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Abstract
We introduce the poly-streaming model, a generalization of streaming models of computation in
which k processors process k data streams containing a total of N items. The algorithm is allowed
O (f(k) · M1) space, where M1 is either o (N) or the space bound for a sequential streaming algorithm.
Processors may communicate as needed. Algorithms are assessed by the number of passes, per-item
processing time, total runtime, space usage, communication cost, and solution quality.

We design a single-pass algorithm in this model for approximating the maximum weight matching
(MWM) problem. Given k edge streams and a parameter ε > 0, the algorithm computes a (2 + ε)-
approximate MWM. We analyze its performance in a shared-memory parallel setting: for any
constant ε > 0, it runs in time Õ (Lmax + n), where n is the number of vertices and Lmax is the
maximum stream length. It supports O (1) per-edge processing time using Õ (k · n) space. We
further generalize the design to hierarchical architectures, in which k processors are partitioned into
r groups, each with its own shared local memory. The total intergroup communication is Õ (r · n)
bits, while all other performance guarantees are preserved.

We evaluate the algorithm on a shared-memory system using graphs with trillions of edges.
It achieves substantial speedups as k increases and produces matchings with weights significantly
exceeding the theoretical guarantee. On our largest test graph, it reduces runtime by nearly two
orders of magnitude and memory usage by five orders of magnitude compared to an offline algorithm.
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1 Introduction

Data-intensive computations arise in data science, machine learning, and science and engin-
eering disciplines. These datasets are often massive, generated dynamically, and, when stored,
kept in distributed formats on disks, making them amenable to processing as multiple data
streams. The modular feature of these datasets can be exploited by streaming algorithms
designed for tightly-coupled shared-memory and distributed-memory multiprocessors to
efficiently solve large problem instances that offline algorithms cannot handle due to their
high memory requirements. However, the design of parallel algorithms that process multiple
data streams concurrently has not yet received much attention.
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15:2 Weighted Matching in a Poly-Streaming Model

O (f(k) ·M1)

P1 P2 . . . Pk

...
... . . .

...
stream 1 stream 2 stream k

Figure 1 A schematic diagram of the poly-streaming model for shared-memory parallel computers.
Processors {Pl}l∈[k] have access to O (f(k) · M1) memory collectively, depicted with the rectangle
connected to the processors.

Current multicore shared-memory processors consist of up to a few hundred cores,
organized hierarchically to share caches and memory controllers. These cores compute in
parallel to achieve speedups over serial execution. With multiple memory controllers, I/O
operations can also proceed in parallel, and this feature can be used to process multiple
data streams concurrently. These I/O capabilities and the limitations of offline algorithms
motivate a model of computation, illustrated in Figure 1 and discussed next.

The streaming model of computation allows o (N) space for a data stream of size N [2, 13].
For graphs, the semi-streaming model permits O (n · polylog n) space for a graph with n

vertices and an edge stream of arbitrary length [8]. Building on these space-constrained
models, we introduce the poly-streaming model. The key aspects of our model are as follows.

We consider k data streams that collectively contain N items. An algorithm has access
to k (abstract) processors, and is allowed O (f(k) ·M1) total space, where M1 is either o (N)
or the space permitted to a single-stream algorithm. In each pass, each stream is assigned to
one of the processors, and each processor independently reads one item at a time from its
stream and processes it. Processors may communicate as needed, either via shared or remote
memory access. Algorithms are assessed on several metrics: space complexity, number of
passes, per-item processing time, total runtime, communication cost, and solution quality.

In the poly-streaming model, we address the problem of approximating a maximum weight
matching (MWM) in an edge-weighted graph, where the goal is to find a set of vertex-disjoint
edges with maximum total weight. We design an algorithm for approximating an MWM
when the graph is presented as multiple edge streams. Our design builds on the algorithm
of [20] and adds support for handling multiple streams concurrently. We also generalize the
design to NUMA (non-uniform memory access) multiprocessor architectures.

We summarize our contributions to the MWM problem as follows. Let Lmax and Lmin

denote the maximum and minimum lengths of the input streams, respectively, and let n

denote the number of vertices in a graph G. For any realization of the CREW PRAM model
(such as in Figure 1), we have the following result.

▶ Theorem 1. For any constant ε > 0, there exists a single-pass poly-streaming algorithm for
the maximum weight matching problem that achieves a (2 + ε)-approximation. It admits a
CREW PRAM implementation with Õ (Lmax + n) runtime.1 If Lmin = Ω (n), the algorithm
achieves O (log n) amortized per-edge processing time using Õ (k + n) space. For arbitrarily

1 Õ (·) hides polylogarithmic factors.
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balanced streams, it uses either Õ (k + n) space and Õ (n) per-edge processing time, or
Õ (k · n) space and O (1) per-edge processing time.

In NUMA architectures, memory access costs depend on a processor’s proximity to
the target memory. We generalize the algorithm in Theorem 1 to account for these cost
differences. In particular, we show that when k processors are partitioned into r groups,
each with its own shared local memory, the total number of global memory accesses across
all groups is Õ (r · n). This generalization preserves all other performance guarantees from
Theorem 1, except that the Õ (k + n) space bound becomes Õ (k + r · n). These results are
formalized in Theorem 18 in Section 4. This design gives a memory-efficient algorithm for
the NUMA shared memory multiprocessors, on which we report empirical results.

