
SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 645-653, March 1992

() 1992 Society for Industrial and Applied Mathematics
013

TIMELY COMMUNICATION

Under the "timely communications" policy for the SIAM Journal on Scientific and Statistical
Computing, papers that have significant timely content and do not exceed five pages automatically
will be considered for a separate section of the journal with an accelerated reviewing process. It will
be possible for the note to appear approximately six months after the date of acceptance.

A FAST REORDERING ALGORITHM
FOR PARALLEL SPARSE TRIANGULAR SOLUTION*

ALEX POTHENt AND FERNANDO L. ALVARADO$

Abstract. A space-efficient partitioned representation of the inverse of a unit lower triangular
matrix L may be used for efficiently solving sparse triangular systems on massively parallel computers.
The number of steps required in the parallel triangular solution is equal to the number of subsets
of elementary triangular matrices in the partitioned representation of the inverse. Alvarado and
Schreiber have recently described two partitioning algorithms that compute the minimum number of
subsets in the partition over all permutations of L which preserve the lower triangular structure of
the matrix. Their algorithms require space linear and time nonlinear in the number of nonzeros in L.
This paper describes a partitioning algorithm that requires only O(n) time and space for computing
an optimal partition, when L is restricted to be a Cholesky factor. (Here n is the order of L.) The
savings result from the observation that instead of working with the structure of L, it is sufficient to
work with its transitive reduction, the elimination tree of L. Experimentally the new partitioning
algorithm requires negligible time in comparison to the previous partitioning algorithms and to the
Multiple-Minimum-Degree ordering algorithm.

Key words, directed acyclic graph, elimination tree, massively parallel computers, reordering
algorithm, sparse Cholesky factorization, sparse triangular systems, transitive reduction

AMS(MOS) subject classifications. 65F50, 65F25, 68R10

1. The problem. A unit lower triangular matrix L of order n can be expressed
n--1as a product of elementary lower triangular matrices L 1-Ii=l Li, where Li I /

mie_iT, m has its first components equal to zero, and e__ is the ith coordinate vector.
Assume that L is sparse. Consider a representation of L in which the elementary
lower triangular matrices are grouped together to form m unit lower triangular factors
L= I-["i=1 Pi, where each factor Pi has the property that p(1 can be represented in the

]-[ei+ --Isame space as P{. We say that P is invertible in place. Here each P{ l lk=ei Lk,
with e 1 < e2 < < em < em+1 =- n. This leads to a partitioned representation
of the inverse of L of the form L-I l-[i=m P- that can be stored in just the
space required for L. This partitioned inverse representation is advantageous when
a triangular system Ly b must be solved repeatedly with different right-hand-
side vectors b on a massively parallel computer such as the Connection Machine; on
such a machine, the solution y can be computed as y l-I{=m P- b in m steps.
This representation has been considered by Alvarado et al. in the Power Engineering
literature [4], [8], and by Alvarado and Schreiber [3]. It has been observed that a

Received by the editors April 8, 1991; accepted for publication (in revised form) August 6, 1991.
Department of Computer Science, Whitmore Laboratory, Pennsylvania State University, Uni-

versity Park, Pennsylvania 16802 (pothen@cs.psu.edu, na.pothen@na-net.ornl.gov). A part of this
work was done while the author was visiting the Departments of Computer Science and Mathematics
at the University of Wisconsin, Madison. The research of this author was supported by National
Science Foundation grant CCR-9024954, by U. S. Department of Energy grant DE-FG02-91ER25095,
and by U.S. Air Force Office of Scientific Research grant AFOSR-88-0161.

Electrical and Computer Engineering Department, 1425 Johnson Dr., University of Wisconsin,
Madison, Wisconsin 53706 (alvarado@ece.wisc.edu). The research of this author was supported by
National Science Foundation grants ECS-8822654 and ECS-8907391.

645

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

646 TIMELY COMMUNICATION

reduction in the number of factors m is advantageous, and that this number can be
reduced by permuting L into a new lower triangular matrix Lg, and determining the
partitioned representation of L1.

