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� Introduction

We consider two problems that arise in designing external�memory algorithms
for solving large� sparse systems of linear equations by direct �factorization�
based� methods� Although our main interest is in the disk�core interface �also
known as external�internal or secondary�primary�� conceptually this study ap�
plies to two adjacent layers of any hierarchical storage system�

In a two�layer storage system� the lower layer �the disk� is assumed to have
unlimited capacity� as opposed to the upper layer �the core�� which is assumed
to have a limited capacity� The �rst problem corresponds to the situation when
the tra	c is minimum
 when each input data item is read exactly once� each
output data item is written exactly once and no temporay data item is moved
between primary and external memory� The problem is to minimize the primary
memory size needed to factor a sparse matrix under these conditions� We call
this scenario read�once�write�once�

The second problem is to minimize the data tra	c �between the primary
and external memory� needed to factor a sparse matrix� when the input data
is read once� but the output and the temporaries may be read and written as
many times as needed� We call this the read�many�write�many scenario� The
major goal is to design and implement algorithms that reduce the tra	c but
investigating the primary memory size provides helpful insight� as we shall show�

These two problems are likely to be intractable for an arbitrary sparse ma�
trix� since simpler problems such as pebbling on a directed acyclic graph or
minimizing the arithmetic operations in a sparse factorization are intractable�
However� as in other sparse matrix computations� we can bound these quanti�
ties for problems with useful sparsity
 i�e�� where the underlying computational
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graphs have good separators� Hence we characterize these quantities for several
common situations corresponding to choices of algorithms� orderings� blocking�
and problems� We provide analytical results for model problems and simulation
results for more irregular problems�

This research is motivated by the need to solve large�scale linear systems
whose sizes are larger than the memory available on sequential or parallel com�
puters� A key factor determining the execution time of the computation is the
data tra	c across the common storage hierarchy on current computers� For
more information about the current interest in external memory algorithms we
direct the reader to ��� �
��

Given a sparse linear system Ax � b in which the coe	cient matrix A is
symmetric positive de�nite� the Cholesky factorization decomposes A into a
product A � LLT � where the Cholesky factor L is lower triangular� A permu�
tation matrix is generally included in this equation as well because the columns
and rows of the coe	cient matrix must be swapped in order to preserve sparsity
in the factor� In this paper we consider that A is already processed by a sparsity
preserving algorithm�

We brie�y discuss various sparse matrix factorization concepts such as �lled
graphs� elimination trees� and supernodes� and factorization algorithms such as
left�looking� right�looking� and multifrontal algorithms in the next section�

At the beginning of the computation the entries of A �the input� are stored
on the disk� At the end of the computation the entries of L �the output� must
be stored on the disk as well� However� the computation can be performed only
within the core� therefore data must move between the two storage layers�

We are interested in the relationship between the core size and the amount
of data tra	c between the disk and the core� Clearly� a large enough core would
allow minimum tra	c
 reading the input at the beginning of the computation
and writing the output at the end of the computation� This basically corre�
sponds to an in�core factorization in which the input and the output are stored
on the disk� A smaller core determines an out�of�core factorization� in which
computation and data movement are interleaved� These scenarios are explored
in further detail in Section ��

Earlier work on out�of�core sparse Cholesky factorization has been reported
by Liu� Ashcraft� as well as by Rothberg and Schreiber� Various aspects of the
out�of�core factorization with minimum tra	c were investigated by Liu ��� �� ����
who focused on left�looking and multifrontal algorithms� Given an elimination
tree� he designed algorithms for computing tree traversals that minimize the
core requirements� Ashcraft studied the same problem for the right�looking
algorithm �
�� The experimental work by Rothberg and Schreiber ���� imple�
mented an out�of�core multifrontal factorization for which the core is not large
enough to allow minimum tra	c� An early out�of�core multifrontal implemen�
tation is discussed in ����

In the �rst two sections after this introduction we overview the three factor�
ization algorithms and identify the major computational scenarios determined
by the hierarchical nature of the storage� In the following two sections we present
and discuss our results� We conclude in the last section�






� Background

We begin by brie�y discussing various sparse matrix factorization concepts such
as �lled graphs� elimination trees� and supernodes� Then we will consider three
factorization algorithms
 left�looking� right�looking� and multifrontal� in more
detail�
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Figure �
 The graph representations of a sparse symmetric matrix A� its
Cholesky factor L� and its elimination tree�

Graph models of sparse matrix factorizations are bene�cial in designing e	�
cient sparse algorithms� For the Cholesky factorization� there are two graphs of
interest
 the original graph� G�A�� the adjacency graph of the symmetric matrix
A� and the �lled graph� G�L�LT �� the adjacency graph of the factor L and its
transpose� Both these graphs are undirected since they represent symmetric ma�
trices� A node in these graphs corresponds to a column �or row� of the matrix�
and an edge corresponds to an o��diagonal nonzero in the matrix� Generally
the Cholesky factor L contains �ll nonzeros� i�e�� elements that have zero values
in A but become nonzero in L during the factorization� Edges corresponding to
such nonzeros in the factor are called �ll edges�

In the example shown in Figure �� the solid edges correspond to the edges
in G�A�� such edges also belong to the �lled graph G�L � LT �� under a non�
degeneracy assumption on the numerical values of nonzeros in A� Additionally
the broken edges correspond to �ll edges belonging to G�L�LT �� Without loss
in generality� for convenience� we assume that the graph G�A� is connected�

A data structure that plays a central role in sparse Cholesky factorization
is the elimination tree ����� this tree is also shown in Figure �� The elimination
tree is the transitive reduction of the �lled graph �i�e�� direct each edge from
its lower to its higher numbered endpoint� then remove every edge �i� j� for
which there exists a directed path in the �lled graph that joins nodes i and j��
The parent of each node in the elimination tree is its lowest numbered higher
neighbor in the �lled graph�

The elimination tree captures the minimal dependence relationships between
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the columns in the factorization� An important property of the elimination tree
is that if �i� j� is an edge in the �lled graph where i � j� then node i must be
a descendant of node j in the elimination tree� Hence if k and l are nodes such
that the subtrees rooted at k and l are node�disjoint� no edge in the �lled graph
can join any node in one subtree to any node in the other subtree� Hence these
subtrees can be computed independent of each other �e�g�� in parallel on di�erent
processors� or by accessing di�erent �les in an external memory algorithm��

Consequently� if node j is an ancestor of a node i in the tree� then the nu�
merical values in column i in�uence those in column j� Furthermore� the only
columns that i in�uences are its ancestors in the elimination tree� Hence all
modern implementations of sparse Cholesky factorization compute the elimina�
tion tree and then employ it to schedule the numerical computations�

Another important concept is that of a supernode� Each supernode consists
of columns that correspond to consecutive vertices in the elimination tree that
��� form a path in the tree �they do not have branches except at the �rst and the
last vertex in the path�� and �
� have identical subdiagonal nonzero structures�
In the �lled graph� vertices in a supernode have the same higher numbered
neighbors�

In practice� numerical factorization algorithms are guided by the supernodal
elimination tree� a more e	cient representation� The vertices of a supernodal
elimination tree are the supernodes� Further details on sparse matrix concepts
might be found in ���� ��� and in the papers listed in ����

The Cholesky factorization A � LLT of a symmetric positive de�nite matrix
A may be viewed as a computational procedure that turns each column of A into
a column of L� We will denote column indices by j and k and factor columns
by Lj and Lk�

Two basic types of operations are performed by the algorithms we consider

Factor� which scales a column by a scalar� and Update� which modi�es a
column by the multiple of another column� There are n Factor operations�
one for each column� where n is the order of A and L� These operations must
be performed in a topological ordering of the elimination tree� There is an
Update�Lj � Lk� operation �where column j of L updates column k� for each
subdiagonal nonzero Lk�j of the factor L� The operation Update�Lj � Lk� must
be performed after operation Factor�Lj� and before operation Factor�Lk��
We will denote by Update��� Lk� an update operation to column k� and by Up�
date�Lj � �� an update operation from column j� Each of these sets of operations
could be performed in any order�

The order between the Factor operations is therefore �xed under a topo�
logical ordering of the elimination tree� while there is additional �exibility in
choosing the order between Factor and Update operations� There is a dif�
ferent factorization algorithm for each particular order� with left�looking and
right�looking algorithms at the extremes of the range� Left�looking factoriza�
tion corresponds to a lazy update algorithm in which all the Update��� Lk�
operations �to column k� are performed immediately before the Factor�Lk�
operation� Right�looking factorization corresponds to an eager update algo�
rithm in which all the Update�Lj � �� operations �from column j� are performed
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immediately after the Factor�Lj� operation�
The left�looking and right�looking algorithms are shown in Figure 
 �with

the implicit assumption that L is already initialized as A�� The two algorithms
take advantage of the nonzero structure of L� described by the two sets�

row �k� � fjjj � k� Lk�j �� �g� and col �j� � fkjk � j� Lk�j �� �g�

for k 
� � to n begin

for j in row �k� n fkg
Update�Lj � Lk��

Factor�Lk��
end

for j 
� � to n begin

Factor�Lj��
for k in col �j� n fjg

Update�Lj � Lk��
end

Figure 

 Left�looking and right�looking factorization�

The multifrontal algorithm is yet di�erent from the left� and right�looking
algorithms in that the Update operations are not performed directly between
factor columns� when the pair of columns involved is not adjacent in the elimi�
nation tree� Instead� updates from a descendant column to an ancestor column
in the elimination tree are carried through a chain of temporary columns at
each intermediate column on the elimination tree path� In Figure � we show
a simple multifrontal algorithm� which is guided by the elimination tree� The
children set is the set of children of a node in the elimination tree�

for j 
� � to n begin

for k in col �j� n fjg
Clear�T j

k ��
for i in children �j� begin

Assemble�T i
j � Lj��

for k in col �i� n fi� jg begin

Assemble�T i
k� T

j
k ��

end

end

Factor�Lj��
for k in col �j� n fjg

Update�Lj � T
j
k ��

end

Figure �
 Multifrontal factorization�

The main characteristic of the multifrontal factorization is the use of tem�
porary data� A temporary column T j

k is created for operation Update�Lj � T
j
k �

if j is not the child of k in the elimination tree� and a Clear operation is re�
quired to initialize each temporary column with zero entries� If column j is a
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child of k� the Update�Lj � Lk� operation is performed directly� just as in the
other two algorithms� The e�ect of an Update operation is propagated through
the Assemble operations by a chain of temporary columns until it reaches the
destination�

It is useful to visualize the data access patterns of the three factorization
algorithms� Consider the elimination tree from Figure �� replicated for each
algorithm� and focus on the currently processed node� which is highlighted� If
the factorization is left�looking then a subset of the nodes in the subtree rooted
at the current node are accessed� If the factorization is right�looking� a subset
of the nodes on the path from the current node to the root are accessed� If the
factorization is multifrontal� only the current node and its children are accessed�

left−looking right−looking multifrontal

Figure �
 Data access patterns for sparse left�looking� right�looking and multi�
frontal factorization �the currently processed node is highlighted��

� Out�of�Core Factorization

Several scenarios are possible in the context of a two�layer storage system� de�
pending onM � the size of the core memory� The scenarios are shown in Figure ��
where the horizontal axis corresponds to the core size� The values M�� M� and
M�� which determine the boundaries between the various computational scenar�
ios� depend on the factor L and on the factorization algorithm�

Note that we measure everything in entries� whether an entry corresponds to
a single�� double�� or extended�precision number� For simplicity� we assume that
the core stores only numerical entries� although it actually needs to store other
data as well �such as the integer storage associated with the nonzero structure
of the factor� the elimination tree� and other data structures��

For � � M � M� the core is too small and the factorization cannot be
performed� If the unit of data movement is the column� then M� is approxima�
tively equal to 
jcol �jm�j� where jm is the column with the largest number of
nonzero entries� If the unit of data movement is the entry� then M� � �� since
only three elements need to be stored in memory to compute a single operation
in the factorization in this case�
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Figure �
 Factorization scenarios

For M � M�� the factorization can be performed in�core� The core is
large enough to allow minimum tra	c �reading the input� writing the output�
without interleaving computation and data movement� For left�looking and
right�looking factorizationM� � jLj� �We denote by jLj the number of nonzeros
in L�� For multifrontal factorization M� � jLj � jT j� where jT j represents the
maximum number of temporary entries needed at any step of the factorization�
The minimum tra	c in any factorization is jAj� jLj� if L is initialized with the
values in A� and only the data structure for L is accessed� then it is 
jLj�

The interesting case is M� � M � M�� when computation and data move�
ment need to be interleaved� for an out�of�core factorization� Two major sce�
narios can be identi�ed within this range� The �rst scenario is read�once�write�
once� denoted as R��W�� and corresponds to M� � M �M�� In this case the
core is still large enough to allow minimum tra	c if data movement is interleaved
with computation� The second scenario is read�many�write�many� denoted as
RM�WM� and corresponds to M� � M � M�� In this case the core too small
to allow minimum tra	c�

In the remainder of this paper� we characterize the value ofM�� the minimum
core memory size that permits R��W� factorization� theoretically and through
simulations for model and representative problems from applications modeled
by discretized partial di�erential equations and linear programs� We will show
that M� is much smaller than jLj for many problems� We also characterize the
tra	c as a function of the memory available in RM�WM factorization through
analysis and simulations�

� Minimum Tra�c

Out�of�core factorization with the minimum tra	c is possible as long as the
core size is within the R��W� range� Figure � depicts a left�looking R��W�
algorithm� as an example of this class of algorithms� Note the additional Read
andWrite functions� which perform the data movement� as well as the Allo�
cate function� which performs the core allocation� There is also a Reorganize
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function� called when there is not enough core left� The Reorganize function
looks for entries that can be dropped from the columns that are already within
the core �these correspond to entries in rows above the diagonal element of the
column being computed� and then shifts the remaining entries� If there is still
not enough core after calling the Reorganize function then the factorization
aborts by calling the Error function�

For each problem there is a minimum core size M� that allows minimal
tra	c� The value M� depends on the factorization algorithm� We call it the
left�looking� right�looking� or multifrontal core� We determined the complexity
of M�� which we refer to as the core complexity� for each one of the three
factorization algorithms and for several model problems� We also implemented
algorithms that compute the exact minimum core size for the three factorization
algorithms for arbitrary problems�

We show the theoretical results �rst� We considered three factors in the
analysis
 branching and balance in the elimination tree� and connectivity in the
�lled graph�

for k 
� � to n begin

if not enough core for Lk
Reorganize���

if not enough core for Lk
Error���

Allocate�Lk��
Read�Lk��
for j in row �k� n fkg

Update�Lj � Lk��
Factor�Lk��
Write�Lk��

end

Figure �
 R��W� left�looking factorization�

We begin with model problems that range over extremes of branching and
connectivity� discussing only balanced trees at �rst� For branching� the worst
case corresponds to a path� while the best case corresponds to a star� Between
these two extremes there are p�ary trees� where p is a whole number larger than
one� For connectivity� each descendant�ancestor pair in the elimination tree is
connected in the �lled graph in the worst case� while in the best case the �lled
graph is the same as the elimination tree�

We studied paths� p�ary trees and stars� with worst and best connectivity�
then trees that correspond to 
�d and ��d grids ordered by nested dissection�
These �ve types of trees are shown in Figure �� Note that the 
�d and ��d
elimination trees have both path and binary sections� and that the path sections
are fully connected in the �lled graph�

Table � shows the core complexity for the �ve types of trees� The complexity
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of the factor is also shown� The results are obtained by solving recurrence equa�
tions and computing appropriate sums that are determined by the elimination
tree and the connectivity�

branch� connect� factor left�looking right�looking multifrontal
core core core

path best ��n� ���� ���� ����
worst ��n�� ��n�� ��n�� ��n��

p�ary best ��n� ���� ���� ��logn�
worst ��n logn� ��n� ���logn��� ���logn���

star ��n� ��n� ���� ��n�

�d ��n logn� ��n� ��n� ��n�

��d ��n���� ��n���� ��n���� ��n����

Table �
 The core complexity for several balanced elimination trees�

As an example� consider right�looking factorization on a binary elimination
tree �the result immediately generalizes to p�ary trees�� For best connectivity
the core must store at least three entries� For worst connectivity we need to
sum all the entries along a leaf�to�root path� with h � log�n��� being the tree
height


M� �

hX

i��

i �
h�h� ��



�

log�n� ���log�n� �� � ��



� ���logn�

�
��

We omit the details of how the other results in Table � are obtained due to
space considerations� We make three observations about these results�

First� branching favors right�looking factorization over left�looking factoriza�
tion� In Table �� there is only one case in which the left�looking core is smaller
than the right�looking core� although the asymptotic complexity is the same�
This happens when the elimination tree is a path� and the �lled graph is fully
connected� corresponding to dense factorization� The left�looking core is smaller
than the right�looking core by a factor of two� There is also no asymptotic di�er�
ence between the two algorithms for the 
�d and ��d model problems� although
the right�looking core is smaller than the left�looking core by a constant factor
this time�

Second� branching helps reduce the size of the core with respect to the factor�
In Table �� the only case in which the core is as large as the factor itself is again
when the elimination tree is a path and the �lled graph is fully connected� As
we branch� the core can become asymptotically smaller than the factor� even
if the �lled graph is fully connected� Note that such an asymptotic di�erence
exists for 
�d model problems but not for ��d model problems� This is related
to the longer path sections between the branches in the latter elimination tree�
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binary

2−d 3−d

Figure �
 Balanced elimination trees�
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Third� multifrontal factorization tends to be favored by branching� although
not as much as the right�looking factorization� Interestingly� the multifrontal
algorithm can perform well� as in several cases in Table �� but it can also be a
poor choice� In order to show why we need to consider two more cases�

The �rst case is a generalized star� Assume that q nodes form a clique in
the �lled graph and that each one of the remaining n� q nodes is a leaf in the
elimination tree� and is connected to every node in the clique� Then� we have

jLj �
q�q � ��



� �n� q��q � ��

jT j � �n� q� � q�q � ��



�

Choosing q �
p
n� for example� we �nd that jLj � ��n����� and jT j � ��n���

therefore the amount of temporary data required by the multifrontal algorithm
is asymptotically larger than the factor itself�

The second case is determined by unbalancing the elimination tree� Remem�
ber that we have only discussed balanced trees so far �the best case in terms
of balance�� Consider now binary trees with worst case balance� as shown in
Figure ��

1 2

3

4

5

6

7

best

1 2 3 4

5

6

7

worst

Figure �
 Unbalanced binary trees�

For multifrontal factorization� the tree on the left corresponds to the best
case because we need to store temporary data for at most two nodes� while
the tree on the right corresponds to the worst case because we need to store
temporary data for n nodes�

Table 
 shows the core complexity for the two unbalanced trees� Again� the
complexity of the factor is also provided� In the best case the complexity of the
multifrontal core is the same as the complexity of the left�looking and right�
looking core� However� in the worst case the multifrontal core is asymptotically
larger� In addition� the core can be asymptotically larger than the factor itself�
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We note that the core complexity of the multifrontal algorithm with an unbal�
anced elimination tree can be reduced by renumbering the children of each node
in the elimination tree using an algorithm designed by Liu ����

balance connect� factor left�right�looking multifrontal
core core

best best ��n� ���� ����
worst ��n�� ��n�� ��n��

worst best ��n� ���� ��n�
worst ��n�� ��n�� ��n��

Table 

 The core complexity for some unbalanced elimination trees�

We turn now to the experimental results� As we mentioned� we have imple�
mented simulation algorithms that compute the minimum size of the core for
less regular problems�

We determined the minimum core size for various problems� but have se�
lected three for this discussion
 a ��
�� ��
� 
�d grid� a ��� ��� �� ��d grid�
and a linear programming problem that comes from multicommodity �ow in a
network called ken��� The last problem is not large but it represents a good
example in which the multifrontal factorization is a poor choice�

We show the results in Figure �� Our main choice for ordering is the node
nested dissection algorithm from Metis ���� but we have also included results
obtained with the edge nested dissection algorithm� also from Metis� as well as
results obtained with the multiple minimum degree �MMD� algorithm ����

For each one of the three problems we plot the left�looking� right�looking and
multifrontal core� and the size of the factor jLj� in order to visualize the gap
between M� and M�� We also plot jLj for each problem� The y�axis is plotted
on a logarithmic scale�

Focusing on the two grids� note the di�erence between M� and jLj� which
indicates that the factorization can be performed with minimal tra	c using a
core that is signi�cantly smaller than the factor �a factor of ten for the 
�d grid�
and a factor of four for the ��d grid�� Note also that the left�looking core tends
to be larger than the right�looking and the multifrontal core�

The two grid examples are representative of a large number of problems
from discretizations of partial di�erential equations� We determined the mini�
mum core size for problems from various application areas like structural me�
chanics� electromagnetics� acoustics� We witnessed the same trend for these
problems
 the minimum core size is signi�cantly smaller than the factor� with
the right�looking and multifrontal algorithms performing better than the left�
looking algorithm�

These trends are not general though� as our analysis shows� For the linear
program ken��� the behavior is completely di�erent� A �rst observation is that
the multifrontal core is always larger than the factor� and hence the multifrontal
factorization is a bad choice for this particular problem� A second observation is
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Figure �
 The minimum core size for a 
�d grid� a ��d grid� and ken��� ordered
by node nested dissection� edge nested dissection� and multiple minimum degree�
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node nested dissection edge nested dissection

multiple minimum degree

Figure ��
 The elimination trees for ken���
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that for node nested dissection and multiple minimum degree the right�looking
core is extremely small� which makes the right�looking algorithm the best choice
in this case� This is not true for edge nested dissection� which is a bad ordering
for ken��� due to the large size of the factor�

The results we obtained for ken�� can be correlated quite well with our
theoretical study� Looking at the elimination trees for this problem� shown in
Figure ��� the trees that correspond to node nested dissection and multiple
minimum degree are very similar to the generalized star� We already know
that multifrontal factorization should be avoided in this case because it requires
more storage than jLj� We also know that right�looking factorization is a much
better choice than left�looking factorization in this situation� The tree that cor�
responds to edge nested dissection is also familiar to us� it is an unbalanced tree
and it is unbalanced in the wrong direction from the multifrontal factorization
perspective� Again� the multifrontal factorization should be avoided since it
requires more storage than jLj�

� Larger Tra�c

As soon as the size of the core drops below M�� minimum tra	c is no longer
possible� since the same entry �factor or temporary� may be read or written
more than once� We are interested in reducing the tra	c for a given core size�
and the key to doing this is data reuse�

In linear algebra terms� the factorization is a level � operation and thus has
a signi�cant potential for data reuse� Table � lists the number of arithmetic
operations and the number of data accesses for the sparsest �a diagonal matrix�
and the densest factorizations �a dense matrix�� as well as for the factorization
of the 
�d and ��d problems ordered by nested dissection� The ratio between
the number of arithmetic operations and the number of data accesses� which
indicates the potential for data reuse� is also listed in Table �� showing that the
denser the factorization� the larger the potential for data reuse�

problem work data ratio
sparsest ��n� ��n� ����

�d ��n���� ��n logn� ��n���� logn�

��d ��n�� ��n���� ��n����
densest ��n�� ��n�� ��n�

Table �
 The complexity of the arithmetic work and data accesses for factoriza�
tion� for various problems�

The technique of choice for data reuse is blocking� For sparse matrices� the
blocks must be de�ned within supernodes� where data can be reused�

Two major blocking alternatives are ��d �along columns� and 
�d �along
both columns and rows�� Figure �� depicts a RM�WM left�looking factoriza�
tion algorithm that uses ��d blocks� for example� The loops iterate over block

��



columns this time� Column indices such as j and k are replaced by the block
column indices J and K and the block nonzero structure of L is described by
analogous Row and Col sets� The Discard function is used to remove data
from the core�

for K 
� � to N begin

Read�LK��
for J in Row �K� n fKg begin

Read�LJ ��
Update�LJ � LK��
Discard�LJ��

end

Factor�LK��
Write�LK��
Discard�LK��

end

Figure ��
 RM�WM left�looking factorization�

We determined the complexity of the tra	c for the three factorization algo�
rithms� forM� � M �M�� We chooseM� to be 
jcol �j�j� where j is the column
with the largest number of nonzero entries� because this value is valid for both
�� and 
�d blocks� This time we focused on the 
�d and ��d problems ordered
through nested dissection� since these are the only sparse problems which have a
signi�cant potential for data reuse in Table �� We also implemented simulation
algorithms that compute the exact amount of tra	c for arbitrary problems�

problem without with 
�d with ��d
blocking blocking blocking


�d ��n���� ��n����
p
M� ��n��M�

��d ��n�� ��n��
p
M� ��n����M�

Table �
 Tra	c complexity�

We begin again with the theoretical results� The analysis is highly idealized�
as we consider that only the data accessed at any step is brought into the
core� This is possible only with �ne granularity data movement� Because of the
algorithmic and software overhead of extracting only the data that needs to be
accessed� data must move at coarse granularity in practice� which causes the
tra	c to be larger�

In order to perform the analysis it is useful to focus on multifrontal factoriza�
tion �rst� A dense frontal matrix corresponds to each supernode and the tra	c
that corresponds to the factorization of a dense matrix can be easily computed�
Consider a dense matrix of order n that is su	ciently large with respect to
M � Then the tra	c is ��n�� without blocking� ��n��M� for ��d blocks� and
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��n��
p
M� for 
�d blocks� Asymptotically� the 
�d block expression is optimal

for standard factorization algorithms� This is similar to the standard multipli�
cation of two dense matrices of order n� ��n��

p
M� tra	c being optimal in this

case as well� as shown by Hong and Kung ���� and more recently by Toledo �����
The dense factorization tra	c is also discussed by Toledo �����

The structure of the 
�d and ��d problems ordered through nested dissection
allows us to describe through a recurrence equation the tra	c for the multi�
frontal factorization� At each level of recursion we have the tra	c that corre�
sponds to the factorization of a frontal matrix plus the tra	c that corresponds
to the level below�

The recursive equations that describe the tra	c for 
�d problems� without
blocking� with ��d blocks� and with 
�d blocks� are� respectively�

T �k� � �T �k�
� � ��k���

T �k� � �T �k�
� � ��k��
p
M��

T �k� � �T �k�
� � ��k��M��

where k is the grid size �k� � n��
The solutions of the recurrences are presented in Table �� The results extend

to left�looking and right�looking factorization as well� It is easy to see that�
asymptotically� 
�d blocks determine less tra	c than ��d blocks�

Turning to the experimental results� we now discuss the actual tra	c for
the three factorization algorithms with ��d and 
�d blocks� We selected the
same three problems from the previous section as examples and we show results
obtained with the node nested dissection ordering from Metis� The results are
presented in Figure �
� For each problem� the ��d tra	c is shown on the left and
the 
�d tra	c is shown on the right� We choose the core size M to range from
M� to 
���M�� We normalize the tra	c with respect to 
jLj� which represents
the minimum tra	c� Note that the tra	c and memory sizes are plotted on
logarithmic scales�

Focusing on the two grids �rst� note the di�erence between the left�looking
and multifrontal tra	c on the one hand and the right�looking tra	c on the
other hand� for ��d blocks� also note the di�erence between the multifrontal
tra	c on the one hand and the left�looking and right�looking tra	c on the
other hand� for 
�d blocks� These di�erences are caused by the coarse granular�
ity of data movement� which causes unnecessary tra	c� This does not happen
for left�looking factorization with ��d blocks and it is not signi�cant for multi�
frontal factorization no matter what the blocking is� This is why multifrontal
factorization performs well with both type of blocks� while left�looking factor�
ization performs well only with ��d blocks� In these cases we see a low amount
of tra	c that decreases with the increase of M � In the other three cases the
tra	c is signi�cantly larger and it increases with increasing core size M � This
is counter�intuitive� but can be explained as follows� When larger memory is
available� larger block sizes can be chosen� and in turn� the larger blocks can
cause higher tra	c by moving a larger amount of data that is not accessed�
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Figure �

 The tra	c for a 
�d grid� a ��d grid� and ken��� all ordered by node
nested dissection�
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For ken��� since the right�looking algorithm has a small value ofM�� as soon
asM becomes larger than M�� tra	c drops to the minimal value of 
jLj� There
is a signi�cant di�erence between left�looking and multifrontal algorithms when
��d blocks are used� the multifrontal tra	c being larger� This is caused by the
large amount of temporary data� We already know from the previous section
that multifrontal factorization is not a good choice for this problem� On the
other hand� due to the unnecessary data movement� it is the left�looking tra	c
that is larger when 
�d blocks are used�

� Conclusions

A two�layer �disk�core� storage system determines several possible computa�
tional scenarios for the sparse Cholesky factorization� We have identi�ed two
major out�of�core scenarios
 the read�once�write�once �R��W�� scenario in
which we characterize the minimum core size that permits the minimum traf�
�c� and the read�many�write�many �RM�WM� scenario� requiring a greater
amount of tra	c for smaller core sizes� In the latter case� we have characterized
the tra	c as a function of the core size� For both scenarios� we provide ana�
lytical results for model problems� and experimental results from simulation for
irregular problems from computational partial di�erential equations and linear
programming�

For the RM�WM scenario� the most common case in external memory factor�
izations for large�scale problems from discretized partial di�erential equations�
our results show that multifrontal factorization with either �� or 
�d blocking
or left�looking factorization with ��d blocking are the best choices for an out�
of�core direct solver� 
�d blocking has the advantage of asymptotically optimal
tra	c� however� the asymptotic behavior of 
�dimensional blocking manifests it�
self only for very large problems� and pivoting for numerical stability is easier to
implement with ��d blocking� The multifrontal factorization is more appealing
in terms of an implementation because of its elegant computational pattern�

Yet� the multifrontal algorithm should not be used when the size of the
temporary data that it creates is larger than the size of the factor� This situation
occurs for some problems from linear programming and other application areas
where there is no underlying geometrical mesh governing the computation� or
for highly irregular geometries� In these problems� there is a small set of nodes
whose removal disconnects the graph into several connected components� Then
the core size required by the right�looking algorithm is su	ciently small that it
can perform the computation in the R��W� scenario for relatively small core
sizes� thus reducing the tra	c to the minimum possible�

We have implemented fast simulation algorithms that compute the tra	c
in the RM�WM scenario given a factorization algorithm� an ordering� and a
core size� simulation algorithms have also been implemented for computing the
minimum core size in the R��W� scenario� Given a problem� the simulation al�
gorithms can be used to decide which one of the hordering� algorithm� blockingi
triples would give the best results�
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We have written an object�oriented direct solver software library called
Oblio ��� that solves symmetric positive de�nite and inde�nite systems of linear
equations� we support both real� and complex�valued arithmetic� We plan to ex�
tend Oblio with out�of�core functionality� basing our algorithmic choices on the
results that we have obtained in this paper� Our preliminary experiments with
implicit�blocked and explicit�blocked data movement �the former with operat�
ing system support� the latter by managing �les explicitly with our software�
on an SGI Origin show that signi�cant performance gains are obtained with
explicit data movement� Consequently� we expect that a substantial e�ort will
be needed to implement the external memory solver�
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