We have evaluated our algorithm on a NUMA machine using graphs with billions to
trillions of edges. For most of these graphs, our algorithm uses space that is orders of
magnitude smaller than that required by offline algorithms. For example, storing the largest
graph in our evaluation would require more than 91,600 GB (≈ 90 TB), whereas our algorithm
used less than 1 GB. Offline matching algorithms typically require even more memory to
accommodate their auxiliary data structures.

We employ approximate dual variables that correspond to a linear programming relaxation
of MWM to obtain a posteriori upper bounds on the weights of optimal matchings. These
bounds allow us to compare the weight of a matching produced by our algorithm with
the optimal weight. Thus, we show that our algorithm produces matchings whose weights
significantly exceed the approximation guarantee.

For k = 128, our algorithm achieves runtime speedups of 16–83 across all graphs in our
evaluation, on a NUMA machine with only 8 memory controllers. This is significant scaling
for a poly-streaming algorithm, given that 8 memory controllers are not sufficient to serve
the concurrent and random access requests of 128 processors without delays. Nevertheless,
these speedups demonstrate the effectiveness of our design, which accounts for a processor’s
proximity to the target memory. A metric less influenced by memory latency suggests
that the algorithm would achieve even better speedups on architectures with more efficient
memory access.

Note that Theorem 1 and Theorem 18 both guarantee Õ (Lmax + n) runtime. For
Lmax = Ω (n), this is tight up to polylogarithmic factors. However, by using Õ (k · n) space
and O (1) per-edge processing time, we can even achieve Õ (Lmax + n/k) runtime, which
becomes polylogarithmic for large values of k (see the arXiv version).

Organization. Section 2 introduces necessary background. Section 3 presents the design
and analyses of our algorithm in Theorem 1. In Section 4, we extend the design to NUMA
architectures. Section 5 summarizes the evaluation results. We conclude in Section 6 with a
discussion of future research directions.

2 Preliminaries

For a graph G = (V, E), let n := |V | and m := |E| denote the number of vertices and edges,
respectively. We denote an edge e := {u, v} by the unordered pair of its endpoints. For
a weighted graph, let we denote the weight of edge e, and for any subset A ⊆ E, define
w(A) :=

∑
e∈A we. For ℓ ∈ [k], let Eℓ be the set of edges received in the ℓth stream. Define

Lmax := maxℓ∈[k] |Eℓ| and Lmin := minℓ∈[k] |Eℓ|.
A matchingM in a graph is a set of edges that do not share endpoints. A maximum weight

matching (MWM) M∗ is a matching with maximum total weight; that is, w (M∗) ≥ w (M)
for all matchings M⊆ E.

ESA 2025
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Primal LP

maximize
∑
e∈E

wexe

subject to
∑

e∈δ(u)

xe ≤ 1, for all u ∈ V

xe ≥ 0, for all e ∈ E

Dual LP

minimize
∑
u∈V

yu

subject to
∑
u∈e

yu ≥ we, for all e ∈ E

yu ≥ 0, for all u ∈ V

Figure 2 The linear programming (LP) relaxations of the MWM problem and its dual.

A ρ-approximation algorithm computes a solution whose value is within a factor ρ of
optimal. The factor ρ is called the (worst-case) approximation ratio. We assume ρ ≥ 1 for
both maximization and minimization problems. Thus, for maximization, a ρ-approximation
guarantees a solution whose value is at least 1

ρ times the optimal.
We use the linear programming (LP) relaxation of the MWM problem, and its dual,

shown in Figure 2. In the primal LP, each variable xe is 1 if edge e is in the matching and 0
otherwise. Each yu is a dual variable, and δ(u) denotes the set of edges incident on a vertex
u. Let {xe}e∈E and {yu}u∈V be feasible solutions to the primal and dual LPs, respectively.
By weak LP duality, we have

∑
e∈E wexe ≤

∑
u∈V yu. If {xe}e∈E is an optimal solution to

the primal LP, then w (M∗) ≤
∑

e∈E wexe ≤
∑

u∈V yu. The first inequality holds because
the primal LP is a relaxation of the MWM problem.

3 Algorithms for Uniform Memory Access Cost

In this section, we present the design and analyses of our algorithm in Theorem 1 that
assumes a uniform memory access cost.

3.1 The Algorithm

Several semi-streaming algorithms have been designed for the MWM problem [3, 4, 6, 8, 10,
11, 18, 20, 23] (see the arXiv version for brief descriptions of these algorithms). In this paper,
we focus exclusively on the single-pass setting in the poly-streaming model. Our starting point
is the algorithm of Paz and Schwartzman [20], which computes a (2 + ε)-approximation of
MWM. This is currently the best known guarantee in the single-pass setting under arbitrary
or adversarial ordering of edges.2 We extend a primal-dual analysis by Ghaffari and Wajc [11]
to analyze our algorithm.

The algorithm of Paz and Schwartzman [20] proceeds as follows. Initialize an empty stack
S and set αu = 0 for each vertex u ∈ V . For each edge e = {u, v} in the edge stream, skip e

if we < (1 + ε) (αu + αv). Otherwise, compute ge = we − (αu + αv), push e onto the stack
S, and increase both αu and αv by ge. After processing all edges, compute a matching M
greedily by popping edges from S.