Henceforth, without loss of generality, we will assume that L is irreducible. A1-
varado and Schreiber [3] considered the following problem:

--1(P1) Given a unit lower triangular matrix L 1-Ii=l Li, find a permutation LN
mHLIIT and a representation Lr 1-Ii=l Pi, where

1-[ei+l--1 with el 1 < e2 (’"em em+l n,(1) each Pi 11k=e Lk,
(2) each Pi is invertible in place, and
(3) m is minimum over all permutations H such that Ln is lower triangular.

They designed two algorithms to solve (P1), which they called RP1 and RP2 in their
paper. Both algorithms require time nonlinear in the number of nonzeros in L, and
space proportional to the number of nonzeros in L.

In this paper, we consider the restriction of (P1) to unit lower triangular matri-
ces, which arise in the LDLT factorization of symmetric, positive definite matrices.
(Henceforth we call this the Cholesky factorization.) Several applications of this prob-
lem in Power Engineering are described in [8]. We describe an O(n)-time algorithm
to compute the minimum number of factors in the partitioned inverse representation
of L. The algorithm requires only the elimination tree and the number of nonzeros
in each column of L as input, and not the nonzero structure of L. Thus the space
requirement of the proposed algorithm is O(n). Further, since the elimination tree
and the nonzero counts of the columns of L may be computed directly from the orig-
inal matrix A, the space requirement of the overall algorithm to compute the factors
in the partitioned inverse representation from A is O(n + T(A)), where T(A) is the
number of nonzeros in the strict lower triangle of A.

In (P1), the action of the permutation II on L is to reorder the elementary ma-
trices whose product is L; however, these elementary matrices cannot be arbitrarily
reordered, since we require the resulting matrix Ln to be lower triangular. From the
equation Li I +m e_.iT, it can be verified that the elementary matrices Li and
can be permuted if and only if li+l,i 0. These precedence constraints on the order
in which the elementary matrices may appear is captured in a graph model of the
problem.

2. A graph model. Let G(L) (V, E) denote the directed graph with vertex
set V equal to the set of columns of L, and an edge (j, i) E E (with > j) if and
only if li,j 0. The edge (j, i) is directed from the lower-numbered vertex j to the
higher-numbered vertex i. Hence G(L) is a directed acyclic graph (bAG). Since we
have assumed that L is irreducible, G(L) is weakly connected, i.e., there is a path
joining every pair of vertices in G(L) when G(L) is viewed as an undirected graph. If
there is a directed path from a vertex j to a vertex in G(L), we will say that j is a
predecessor of i, and that is a successor of j. In particular, if (j, i) E E, then j is a
predecessor of and is a successor of j.

Given a subset P of the columns of L, the concept of the subgraph corresponding
to the nonzeros in P will be useful in the remainder of this paper. Accordingly, we
define the subgraph of G(L) induced by a set of vertices P as the graph that contains
all edges directed from vertices in P to all vertices in G(L), and all the vertices that
are the endpoints of such edges.

A topological ordering of G(L) is an ordering of its vertices in which predecessors
are numbered lower than successors; i.e., for every edge (j, i) E, > j. By construc-
tion, the original vertex numbering of G(L) is a topological ordering. A permutation

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TIMELY COMMUNICATION 647

FIG. 1. A directed acyclic graph G(L) corresponding to a Cholesky factor L.

H that leaves LN lower triangular corresponds to a topological reordering of the ver-
tices of G(L). A topologically ordered bAG corresponding to a Cholesky factor L is
shown in Fig. 1.

In what follows, we identify a subset of columns P with the factor formed by
multiplying, in order of increasing column number, the elementary matrices corre-
sponding to columns in P. The condition that the nonzero structure of a factor P
should be the same as the structure of its inverse corresponds in the graph model to
the requirement that the subgraph induced by P should be transitively closed [3], [9].
(A bAG G is transitively closed if for every pair of vertices j and such that there is
a directed path in G from j to i, the edge (j, i) is present in G.)

