Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices

YU-HONG YEUNG
Purdue University
and
JESSICA CROUCH
Old Dominion University
and
ALEX POTHEN
Purdue University

We present a finite element solution method that is well-suited for interactive simulations of cutting meshes in the regime of linear elastic models. Our approach features fast updates to the solution of the stiffness system of equations to account for real-time changes in mesh connectivity and boundary conditions. Updates are accomplished by augmenting the stiffness matrix to keep it consistent with the changes to the underlying model, without re-factorizing the matrix at each step of cutting. The initial stiffness matrix and its Cholesky factors are used to implicitly form and solve a Schur complement system using an iterative solver. As changes accumulate over many simulation time steps, the augmented solution method slows down due to the size of the augmented matrix. However, by periodically re-factorizing the stiffness matrix in a concurrent background process, fresh Cholesky factors that incorporate recent model changes can replace the initial factors. This controls the size of the augmented matrices and provides a way to maintain a fast solution rate as the number of changes to a model grows. We exploit sparsity in the stiffness matrix, the right-hand-side vectors and the solution vectors to compute the solutions fast, and show that the time complexity of the update steps is bounded linearly by the size of the Cholesky factor of the initial matrix. Our complexity analysis and experimental results demonstrate that this approach scales well with problem size. Results for cutting and deformation of 3D linear elastic models are reported for meshes representing the brain, eye, and model problems with element counts up to 167,000; these show the potential of this method for real-time interactivity. An application to limbal incisions for surgical correction of astigmatism, where linear elastic models and small deformations are sufficient, is included.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling; I.6.3 [Simulation and Modeling]: Applications; I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—Algebraic algorithms

Additional Key Words and Phrases: finite element, surgery simulation, real-time, deformable model, cutting.

1. INTRODUCTION

A method to support interactively cutting or deforming solid finite element models by solving the time-varying equations quickly is presented in this paper. Topological mesh modifications and boundary condition changes are essential parts of many simulation scenarios, particularly surgical simulations. Integrating support for cutting with real-time finite element solution methods is a computational challenge, first because graphic and haptic rendering require demanding update rates, and second because connectivity changes due to cutting necessitate corresponding changes to the underlying matrix equations. Such changes invalidate previous factorizations or inverse computations for the stiffness matrix, requiring either computationally expensive update procedures or solution via an iterative method.

Many simulations that involve cutting would ideally support unpredictable cutting paths. Enabling unpredictable cutting can require that the internal deformation of a solid model be computed and tracked so that accurate cut surfaces are exposed as cuts progress into a model’s potentially inhomogeneous interior. Thus a desirable solution method would quickly compute the displacement of all nodes in a 3D mesh while accommodating changes to the mesh and equations due to cutting, variable pushing and pulling forces, and changes to the fixed displacements (Dirichlet boundary conditions) created by different fixation scenarios.

Our solution approach is to represent the changing mesh of a linear elastic model with an augmented 2 by 2 block matrix in which the (1,1) block is fixed, the (2,2) block is zero, and the other blocks vary. We then use an implicit solution approach to the Schur complement system, in which we exploit the sparsity of the matrices involved. Our current solution approach combines a matrix-factorization based method for the (1,1) block with a Krylov space-
based iterative solver for the Schur complement. A detailed treatment of the algorithm’s complexity shows that performance scales well with model size while supporting arbitrary cutting of any valid finite element mesh. Periodic re-factorizations of the stiffness matrix are performed concurrently with the real-time solution loop so that changes to the model eventually become directly incorporated into the non-augmented stiffness matrix factors. This allows the list of nodes affected by accumulated changes to be periodically reduced, limiting the growth in solution time that can occur as the list of mesh modifications grows longer over time.

A variety of existing algorithms for mesh generation [Goskel and Salcudean 2011] [Mohamed and Davatzikos 2004] [Lederman et al. 2010], collision detection [Teschner et al. 2005] [Spillmann and Harders 2012] [Zhang and Kim 2012], and mesh refinement [Steinmann et al. 2006] [Mor and Kanade 2000] [Forest et al. 2002] are available. Such algorithms that work for finite element models can be paired with our solution algorithm to construct a simulation platform. Thus the scope of this paper does not include algorithms for simulation tasks other than solving the finite element system of equations. In addition, although only node cutting is demonstrated in this paper, many cutting and remeshing algorithms cut edges and surfaces, and these can also be solved using our method. A feature of the solution algorithm presented is its flexibility to work with structured and unstructured meshes as well as a number of different methods for adapting mesh geometry to respect a cut surface.