Note that for each edge pushed onto the stack, the increment ge = we−(αu + αv) satisfies
ge ≥ ε (αu + αv). This ensures that both αu and αv increase by a factor of 1 + ε. Hence,
the number of edges in the stack incident to any vertex is at most log1+ε(W ) = O

(
log W

ε

)
,

2 No single-pass algorithm can achieve an approximation ratio better than 1 + ln 2 ≈ 1.7; see [15].
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PS-MWM(V, ℓ, ε):

/* each processor executes this algorithm concurrently */
1. In parallel initialize locku, and set αu and marku to 0 for all u ∈ V

/* processor ℓ initializes or sets Θ (n/k) locks/variables */
2. Sℓ ← ∅ /* initialize an empty stack */
3. for each edge e = {u, v} in ℓth stream do

a. Process-Edge(e, Sℓ, ε)
4. wait for all processors to complete execution of Step 3 /* a barrier */
5. Mℓ ← Process-Stack(Sℓ)
6. return Mℓ

Figure 3 A poly-streaming matching algorithm.

where W is the (normalized) maximum edge weight. Therefore, the total number of edges in
the stack is O

(
n log W

ε

)
= O

(
n log n

ε

)
.3

To design a poly-streaming algorithm, we begin with a simple version and then refine it.
All k processors share a global stack and a set of variables {αu}u∈V , and each processor runs
the above sequential streaming algorithm on its respective stream. To complete and adapt
this setup for efficient execution across multiple streams, we must address two interrelated
issues: (1) concurrent edge arrivals across streams may lead to contention for the shared stack
or variables, and (2) concurrent updates to the shared variables may lead to inconsistencies
in their observed values.

A natural approach to addressing these issues is to enforce a fair sequential strategy,
where processors access shared resources in a round-robin order. While this ensures progress,
it incurs O (k) per-edge processing time, which scales poorly with increasing k. Instead,
we adopt fine-grained contention resolution that avoids global coordination by allowing
processors to operate asynchronously. However, under the initial setup, this leads to Õ (n/ε)
per-edge processing time: a processor may be blocked from accessing shared resources until
the stack has accumulated its Õ (n/ε) potential edges. We address these limitations with
the following design choices.

For the first issue, we observe that a global ordering of edges, as used in the single-stack
solution, is not necessary; local orderings within multiple stacks suffice. In particular, we
can identify a subset of edges (later referred to as tight edges) for which maintaining local
orderings is sufficient to compute a (2 + ε)-approximate MWM. Hence, we can localize
computation using k stacks, assigning one stack to each processor exclusively during the
streaming phase. This design eliminates the Õ (n/ε) contention associated with a shared
stack.

However, contention still arises when updating the variables {αu}u∈V . It is unclear how to
resolve this contention without using additional space. Hence, we consider two strategies for
processing edge streams that illustrate the trade-off between space and per-edge processing

3 Throughout the paper, we assume W = O (poly(n)). For arbitrary weights on edges, we can skip any
edge whose weight is less than εWmax

2(1+ε)n2 , where Wmax denotes the maximum edge weight observed so
far in the stream. This ensures that the (normalized) maximum weight the algorithm sees is O

(
n2/ε

)
,

while maintaining a 2 (1 + O (ε)) approximation ratio (see [11] for details).

ESA 2025
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Process-Edge(e = {u, v}, Sℓ, ε):

/* Assumes access to global variables {αu}u∈V and locks {locku}u∈V */
1. if we ≤ (1 + ε)(αu + αv) then return
2. repeatedly try to acquire locku and lockv in lexicographic order of u and

v as long as we > (1 + ε)(αu + αv)
3. if we > (1 + ε)(αu + αv) then

a. ge ← we − (αu + αv)
b. increment αu and αv by ge

c. add e to the top of Sℓ along with ge

4. release locku and lockv, and return

Figure 4 A subroutine used in algorithms PS-MWM and PS-MWM-LD.

time. In the first, which we call the non-deferrable strategy, the decision to include an edge
in a stack is made immediately during streaming. In the second, which we call the deferrable
strategy, this decision may be deferred to post-processing. The latter strategy requires more
space but achieves O (1) per-edge processing time.

To address the second issue, which concerns the potential for inconsistencies due to
concurrent updates to the variables {αu}u∈V , we observe that the variables are monotonically
increasing and collectively require only Õ (n/ε) updates. Thus, for most edges that are not
eligible for the stacks, decisions can be made by simply reading the current values of the
relevant variables. However, for the Õ (n/ε) edges that are included in the stacks, we must
update the corresponding variables. To ensure consistency of these updates, we associate a
lock with each variable in {αu}u∈V . We maintain |V | exclusive locks and allow a variable to
be updated only after acquiring its corresponding lock.4

We now outline the non-deferrable strategy of our poly-streaming algorithm for the MWM
problem (for the deferrable strategy see the arXiv version). For simplicity, we assume that if
a processor attempts to release a lock it did not acquire, the operation has no effect. We
also assume that any algorithmic step described with the “in parallel” construct includes
an implicit barrier (or synchronization primitive) at the end, synchronizing the processors
participating in that step.

The non-deferrable strategy is presented in Algorithm PS-MWM, with two subroutines
used by PS-MWM described in Process-Edge (Figure 4) and Process-Stack (Figure 5). In
PS-MWM, Steps 1–2 form the preprocessing phase, Steps 3–4 the streaming phase, and
Step 5 the post-processing phase. Each processor ℓ ∈ [k] executes PS-MWM asynchronously,
except that all processors begin the post-processing phase simultaneously (due to Step 4)
and then resume asynchronous execution.