A graph model of (P1) is provided in the following problem:
(P2) Find an ordered partition P1 " P2 """ - Pm of the vertices {1, 2,..., n- 1}

of a topological ordering of G(L) such that
(1) for every v E {1, 2,..., n 1}, if v E P then all predecessors of v belong

to P, .., Pi,
(2) the subgraph induced by each Pi is transitively closed, and
(3) m is minimum subject to the two conditions above.

The permutation II in (P1) can be obtained by renumbering the vertices in the ordered

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

648 TIMELY COMMUNICATION

partition P1 to Pm in increasing order. The first condition follows from the fact that
the factors are formed by grouping the elementary matrices of Lri in order from lowest-
numbered to highest-numbered. The other conditions follow from the discussion in
the preceding paragraphs. The graph model (P2) is not explicitly stated in Alvarado
and Schreiber [3], although it is implicit in the description of their algorithm RP1.

3. Cholesky factorization. Now we consider the restriction of (P1) to Cholesky
factors. Then the graph G(L), viewed as an undirected graph, is a chordal graph. The
gist of this section is that the chordality of G(L) simplifies the problem a great deal,
and enables the design of an (9(n) algorithm for computing the partition, whereas
previous algorithms [3] required time nonlinear in the number of edges of G(L). The
savings result from the fact that it suffices to consider the transitive reduction of
G(L), the elimination tree of L, instead of all the edges in G(L).

The elimination tree of L is a directed tree T (V, ET), whose vertices are the
columns of L, with a directed edge (j, i) E ET if and only if the lowest-numbered row
index of a subdiagonal nonzero in the jth column of L is i. (The edge is directed from
j to i.) The vertex is the parent of j, and j is a child of i.

We define the higher adjacency set hadj (j) to be the set of all vertices k adjacent
to j in G(L) such that k is numbered higher than j. If (j,i) is an edge in the
elimination tree, the lowest-numbered vertex in hadj(j) is i. The reader can verify
that the elimination tree of the graph G(L) in Fig. 1 is obtained by omitting the edges
(4, 6), (5, 11), (7, 10), and (8, 10) from the graph.

A comprehensive survey of the role of elimination trees in sparse Cholesky fac-
torization has been provided by Liu [13]. We will assume some knowledge of the
properties of elimination trees, and in particular, the following result will be useful.

LEMMA 3.1. If v is the parent of a vertex u in the elimination tree T, then
hadj(u) c_ {v} U hadj(v). 0

Our partitioning algorithm will require as input the elimination tree with vertices
numbered in a topological ordering. It also requires the subdiagonal nonzero counts
of each column of L, stored in an array hd(v). The algorithm uses a variable level to
partition the vertices; level(v) implies that v belongs to the set Pl.

The idea of the algorithm is as follows. It examines the vertices of the elimination
tree in increasing order. If a vertex v is a leaf of the tree, then it is included in the first
level, which constitutes the vertices in P1. Otherwise, it divides the children of v into
two sets: C is the subset of the children u such that the subgraph of G(L) induced
by u and v is transitively closed, and C2 denotes the subset of the remaining children.
Let l denote the maximum level of a child in C and 12 denote the maximum level
of a child in C2. Set li 0 if Ci . If C1 is empty, or if l _< 12, then v cannot be
included in the same level as any of its children, and hence begins a new level (/2 + 1).
Otherwise, 11 > 12, and v can be included together with some child u E C such that
level(u) l.

We now describe the details of an implementation. The vertices Of the elimination
tree are numbered in a topological ordering from 1 to n. The descendant relationships
in the elimination tree are represented by two arrays of length n, child and sibling.
child(v) represents the first child of v, and sibling(v) represents the right sibling of v,
where the children of each vertex are ordered arbitrarily. If child(v) 0, then v has no
child and is a leaf of the elimination tree; if sibling(v) O, then v has no right sibling.
The array hd(.), also of length n, contains the higher degree of a vertex v (equal to
[hadj(v)[). Our partitioning algorithm, Algorithm RPtree, is shown in Fig. 2. The
reader can verify that P { 1, 3, 4, 7, 8, 9}, P2 {2, 5, 6, 10}, and P3 { 11 } for the

