCAPES has
offered a weekly Access Grid research seminar to
familiarize our students and collaborators with current
research in CSC. Through the Access Grid and
teleconference links, participants from all five CSCAPES
institutions were able to gain a better understanding of

the work of the multiple groups within the institute.
Students working on CSCAPES projects at the
universities will be co-mentored by laboratory scientists,
and will spend one or more summers at the participant
laboratories, to facilitate broad multidisciplinary training.
Currently only a handful of universities in the U.S. offer
training for students in CSC research; with our efforts,
we hope to increase the number of computational
scientists trained in CSC.

Tr a i n i n g  t h e  N e x t  G e n e r a t i o n
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Figure 9.  A sparse matrix (top left) and a permutation
of its columns that yields its block triangular form (top
right). The permutation is obtained using a maximum
matching in the bipartite graph of the matrix (bottom).
Row vertices are on the left and column vertices are on
the right of the graph, and edges corresponding to a
maximum matching are drawn in green. This example
has three diagonal blocks as shown. The block triangular
form reduces the work in solving linear systems of
equations with the matrix, since only its diagonal blocks
need to be factored in sparse Gaussian elimination; it
also ameliorates ill-conditioning in the matrix.

Currently only a handful
of universities in the
U.S. offer training for
students in CSC
research; with our
efforts, we hope to
increase the number of
computational scientists
trained in CSC.
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