In the subroutine Process-Edge, Step 2 ensures that all edges are processed using the
non-deferrable strategy: a processor repeatedly attempts to acquire the locks corresponding
to the endpoints of an edge e = {u, v} until it succeeds, or the edge becomes ineligible for
inclusion in a stack. As a result, a processor executing Step 3, has a consistent view of the
variables αu and αv. In Step 3(c), we store the gain ge of an edge e along with the edge
itself for use in the post-processing phase.

4 This corresponds to the concurrent-read exclusive-write (CREW) paradigm of the PRAM model.
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Process-Stack(Sℓ):

/* Assumes access to global variables {αu}u∈V ; and {marku}u∈V , initialized
in Algorithm PS-MWM (or PS-MWM-LD). */
1. Mℓ ← ∅
2. while Sℓ ̸= ∅ do

a. remove the top edge e = {u, v} of Sℓ

b. if we + ge < αu + αv then wait for e to be a tight edge
/* e is a tight edge if we + ge = αu + αv */

c. if both marku and markv are set to 0 then
/* no locking is needed since e is a tight edge */
i. Mℓ ←Mℓ ∪ {e}
ii. set marku and markv to 1

d. decrement αu and αv by ge

3. return Mℓ

Figure 5 A subroutine used in algorithms PS-MWM and PS-MWM-LD.

When all k processors are ready to execute Step 5 of PS-MWM, the k stacks collectively
contain all the edges needed to construct a (2 + ε)-approximate MWM, which can be obtained
in several ways. In the subroutine Process-Stack, we outline a simple approach based on local
edge orderings. We define an edge e = {u, v} in a stack to be a tight edge if we +ge = αu +αv.
Equivalently, an edge is tight if and only if all of its neighboring edges that were included
after it in any stack have already been removed. Any set of tight edges can be processed
concurrently, regardless of their positions in the stacks. In Process-Stack, we simultaneously
process the tight edges that appear at the tops of the stacks.

3.2 Analyses
We now formally characterize several correctness properties of the algorithm and analyze
its performance. These correctness properties include the absence of deadlock, livelock,
and starvation. The performance metrics are space usage, approximation ratio, per-edge
processing time, and total runtime.

To simplify the analysis, we assume that processors operate in a quasi-synchronous
manner. In particular, to analyze Step 3 of Algorithm PS-MWM, we define an algorithmic
superstep as a unit comprising a constant number of elementary operations.

▶ Definition 2 (Superstep). A processor takes one superstep for an edge if it executes
Process-Edge with at most one iteration of the loop in Step 2 (i.e., without contention),
requiring O (1) elementary operations. Each additional iteration of Step 2 due to contention
adds one superstep, with each such iteration also requiring O (1) operations.

▶ Definition 3 (Effective Iterations). Effective iterations is the maximum number of supersteps
taken by any processor during the execution of Step 3 of Algorithm PS-MWM.

Note that for k = 1, the effective iterations is equal to the number of edges in the stream.
Using this notion, we align the supersteps of different processors and define the following
directed graph.

ESA 2025



15:8 Weighted Matching in a Poly-Streaming Model

▶ Definition 4 (G(t)). For the tth effective iteration, consider the set of edges processed
across all k streams. Let eℓ = (uℓ, vℓ) denote an edge processed in ℓth stream, where uℓ

precedes vℓ in the lexicographic ordering of the vertices. If processor ℓ is idle in the tth
iteration, then eℓ = ∅. Define G(t) :=

(
V (t), E(t)), where E(t) := {eℓ | ℓ ∈ [k]} and

V (t) :=
⋃

(uℓ,vℓ)∈E(t){uℓ, vℓ}.

The following property of G(t) is straightforward to verify.

▶ Proposition 5. G(t) is a directed acyclic graph.

We show that Algorithm PS-MWM is free from deadlock, livelock, and starvation.
Deadlock occurs when a set of processors forms a cyclic dependency, with each processor
waiting for a resource held by another. Livelock occurs when a set of processors repeatedly
form such a cycle, where each processor continually acquires and releases resources without
making progress. Starvation occurs when a processor waits indefinitely for a resource because
other processors repeatedly acquire it first. The following lemma shows that the streaming
phase of Algorithm PS-MWM is free from deadlock, livelock, and starvation.

▶ Lemma 6. The concurrent executions of the subroutine Process-Edge are free from deadlock,
livelock, and starvation.

Proof. Since the variables {αu}u∈V are updated only while holding their corresponding
locks, we treat the locks {locku}u∈V as the only shared resources in Process-Edge.

Let G(t) be the graph defined in Definition 4. By Proposition 5, G(t) is a directed acyclic
graph (DAG), and hence each of its components is also a DAG.