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TIMELY COMMUNICATION 649

for v :-- 1 to n --if child(v) 0 then {v is a leaf}
level(v) :-- 1;

else {v is not a leaf}
u := child(v); 11 := 0; l. := 0;
while u 0 do

if hd(u) 1 + hd(v) then
11 := max{/, level(u)};

else {hd(u) < 1 + hd(v)}
19. := max{/, level(u)};

fi
u :- sibling(u);

od
if l <_ 12 then {v begins a new level}

level(v) := 12 + 1;
else {l > 12, v can be included in level

level(v) := 11;
fi

rof

FIG. 2. Algorithm RPtree.

graph in Fig. 1.
The complexity of the algorithm is easily analyzed. For a given vertex v, we

examine all of its children, and the operations associated with examining a child u
can be performed in constant time. If we charge the cost of examining a child u of
v to u, then each vertex in the elimination tree is charged at most once, since each
child has a unique parent. Thus the time complexity of the algorithm is (9(n). The
space complexity is also (9(n), since the elimination tree, the higher degrees, and the
level information are all stored using arrays of length n.

4. Correctness of the algorithm. We now prove that Algorithm RPtree cor-
rectly solves (P1).

THEOIEM 4.1. Algorithm RPtree correctly solves (P1) when L is the unit lower
triangular matrix in the LDLT factorization of a symmetric, positive definite matrix.

Proof. We consider problem (P2), the graph model of (P1), and the DAG G(L),
which viewed as an undirected graph is chordal. We will show that the ordered
partition obtained by the algorithm satisfies the three conditions in (P2).

First we show that a vertex v E P only if all predecessors of v belong to P, ...,
P. Since the elimination tree T is the transitive reduction of G(L), any predecessor of
v in the latter graph is a predecessor of v in T as well. Thus it suffices to consider the
descendants of v in the elimination tree. Further, since the vertices in the elimination
tree are topologically ordered, and the algorithm assigns level values to the vertices
in increasing order, it suffices to consider the children of v in T. Finally, since the
algorithm assigns level values to a vertex v such that

level(v) >_ max{level(u):u is a child of v},

the result is true.

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

650 TIMELY COMMUNICATION

Second, we show that the subgraph induced by the vertices in a level is transitively
closed. In the preceding paragraph, it was seen that level values are nondecreasing
along any path from a leaf to the root on the elimination tree. Hence it follows that
the vertices included in a level by Algorithm RPtree can be expressed as the union
(not necessarily disjoint) of certain paths in the elimination tree, where vertices on
a path are constrained to have level values equal to 1. Let uo, ul, ..., Up be such a
path, which is maximal with respect to the property of having the same level value;
then since the algorithm includes all these vertices in a single level,

hd(uo) 1 + hd(ul) 2 + hd(u2) p+ hd(up).

It follows from Lemma 3.1 that

hadj(uo) {u} U hadj(u) {u,..., Up} U hadj(up).

Hence the subgraph induced by the vertices in this path is transitively closed. Since
the set of vertices in a level is the union of such paths, the result now follows.

It remains to show that rn is the minimum number of ordered sets in the partition
of G(L) subject to the above conditions. We prove the result by induction on (n- 1),
the number of vertices to be partitioned. The base case when this number is one is
trivial. Assume inductively that Algorithm RPtree optimally partitions all chordal
graphs with at most n- 1 vertices (hence there are at most n- 2 vertices to be
partitioned).

Consider the partition P - P2 - "(Pm with m levels obtained by the
algorithm on a chordal graph G(L) with n vertices. Let T denote the elimination tree
of G(L) with vertices in a topological ordering. As shown in the proof of the second
condition, P1 consists of the union of vertices on certain paths on the elimination tree
T, each path beginning from a leaf and ending at a vertex w such that level(w) is
one, and parent(w) has level greater than one. (Thus these paths are maximal with
respect to the condition that their level values are equal to one.) Let u0 < ul... < Up
be such a path, and denote by Up+ the parent of Up in T.