Our results show that the augmented approach works well on linear models exhibiting small deformations. This is valuable for the important subset of medical applications that involve small magnitude but medically significant deformations. For these applications linear elasticity can be an appropriate material model because it realistically simulates deformation at a lower computational cost than more complex models. A variety of simulation results have been published based on linear elastic models in both the computer graphics and biomedical engineering literature, in many cases with validation of model accuracy against empirical data derived from medical images or mechanical experiments. Examples include modeling the lens [Mikielewicz et al. 2013] and cornea [Gefen et al. 2009] of the eye, prostate biopsy [Jahya et al. 2014] and prostate brachytherapy [Crouch et al. 2007], and bone [Kravany et al. 1994] [Andreans et al. 2014] [Juszczyk et al. 2011]. We recognize that linear elasticity will not adequately model these organs and tissue types under all loading scenarios, but the community has found the linear elastic model to be useful for biomechanical modeling when limited forces are applied. Non-linear models are not considered in this paper but will be investigated in the future.

1.1 Our Contributions

The three main contributions of this work are:

— a unified augmented matrix formulation of a finite element model that allows both continuous, unpredictable cutting, and imposition of new boundary conditions. This formulation keeps the original stiffness matrix as a submatrix to eliminate the necessity of re-factorization at each timestep.

— a hybrid solution approach that utilizes a direct solver and an iterative solver. The solution of the updated portion of a mesh is decoupled from the solution of the unchanged portion, facilitating fast updates when the percentage of mesh elements affected by topological changes is small. Preconditioning techniques for the iterative part of the solution method are also discussed.

— acceleration of the solution algorithms by exploiting sparsity in both the matrices and the vectors. A complexity analysis is presented using graph theory concepts applied to the accelerated solution method.

1.2 Article Organization

This paper is organized as follows. Section 2 reviews previous work on the real-time solution of physics-based models and finite element equations, Section 3 presents our new augmented method for assembling a finite element system of equations and accounting for changes in mesh connectivity and boundary conditions via updates to stiffness matrix factors. Section 4 presents speed and accuracy results from finite element deformation and cutting experiments with models of various size. Finally, Section 5 discusses conclusions and directions for future work.

2. PREVIOUS WORK

Beginning with Terzopoulous et al. [1987] [Terzopoulous and Fleischer 1988], physics-based deformable models have been used for animation and simulation. By the mid-1990’s, a variety of work specific to surgery simulation began to appear [Cover et al. 1993] [Bro-Nielsen and Cotin 1996]. This section reviews existing approaches for computing physics-based deformation solutions, with a particular focus on methods that involve finite element analysis and cutting. Methods are categorized according to whether they use a direct solution approach with pre-computation, an iterative solver, or a combination of both.

2.1 Pre-computation Approaches

Pre-computation strategies accelerate the solution step of a simulation by shifting the bulk of the computational burden to a preprocessing stage. The bottleneck in a finite element simulation is the solution of a system of linear equations, $Ka = f$, where K is the stiffness matrix, a is a vector of nodal displacements, and f is a vector of nodal forces. Precomputation methods such as [Zhong et al. 2005] minimize the time required to calculate the solution vector by inverting K before a simulation begins so that a can be directly computed via the multiplication $a = K^{-1}f$ during the simulation. Since K^{-1} is dense, condensation methods such as [Bro-Nielsen and Cotin 1996], [Bro-Nielsen 1998], [Berkley et al. 2004], and [Lee et al. 2010] further reduce computation time by producing from the full inverse matrix a smaller dimension one that contains only the equations necessary to compute a solution for a small subset of the nodes, such as a set of surface nodes. The inability to compute a solution for nodes not included in the pre-selected subset poses a problem for applications that involve cutting. The Sherman-Morrison-Woodbury update formula [Hager 1989] has been used to address this by allowing selected degrees of freedom to be added back into a condensed stiffness matrix as they are needed. This approach was suggested by James and Pai [1999], and later was used in needle insertion simulation [DiMaio and Salcudean 2002] and [DiMaio 2003], and in a cutting simulation [Zhong et al. 2005]. The approach is most successful when access to a small number of degrees of freedom needs to be added to an already condensed system. It becomes computationally intensive and slow as the added number of degrees of freedom increases and is impractical for applications that require cutting with non-trivial remeshing.

A variation on the precomputed inverse approach sharing some similarities with our work is the precomputed stiffness matrix factorization described by Turkciyiah [2011] which updated a Cholesky factorization to accommodate the addition and modifica-
tion of discontinuous basis functions along a cutting path. While our work also updates the solution to a system of equations involving the stiffness matrix, it does so without updating the factors by solving a Schur complement system with an iterative solver. Hence our method supports any local mesh modification, whether from remeshing or addition of basis functions; consequently our method’s update process substantially differs from Turkiyyah’s work.