To reason about cyclic dependencies, we focus on components of G(t) involving processors
executing Step 2 of Process-Edge. Every DAG contains at least one vertex with no outgoing
edges. Thus, each such component includes an edge eℓ = (uℓ, vℓ) such that only processor ℓ

requests lockvℓ
. This precludes the possibility of cyclic dependencies; that is, the concurrent

executions of Process-Edge is free from deadlock and livelock.
To show that starvation does not occur, suppose an edge appears in every effective

iteration t ∈ [a, b], that is, eℓ = (uℓ, vℓ) ∈
⋂

t∈[a,b] E(t). We show that b− a = Õ (n/ε), which
bounds the number of supersteps that processor ℓ may spend attempting to acquire locks
for eℓ. Step 2 requires one superstep per iteration, while all other steps collectively require
at most one. For each t ∈ (a, b], the component of G(t−1) containing eℓ has at least one
vertex with no outgoing edge. This guarantees that at least one edge in that component
acquires its locks and completes Step 3 during the (t− 1)th effective iteration. Since Step 3
can increment the values in {αu}u∈V for at most O

(
n log1+ε W

)
= Õ (n/ε) edges over the

entire execution, the number of iterations for which eℓ may remain blocked is also bounded
by Õ (n/ε). ◀

To analyze Step 5 of Algorithm PS-MWM, we adopt the same simplification: processors
are assumed to operate in a quasi-synchronous manner. Accordingly, we define U (t) as
the set of edges present in the stacks

⋃
ℓ∈[k] Sℓ at the beginning of iteration t of Step 2

in Process-Stack. The following definition is useful for characterizing tight edges via an
equivalent notion.

▶ Definition 7 (Follower). An edge ej ∈ U (t) is a follower of an edge ei ∈ U (t) if ei ∩ ej ̸= ∅
and ej is added to some stack Sj after ei is added to some stack Si. We denote the set of
followers of an edge e by F(e).
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The proofs of the following four lemmas are included in the arXiv version. The fourth
lemma establishes that the post-processing phase of PS-MWM is free from deadlock, livelock,
and starvation.

▶ Lemma 8. An edge e is a tight edge if and only if F(e) = ∅.

▶ Lemma 9. Let T (t) be the set of top edges in the stacks at the beginning of iteration t of
Step 2 of Process-Stack. Then T (t) contains at least one tight edge.

▶ Lemma 10. The set of tight edges in U (t) is vertex-disjoint.

▶ Lemma 11. The concurrent executions of the subroutine Process-Stack are free from
deadlock, livelock, and starvation.

We now analyze the performance metrics of the algorithm.

▶ Lemma 12. For any constant ε > 0, the space complexity and per-edge processing time
of Algorithm PS-MWM are O (k + n log n) and O (n log n), respectively. Furthermore, for
Lmin = Ω (n), the amortized per-edge processing time of the algorithm is O (log n).

Proof. The claimed space bound follows from three components: O (n) space for the variables
and locks, O (n log n) space for the stacked edges, and O (1) space per processor.

The worst-case per-edge processing time follows from the second part of the proof of
Lemma 6.

Processor ℓ processes |Eℓ| edges, each requiring at least one distinct effective iteration (see
Definition 3). Additional iterations may arise when it repeatedly attempts to acquire locks
in Step 2 of Process-Edge. From the second part of the proof of Lemma 6, the total number
of such additional iterations is bounded by O (n log n). This implies that to process |Eℓ|
edges, a processor ℓ uses O

(
|Eℓ|+ n log n

)
supersteps. Therefore, the amortized per-edge

processing time is

O
(
|Eℓ|+ n log n

|Eℓ|

)
= O

(
n log n

|Eℓ|

)
= O

(
n log n

Lmin

)
= O (log n) .

◀

Note that the amortized per-edge processing time is computed over the edges of an
individual stream, not over the total number of edges across all streams. While both forms of
amortization are meaningful for poly-streaming algorithms, our analysis is more practically
relevant, as it reflects the cost incurred per edge arrival within a single stream.

▶ Lemma 13. For any constant ε > 0, Algorithm PS-MWM takes O (Lmax + n log n) time.

Proof. The preprocessing phase (Steps 1–2) takes Θ (n/k) time.
To process |Eℓ| edges, processor ℓ takes O

(
|Eℓ|+ n log n

)
supersteps (see the proof

of Lemma 12). Since |Eℓ| ≤ Lmax for all ℓ ∈ [k], the time required for Step 3 is
O (Lmax + n log n).

At the beginning of Step 5, the total number of edges in the stacks is U (1) = O (n log n).
By Lemma 9, iteration t of Process-Stack removes at least one edge from U (t). Hence, the
time required for Step 5 is O (n log n).

The claim now follows by summing the time spent across all three phases. ◀

ESA 2025
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Now, using the characterizations of tight edges, we extend the duality-based analysis
of [11] to our algorithm. Let ∆e

α denote the change in
∑

u∈V αu resulting from processing an
edge e ∈ Eℓ in Step 3 of Process-Edge. If an edge e ∈ Eℓ is not included in a stack Sℓ, then
∆e

α = 0, either because it fails the condition in Step 1 or Step 3 of Process-Edge. It follows
that

∑
e∈
⋃

ℓ∈L
Eℓ ∆e

α =
∑

u∈V αu. For an edge e that is included in some stack Si, let P(e)
denote the set of edges that share an endpoint with e and are included in some stack Sj no
later than e including e itself. The following two results are immediate from Observation 3.2
and Lemma 3.4 of [11].

▶ Proposition 14. Any edge e added to some stack Sℓ satisfies the inequality

we ≥
∑

e′∈P(e)

ge′ = 1
2

 ∑
e′∈P(e)

∆e′

α

 .