The fact that the algorithm did not include Up+ in P1 together with Up could
be due to one of two reasons. If Up+ has some child x with level(x) > level(up) 1,
then the inclusion of Up+l in P would destroy the first condition of problem (P2).
Otherwise, all the children of Up+ belong to P1. Now the algorithm would not include
Up+ in P1 only if some child x satisfied hd(x) < 1 + hd(up+). If this were the case,
there is some vertex w E hadj(Up+l) \ hadj(x). Thus the inclusion of Up+ into P
would destroy the property that the subgraph induced by P1 is transitively closed.
Thus P1 contains the maximum number of vertices possible from the vertices in G(L).

Now consider the set of vertices Q which consists of those vertices of G(L) not
included in P1. Then the induced subgraph G(Q) has fewer than n- 1 vertices, and
by the inductive hypothesis, is partitioned optimally by Algorithm RPtree into m- 1
ordered sets. Let TQ denote the elimination tree of the subgraph G(Q) obtained by
removing vertices in P1 from the elimination tree T of G(L). From the preceding
paragraph, since vertices in P1 cannot be included in a level which contains the leaf
vertices of TQ, it follows that any partition of G(L) requires at least (m 1) + 1 m
levels. This completes the proof. El

5. Experimental results. We implemented Algorithm RPtree and compared
its performance with the RP1 and RP2 algorithms of Alvarado and Schreiber on
eleven problems from the Boeing-Harwell collection [6]. All the algorithms were

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TIMELY COMMUNICATION 651

implemented in C, within Alvarado’s Sparse Matrix Manipulation System [1]. Each
problem was initially ordered using the Multiple-Minimum-Degree ordering of Liu [12],
and the structure of the resulting lower triangular factor L was computed. We call
this the primary ordering step. Then Algorithms RP1, RP2, or RPtree were used in a
secondary ordering step to reorder the structure of L to obtain the minimum number
of partitions over reorderings that preserve the DAG G(L). All three algorithms lead
to the same number of levels in the partition since they solve the same problem.

The experiments were performed on a Sun SPARCstation IPC with 24 Mbytes
of main memory and a 100 Mbyte swap space running SunOS 4.1 version of the Unix
operating system. The unoptimized standard system compiler was used to compile
the code. Recall that T(A) is the number of nonzeros in the strict lower triangle of
A; -(L) is similarly defined. We scale these numbers by a thousand for convenience.
In Table 1, we report the scaled values of T(A) and T(L), the CPU times taken by
the primary and secondary ordering algorithms (in seconds), and the height of the
elimination tree obtained from the primary ordering. (The fill and the etree height
reported here are somewhat different from previously published values for the MMD
ordering because of our use of SMMS. In SMMS, the problem datum is first converted
to an element list from the Boeing-Harwell format before it is stored using sparse
matrix data structures. This changes the initial matrix ordering which is input to the
MMD algorithm, with the consequent change in the fill and etree height.)

Table 1 also reports the number of factors in the partitioned inverse of L. The
number in the column "levels(new)" corresponds to the number of factors in the
solution of the problem (P1), i.e., in the partition of the permuted matrix Lri. The
number in the column "levels(orig)" indicates the number of factors obtained when
the unpermuted Cholesky factor L is partitioned. In the graph model (P2), this
corresponds to replacing the first condition with the stricter condition:

For every v E {1,...,n- 1}, if v E Pi, then all vertices numbered
lower than v belong to P1, ", Pi.

TABLE 1
Comparison of execution times on a Sun SPARCstation IPC for three secondary reordering

schemes with the MMD primary ordering. The parameters (A) and r(L) have been scaled by a
thousand for convenience.