Solution techniques that rely on the superposition principle such as [Cotin et al. 1999], [Picinbono et al. 2002], and [Sedef et al. 2006] pre-compute and record the set of node displacements that result from a constraint being applied to a single node. This computation is repeated for every node that might be subject to a constraint, and all the results are stored. At runtime nodal displacements are computed as a linear combination of the stored results. For some applications this approach can closely approximate the ideal solution, but without modification it cannot handle changes in mesh connectivity.

Pre-computed Green’s functions have also been used by Nikitin et al., [2002] and James and Pai [2003] to quickly compute deformation solutions for subsets of mesh nodes. Similarly, the banded matrix method proposed by Berkley et al. [1999] prioritizes and re-arranges the rows and columns of a stiffness matrix based on node type, then factors the stiffness matrix in such a way that a fast update is provided only for the highest priority nodes. In both cases, solutions for internal nodes are generally not computed.

A limitation generally shared by pre-computation approaches is that results produced in the pre-computation phase are invalidated when the topology of the mesh changes, so cutting and remeshing require special consideration. Constraint removal is a pre-computation approach that requires cutting paths to be known a priori. Lindblad and Turkiyyah [2007] and Sela et al. [2007] have demonstrated how duplicate nodes along a cutting path can be constrained to move together until they are cut, at which time the constraint is removed to open up a predefined cut.

Discontinuous basis functions provide a more flexible cutting scheme that has been used in concert with pre-computation. This approach was originally introduced in the engineering literature as a way of studying crack formation [Mos et al. 1999] and more recently has been applied to the problem of cutting in surgical simulations [Vigneron et al. 2004] [Turkiyyah et al. 2011]. Unpredictable and arbitrary cutting paths are accommodated through the addition of new degrees of freedom that use discontinuous interpolation functions to account for mid-element breaks in nodal influence. The Turkiyyah work has important similarities to our work, in that both approaches progressively update the solution of the stiffness matrix equation. However, an important distinction is that our work maintains a finite element mesh that respects cut surfaces by remeshing areas as needed, while the Turkiyyah work maintains separate, distinct meshes for graphic rendering and for computation of the finite element solution. In their method rendered surfaces are remeshed as needed but the finite element equations accommodate cutting through the addition of discontinuous basis functions without out remeshing. As shown in [Lindblad and Turkiyyah 2007], an update procedure similar to the Sherman-Morrison-Woodbury update can be employed to update a pre-computed inverse stiffness matrix to account for the new degrees of freedom. Because the complexity of Sherman-Morrison-Woodbury update is cubic with respect to the number of matrix rows and columns changed, this works well only when the modifications are very limited.

Nonlinear elastodynamics problems in which the nonlinearities are due to rotations within an object have been solved using a corotational approach in [Hecht et al. 2012]. They approximate the rotation by applying an average of the rotations of the surrounding elements to a node. They compute the solution by updating the Cholesky factors of the system matrix by exploiting the nonzero pattern of the factor due to a nested dissection ordering, observing as we have done here that only the submatrices of the factor that lie on a path in the elimination tree from a submatrix to the root of the tree are affected. In order to have the simulations run fast, they trade-off an increased error tolerance for time, by choosing which submatrices in the factors to update. There are major differences between our work and theirs. They have applied their work to nonlinear problems where rotations are the major source of the non-linearity, while our work in this paper applies to linear problems. Our augmented matrix approach models the stiffness system exactly and the solutions should be identical to the original system in exact arithmetic. They have not applied their work to cutting problems addressed in this work, and it would require the ability to handle changes in the mesh topology. The way the two approaches exploit sparsity is also different. Hecht et al. have chosen to update selected submatrices of the Cholesky factors, and this requires dynamic updates to the large datastructure that stores the Cholesky factor and the update matrices, increasing the storage needs. Our approach is to update the solution but not the Cholesky factors, by implicitly solving a Schur complement system with a Krylov space solver, without forming the Schur complement matrix. We exploit the sparsity not only in the factor, but also in the right-hand-side vectors and the solutions, as described in Sec. 3.3 and the Appendix. The time complexity of the update step is bounded linearly by the number of nonzeros in the (static) Cholesky factor (and the number of iterations of the Krylov space solver) in our case, but the corotational approach cannot be bounded in this manner since the factors are updated.

Finally we consider the CHOLMOD approach of Chen, Davis and Hager [2008] for updating the Cholesky factors when rows or columns are added or deleted from the matrix. This algorithm relies on dynamic supernodal updates of the Cholesky factor. Unfortunately the number of columns to be added or deleted (change in the rank of the factor) during the cutting of meshes is much larger than can be efficiently performed with this software since we need to remesh around the cut. Hecht et al. [2012] have come to similar conclusions for their problem. Furthermore, dynamic updates to the large sparse Cholesky factor and update matrix data structure are expensive, and instead we work with an implicit Schur complement approach whose time complexity can be bounded linearly by the size of the Cholesky factor.