▶ Proposition 15. After all processors complete Step 3 of Algorithm PS-MWM, the variables
{αu}u∈V , scaled by a factor of (1 + ε), form a feasible solution to the dual LP in Figure 2.

▶ Lemma 16. LetM∗ be a maximum weight matching in G. The matching M :=
⋃

l∈[k]Mℓ

returned by Algorithm PS-MWM satisfies w(M) ≥ 1
2(1+ε) w(M∗).

Proof. We only process tight edges in Process-Stack. By Lemma 10 tight edges are vertex
disjoint, and hence their independent processing does not interfere with their inclusion in M.

By Lemma 8, an edge e included in M must satisfy F(e) = ∅. Consider any edge
e′ ∈ P(e)\{e}. Since e ∈ F(e′), we have F(e′) ̸= ∅, which means e′ is not a tight edge before
e is processed. Thus, when e is selected for inclusion in M, none of the edges in P(e)\{e} is
tight. Hence, all edges of P(e) are in the stacks when we are about to process e. Therefore,
the total gain contributed by edges of P(e) can be attributed to the weight of e, and by
Proposition 14, we have

w(M) =
∑

e∈M
we ≥

1
2

∑
e∈M

∑
e′∈P(e)

∆e′

α

 ≥ 1
2

 ∑
e∈
⋃

ℓ∈[k]
Sℓ

∆e
α


= 1

2

 ∑
e∈
⋃

ℓ∈[k]
Eℓ

∆e
α

 = 1
2

(∑
u∈V

αu

)
.

Let {x∗
e}e∈E be an optimal solution to the primal LP in Figure 2. By Proposition 15 and

LP duality we have

w(M∗) ≤
∑
e∈E

wex∗
e ≤ (1 + ε)

(∑
u∈V

αu

)
≤ 2(1 + ε)w(M).

◀

Algorithm PS-MWM uses only one pass over the streams. Theorem 1 now follows by
combining the results in Lemma 12, Lemma 13, Lemma 16, and the analysis of the deferrable
strategy sketched in the arXiv version.
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PS-MWM-LD(V, l, j, ε):

1. In parallel initialize locku, and set αu and marku to 0 for all u ∈ V

/* processor ℓ initializes or sets Θ (n/k) locks/variables */
2. In parallel initialize lockj

u, and set αj
u to 0 for all u ∈ V

/* processor ℓ initializes or sets Θ (n/ (k/r)) locks / variables */
3. In parallel initialize glockj /* one processor initializes for group j */
4. Sℓ ← ∅ /* initialize an empty stack */
5. for each edge e = {u, v} in ℓth stream do

a. Process-Edge-LD(e, Sℓ, ε)
6. wait for all processors to complete execution of Step 4 /* a barrier */
7. Mℓ ← Process-Stack(Sℓ)
8. return Mℓ

Figure 6 A generalization of Algorithm PS-MWM using local dual variables.

4 Algorithms for Non-Uniform Memory Access Costs

In this section, we extend the algorithm from Section 3 to account for the non-uniform
memory access (NUMA) costs present in real-world machines.

In a poly-streaming algorithm, each processor may receive an arbitrary subset of the input,
making it difficult to maintain memory access locality. Modern shared-memory machines,
as illustrated in Figure 1, have non-uniform memory access costs and far fewer memory
controllers than processors [12]. As a result, memory systems with such limitations would
struggle to handle the high volume of concurrent, random memory access requests generated
by poly-streaming algorithms, leading to significant delays.

We now describe a generalization of the algorithm from Section 3 that localizes a significant
portion of each processor’s memory access to its near memory. This generalization applies to
both edge-processing strategies introduced in Section 3.1. We focus on the non-deferrable
strategy. (The deferrable strategy generalizes in the same way, following the same relationship
between the two strategies as in the specialized case.)

The runtime of Process-Edge is dominated by the time to access the dual variables
{αu}u∈V . By assigning a dedicated stack to each processor, we have substantially localized
accesses associated with edges in that stack. However, since a large fraction of edges is
typically not included in the stacks, the runtime remains dominated by accesses to dual
variables associated with these discarded edges. We therefore describe an algorithm that
localizes these accesses to memory near the processor.

To localize accesses to the dual variables {αu}u∈V , we observe that these variables increase
monotonically during the streaming phase. This observation motivates a design in which
a subset of processors maintains local copies of the variables and can discard a substantial
number of edges without synchronizing with the global copy. When a processor includes an
edge in its stack, it increments the corresponding dual variables in the global copy by the
gain of the edge and synchronizes its local copy accordingly. As a result, some local copies
may lag behind the global copy, but they can be synchronized when needed.