Problem
]sPw0
BCSSTK13
BCSSTM13
"BICIHLE

CAN1072
DWT2680
LSHP3466
i/ASAis24
NASA4704
39x39 9pt
79x79 9pt

Original data
n T(A)

5,300 8.27
2,003 40.9
2,003 9.97
2,132 6.37
1,072 5.69
2,680 11.2
3,466 10.2
1,824 18.7
4,704 50.0
1,521 10.9
6,241 45.9

MMD Etree CPU time
Time T(L) Height ’RP1 RP2
1.72 23.2 128 1:07 1.26
4.74 264
1.12 42.6
0.73 53.8
0.72 19.4
1.82 49.9
1.03 ’"81.2
1.42 72.2
3.92 275
0.50 31.6
2.’17’190

(see)
RPtree

0.10
654 "6i’.1 ’2.1 0.05’
261 5.08 2.63 ’0’.03
224 3.15 2.58 0.05
’151 0.’78 0.92 0.02
371 2.43 2.45 0.05
341 ’4.48 4.14 0’.07
259 6:01 3.88 0.03
553’ 33.8 16:1 0:12
’i85 1.35 1.50’ 0.02
429 12.7 1’1.4 0:12

.Levels
Orig New

70 "32
53 24"
25 16
24 15
21 16
50 36
37 25
3’4 16
i 17
19 15
3’0 23

Alvarado and Schreiber [2] have shown that when the partitioned inverse is em-
ployed on a massively parallel computer such as the CM-2, the number of levels in
the partitioned inverse representation determines the complexity of parallel triangu-
lar solution. On the other hand, the complexity of a conventional triangular solution
algorithm is governed by the height of the elimination tree. Table 1 shows both these

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

652 TIMELY COMMUNICATION

quantities, and it is seen that the number of levels in the partitioned inverse is many
times smaller (by a factor of sixteen on the average) than the elimination tree height.
Hence the use of the partitioned inverse leads to much faster parallel triangular system
solution on massively parallel computers.

An interesting feature in these results is that the number of levels seems to be
only weakly dependent on the problem, the order of A, or the number of nonzeros in
A or L. This number is between ten and forty and is significantly smaller than the
order of the matrix A for most of these problems. If this observation holds true for
larger instances of a wide collection of problems, then it will have a significant impact
on the application of the ideas in this paper to parallel computing. For the k k
model grid problem ordered by the optimal nested dissection ordering, the height of
the elimination tree is 3k / (1), while the number of levels is 2 log2 k / (9(1).

Algorithm RPtree has (.0(n) time complexity while RP1 and RP2 are both non-
linear in the number of nonzeros in L. This is confirmed by the experiments: on the
average problem in this test set, RPtree is more than a hundred times faster than RP1
or RP2, and the advantage increases with increasing problem size. From a practical
perspective, the time needed by Algorithm RPtree is quite small when compared to
the cost of computing the initial MMD ordering. This is not true of either the RP1
or the RP2 algorithm. An equally important advantage of Algorithm RPtree is that
it requires only O(n) additional space, whereas both aP1 and RP2 require O(T(L))
additional space.

We have also experimented with a variant of the Minimum-Length-Minimum-
Degree (MLMD) ordering [5] as the primary ordering, but we do not report detailed
results because Timely Communications are by definition brief. The MLMD ordering
incurs a great deal more fill in L than the MMD algorithm, and its current, fairly
straightforward implementation is quite slow compared to the MMD algorithm. We
believe an implementation comparable in sophistication to the MMD algorithm should
not be significantly slower than MMD, and may also reduce the number of fills. In
spite of the larger number of fills, the MLMD ordering is more effective in almost
all cases than MMD in reducing the number of levels in the partition of both L and
L. In some cases, the initial number of levels obtained when MLMD is used as the
primary ordering is lower than the final number of levels obtained with MMD after
the secondary reordering.

When the MLMD ordering is used, Algorithm RPtree has an even greater time
advantage over the RP1 and RP2 algorithms, since the former works with the elimi-
nation tree, while the latter algorithms require the structure of the Cholesky factor.
For instance, on BCSSTK13, RP2 takes 461 seconds, while RPtree requires only 0.07
seconds.