A general scheme for allocating dual variables is as follows. The set of k processors is
partitioned into r groups. For simplicity, we assume that k is a multiple of r, so each group
contains exactly k/r processors. For r > 1, in addition to a global copy of dual variables,
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Process-Edge-LD(e = {u, v}, Sℓ, ε):

/* Assumes access to {αu}u∈V , {locku}u∈V , {αj
u}u∈V , {lockj

u}u∈V , and glockj */
1. if we ≤ (1 + ε)(αj

u + αj
v) then return

2. repeatedly try to acquire lockj
u and lockj

v in lexicographic order of u and v as
long as we > (1 + ε)(αj

u + αj
v)

3. if we ≤ (1 + ε)(αj
u + αj

v) then release lockj
u and lockj

v, and return
4. repeatedly try to acquire glockj

5. Process-Edge(e, Sℓ, ε)
6. αj

u ← αu and αj
v ← αv /* synchronization of local and global dual variables */

7. release lockj
u, lockj

v, glockj and return

Figure 7 A subroutine used in Algorithm PS-MWM-LD.

we maintain r local copies {αj
u}u∈V , one for each j ∈ [r]. Group j consists of the processors

{ℓ ∈ [k] | ⌊ℓ/(k/r)⌋ = j}, and uses {αj
u}u∈V as its local copy of the dual variables. Algorithm

PS-MWM is the special case r = 1, where all processors operate using only the global copy
of the dual variables.

Algorithm PS-MWM-LD, along with its subroutine Process-Edge-LD, incorporates local
dual variables in addition to global ones. In Step 2, processors in each group j ∈ [r] collectively
initialize their group’s local copies of dual variables and locks, followed by initializing a group
lock in Step 3. All other steps of the algorithm are identical to those in PS-MWM.

In the subroutine Process-Edge-LD, Step 5 implements the non-deferable strategy. Steps 1–
3 and Step 6 enforce the localization of access to dual variables. Steps 2–3 ensure that, at any
given time, each global dual variable is accessed by at most one processor per group; we refer
to this processor as the delegate of the group for that variable. Thus, a processor executing
Steps 4–6 serves as a delegate of its group for that time. In Step 6, after completing updates
to the global variables, the delegate synchronizes its group’s local copy in O (1) time. As a
result, the waiting time on a local variable in Step 2 is bounded by the total time spent by
the corresponding delegates, up to constant factors.

The delegates in each group handle vertex-disjoint edges, so concurrent executions of
Step 6 would have been safe. However, the lock in Step 4 ensures that at most one delegate
per group executes Step 5. Regardless of these design choices, the behavior of the delegates
executing Step 5 concurrently mirrors that of processors competing for exclusive access to
global dual variables in PS-MWM.

The following lemma highlights the benefit of using Algorithm PS-MWM-LD.

▶ Lemma 17. For any constant ε > 0, in the streaming phase of Algorithm PS-MWM-LD,
processors in all r groups collectively access global variables a total of O (r · n log n) times.

In contrast to the result in Lemma 17, the streaming phase of Algorithm PS-MWM
accesses global variables Ω (m) times or up to O (m + k · n log n) times.

Algorithm PS-MWM-LD, together with the generalization of the deferrable strategy,
leads to the following result (a proof is included in the arXiv version).

▶ Theorem 18. Let k processors be partitioned into r groups, each with its own shared local
memory. For any constant ε > 0, there exists a single-pass poly-streaming algorithm for
the maximum weight matching problem that achieves a (2 + ε)-approximation. It admits a
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Table 1 Summary of datasets. Each collection contains eight graphs.

Graph Collection # of Edges (in billions)

The SSW graphs 1.36 − 127.4
The BA graphs 4.64 − 550.1
The ER graphs 256 − 4096
The UA-dv graphs 275.2 − 550.1
The UA graphs 8.93 − 1100
The ER-dv graphs 32 − 4096

CREW PRAM implementation with Õ (Lmax + n) runtime. If Lmin = Ω (n), the algorithm
achieves O (log n) amortized per-edge processing time using Õ (k + r · n) space. For arbitrarily
balanced streams, it uses either Õ (k + r · n) space and Õ (n) per-edge processing time, or
Õ (k · n) space and O (1) per-edge processing time. The processors collectively access the
global memory Õ (r · n) times.

5 Empirical Evaluation

This section summarizes our evaluation results for Algorithm PS-MWM-LD. Detailed datasets,
experimental setup, and additional comparisons (including with PS-MWM) are provided in
the arXiv version.

5.1 Datasets

Table 1 summarizes our datasets. Each collection consists of eight graphs, with edge counts
ranging from one billion to four trillion. To the best of our knowledge, these represent some
of the largest graphs for which matchings have been reported in the literature. Exact and
approximate offline MWM algorithms (see [22]) would exceed available memory on the larger
graphs. The first class (SSW) consists of six of the largest graphs from the SuiteSparse
Matrix collection [5] and two from the Web Data Commons [19], which includes the largest
publicly available graph dataset. Other classes include synthetic graphs generated from the
Barabási–Albert (BA), Uniform Attachment (UA), and Erdős–Rényi (ER) models [1, 7, 21].

5.2 Experimental Setup

We ran all experiments on a community cluster called Negishi [17], where each node has an
AMD Milan processor with 128 cores running at 2.2 GHz, 256–1024 GB of memory, and the
Rocky Linux 8 operating system version 8.8. The cores are organized in a hierarchy: groups
of eight cores constitute a core complex that share an L3 cache. Eight core complexes form a
socket, and they share four dual-channel memory controllers; two sockets constitute a Milan
node [12]. Memory access within a socket is approximately three times faster than across
sockets.

We implemented the algorithms in C++ and compiled the code using the gcc compiler
(version 12.2.0) with the -O3 optimization flag. For shared-memory parallelism, we used the
OpenMP library (version 4.5). All experiments used ε = 1e − 6. Reported values are the
average over five runs.
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The SSW graphs
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Figure 8 Memory used by the algorithm and the corresponding graph size (space needed to store
the entire graph in CSR format). Note that the y-axes are in a logarithmic scale.

5.3 Space

Figure 8 summarizes the space usage of our algorithm. For k = 1, the algorithm of Paz and
Schwartzman [20], we store one copy of the dual variables, stack, and matching. For k > 1,
our algorithm stores r + 1 copies of the dual variables (global and local), stacks, matching,
and locks. We choose the values of r based on the number of memory controllers and the
number of streams.

The maximum space used by our algorithm is 223 GB, for the web graph WDC_2012. In
comparison, storing this graph in compressed sparse row (CSR) format would require over
2800 GB. Storing the largest graph in our datasets (ER1_4096) in CSR would require more
than 91, 600 GB (89.45 TB), for which our algorithm used less than 0.8 GB.

5.4 Solution Quality

min-OPT percent. In the arXiv version, we describe different ways to get a posteriori
upper bounds on the weight of a MWM w (M∗), using the values of the dual variables. Let
Ymin denote the minimum value of these upper bounds. If M is a matching in the graph
returned by any algorithm, then we have w(M)

w(M∗) ≥
w(M)
Ymin

. Hence, w(M)
Ymin

× 100 gives a lower
bound on the percentage of the maximum weight w (M∗) obtained byM. We use min-OPT
percent to denote the fraction w(M)

Ymin
× 100.
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The SSW graphs

mycielskian20

com-Friendster
GAP-kron

GAP-urand

MOLIERE_2016

AGATHA_2015
WDC_2014

WDC_2012
40
50
60
70
80

m
in

-O
P

T
%

The BA graphs

BA_512
BA_1024

BA_2048
BA_4096

BA_8192
BA_16384

BA_32768
BA_65536

50
60
70
80
90

m
in

-O
P

T
%

The ER graphs

ER2_256
ER1_512

ER2_512
ER1_1024

ER2_1024
ER1_2048

ER2_2048
ER1_4096

70
75
80
85
90
95

m
in

-O
P

T
%

k = 1 k = 128 ALG-d ALG-s

Figure 9 Comparisons of min-OPT percent obtained by different algorithms. ALG-d denotes the
best results from four dual update rules, and ALG-s denotes the algorithm of Feigenbaum et al. [8].

Figure 9 shows min-OPT percent obtained by different algorithms. In the arXiv version,
we describe four dual update rules as alternatives to the default rule used in Steps 3(a)–(b)
of Process-Edge. The values under k = 1 and k = 128 use the default rule, and the values
under ALG-d use the best result among the four new dual update rules. For perspective, we
include min-OPT percent obtained by the sequential 6-approximate streaming algorithm of
Feigenbaum et al. [8], denoted ALG-s.

The results under k = 1 and k = 128 show that, in terms of solution quality, our poly-
streaming algorithm is on par with the single-stream algorithm of [20]. The values under
ALG-d indicate further potential improvements using alternative dual update rules. The
comparison with ALG-s supports our choice of the algorithm from [20] over other simple
algorithms, such as that of [8]. The arXiv version contains comparisons with an offline
algorithm and details on the dual update rules.

5.5 Runtime
We report runtime-based speedups, computed as the total time across all three phases
of PS-MWM-LD (preprocessing, streaming, and post-processing). Figure 10 shows these
speedups. For k = 128, we have speedups of 16 − 60, 37 − 73, and 68 − 83 for the SSW
graphs, the BA graphs, and the ER graphs, respectively.

Due to the significant memory bottlenecks (discussed in Section 4), we also report
speedups w.r.t. effective iterations (Definition 3), which are less affected by such bottlenecks.
The speedup w.r.t. effective iterations is the ratio of the metric for one stream to that for k

streams. Now for k = 128, we obtain speedups of 112− 127, 121− 127, and 124− 128 for
the SSW graphs, the BA graphs, and the ER graphs, respectively. These results indicate
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The SSW graphs
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Figure 11 Breakdown of runtime into three phases for k = 1 and k = 128. Note that the y-axis
is in a logarithmic scale.

that shared variable access incurs no noticeable contention among processors. As a result,
we expect even better runtime improvements on systems with more memory controllers or
better support for remote memory access.

Figure 11 shows the runtimes for different graphs, decomposed into three phases, for
k = 1 and k = 128. The plots report the absolute time savings achieved by processing
multiple streams concurrently. For k = 1 and k = 128, the geometric means of the runtimes
for these graphs are over 2350 seconds and under 45 seconds, respectively. For the largest
graph (ER1_4096), single-stream processing took over 8000 seconds, whereas poly-stream
processing reduced the time to under 100 seconds.

6 Conclusion

While numerous studies have focused on optimizing time (in parallel computing) or space
(in streaming algorithms) in isolation, the poly-streaming model offers a practically relevant
paradigm for exploring how time and space can be jointly optimized. It fills a gap by providing
a formal framework for analyzing algorithmic design choices and their associated time-space
trade-offs. Our study of matchings illustrates both the benefits of this paradigm and its
practical relevance.

The simplicity of our matching algorithm and its generalization reflect our choice to
adopt the design of [20]. We believe this principle will inspire the development of other poly-
streaming algorithms. To this end, we note that [20] has also motivated simple algorithms
for related problems, such as matchings with submodular objectives [16], b-matchings [14],
and collections of disjoint matchings [9].
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