6. Extensions. There are two directions in which the results in this paper may
be extended.

Given the factorization A LDLT of a symmetric, positive definite matrix,
consider the filled matrix F L / LT and the corresponding chordal undirected
graph Gu(F). In problem (P3) we ask for the minimum number of factors m in
the partitioned inverse representation of L over all vertex orderings that preserve the
structure of the filled graph Gu(F) (rather than the DAG G(L) and the corresponding
elimination tree of L as (P2) does). A solution to this problem would reduce the
number of factors in the partitioned inverse over the number required in (P2). Such
an ordering would have to be applied to the original matrix A, before the computation
of the factorization. This problem turns out to be much harder than (P2), and

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TIMELY COMMUNICATION 653

many subtle issues are involved in the solution of this problem. It can be solved by
a generalization of the Jess and Kees ordering [11]. (However, the Jess and Kees
ordering by itself will not work.) An efficient algorithm to solve (P3) that makes
use of the clique tree data structure will be reported in [14]. It is heartening that
the above ordering is also appropriate for efficiently computing the factorization in
parallel on massively parallel machines.

The ideas in this paper can also be applied to the general unsymmetric problem
to obtain a more efficient partitioning algorithm than RP2. It turns out that the
transitive reduction of the directed graph G(L) could be used instead of G(L) at
several places in the RP2 algorithm. It is necessary to implement this idea to see the
net computational savings the use of transitive reduction may bring in this context.
Other applications of transitive reduction in unsymmetric sparse factorizations have
been recently considered by Eisenstat, Gilbert, and Liu [7], [10].

REFERENCES

[1] F. L. ALVAI=tADO, Manipulation and visualization of sparse matrices, ORSA J. Comput., 2
(1990), pp. 180-207.

[2] F. L. ALVARADO AND R. SCHREIBER, Fast parallel solution of sparse triangular systems, 13th
IMACS World Congress on Computation and Applied Mathematics, Dublin, July 1991.

[3] , Optimal parallel solution of sparse triangular systems, SIAM J. Sci. Statist. Comput.,
13 (1992), to appear.

[4] F. L. ALVARADO, D. C. Yu, AND a. BETANCOURT, Partitioned sparse A-1 methods, IEEE
Trans. Power Systems, 5 (1990), pp. 452-459.

[5] R. BETANCOURT, An efficient heuristic ordering algorithm]or partial matrix re]actorization,
IEEE Trans. Power Systems, 3 (1988), pp. 1181-1187.

[6] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1-14.

[7] S. C. EISENSTAT AND J. W.-H. LIU, Exploiting structural symmetry in unsymmetric sparse
symbolic]actorizations, Tech. Report 90-12, Computer Science, York University, North
York, Ontario, Canada, 1990.

[8] M. K. ENNS, W. F. TINNEY, AND F. L. ALVAIADO, Sparse matrix inverse factors, IEEE
Trans. Power Systems, 5 (1990), pp. 466-472.

[9] J. a. GILBERT, Predicting structure in sparse matrix computations, Tech. Report 86-750,
Computer Science, Cornell University, Ithaca, NY, 1986.

[10] J. R. GILBERT AND J. W-H. LIU, Elimination structures for unsymmetric sparse LU]actors,
Tech. Report 90-11 Computer Science, York University, North York, Ontario, Canada,
1990.

[11] J. G. LEWIS, B. W. PEYTON, AND A.. POTHEN, A fast algorithm for reordering sparse matrices
]or parallel]actorization, SIAM J. Sci. Statist. Comput., 6 (1989), pp. 1146-1173.

[12] J. W.-H. LIu, Modification of the minimum-degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141-153.

[13] ., The role of elimination trees in sparse factorization, SIAM J. Matrix. Anal. Appl., 11
(1990), pp. 134-172.

[14] A. POTHEN AND X. YUAN, A clique tree algorithm for optimally reordering sparse Cholesky
]actors for parallel triangular solution, work in preparation, 1991.

D
ow

nl
oa

de
d

04
/2

4/
15

 to
 1

28
.2

11
.1

69
.1

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