2.2 Iterative Solvers

Iterative solvers do not share the same limitations as pre-computation methods because all of the calculations needed to produce a solution occur at runtime. Thus iterative solvers can be successfully applied when stiffness matrix updates are caused by topological mesh changes. However, using an iterative solver does require that attention be paid to issues of convergence and stability.

Conjugate Gradient solvers have been frequently used with finite element simulations [Frank et al. 2001] [Nienhuys and van der Slapen 2001] [Courtecuisse et al. 2010]. The popularity and relatively straightforward implementation of the Conjugate Gradient algorithm make the method a good benchmark for comparisons with alternative solution methods. Conjugate Gradient implementations that take advantage of sparse matrix-vector multiplication have been used for interactive applications and can be accelerated with parallel [Chentanez et al. 2009] and GPU implementations [Wu and Heng 2004]. However, the simulation community contin-
uses to seek solution methods that outperform Conjugate Gradient, as real-time performance on higher resolution models promises improved realism.

Some of the most recent work in interactive finite element simulation has explored the use of multigrid solution methods [Dick et al. 2011a] [Zhu et al. 2010] [Georgii and Westermann 2006] [Wu and Tendick 2004]. Multigrid methods are among the most efficient iterative solution approaches and accelerate convergence by reducing error at multiple spatial resolutions. However, they also have higher fixed overhead costs than methods such as Conjugate Gradient. A GPU implementation of multigrid by Dick et al., [2011b] has demonstrated further speed improvement. Preconditioning can also be used to speed up the iterative solvers. In [Courtecuisse et al. 2010], the authors have demonstrated the asynchronous update of Cholesky factors for preconditioning on a separate thread. The asynchronous update of the factors is similar to our re-factorization scheme. The need for a multi-resolution mesh makes multigrid naturally suited for structured meshes, with hexahedral grids typically being used. Although hexahedral grids do not lend themselves to smooth cutting surfaces, recent work by Zhu et al. [2010] has demonstrated a way to incorporate cutting into a simulation with a multigrid solver.

A final category of iterative solvers is explicit integration methods. Explained in detail in [Bathe 1996], it was originally suggested for use in surgery simulation by Bro-Nielsen [1998] and also implemented in the software suite described in [Joldes et al. 2009]. Explicit integration has been successfully used in real-time simulation with dynamic and non-linear finite element models [Wu et al. 2001], and has been used in simulations involving surgery [Wittek et al. 2010] and cutting [Serby et al. 2001]. Care must be taken in selecting the time step size for explicit integration because it can be numerically unstable if the time steps are too large.

2.3 Hybrid Solution Methods

Some simulations have been implemented using hybrid approaches that use two or more solution methods. Typically, some portion of a model is designated as susceptible to cuts and deformation while the remainder is subject only to deformation. The strategy is to apply a fast pre-computation approach to the portion of a model that cannot be cut and apply a slower method that supports cutting to the remainder. For example, Wu and Heng [2005] [Heng et al. 2004] combine the use of condensation and Conjugate Gradient solvers, while Cotin et al. [2000] combine the use of a linear superposition method with explicit integration applied selectively to the dynamic, cuttable portion of a mesh. Kocab et al. [2009] provided further support for this approach by describing a framework for building a consistent finite element simulation when different regions of the mesh are solved at different update rates.

3. METHODS

The augmented matrix approach presented here is a hybrid solution method that employs both direct and iterative solution algorithms without restricting cutting to a specific part of a model. An LDLT factorization computed by a direct solver is used in conjunction with the generalized minimal residual method (GMRES), an iterative algorithm. Applied together, these methods compute fast and accurate solution updates for a finite element model as it undergoes stiffness matrix changes, including topological changes due to cutting.

This section is organized into three parts. First we show how matrix augmentation can be used to express changes to a stiffness matrix. Next we outline the steps required to solve an augmented system of finite element equations. Finally, we detail how the sparsity inherent in the equations can be exploited to maximize the efficiency of the implementation.

3.1 Augmented Finite Element Matrices

In an elastostatic finite element model, an object is represented by a discrete mesh governed by a system of linear equations $Ka = f$, where K is the $n \times n$ global stiffness matrix, a represents nodal displacements, and f represents forces applied to mesh nodes. These are finite element matrices and vectors that are constructed using standard finite element methods [Bathe 1996]. Here n is the number of degrees of freedom in the model; for a 3D solid model n equals three times the number of mesh nodes.

If the ith degree of freedom is involved in a change to the model, the ith row and the ith column of K will be modified to reflect the change in its relationship with the rest of the mesh. Changing any portion of K invalidates a previous factorization, thus necessitating a re-factorization or an update. For a 3D finite element model represented on a mesh with good aspect ratios, stiffness matrix re-factorization can be performed in $O(n^3)$ operations [Lipton et al. 1979]. While this is better than the $O(n^3)$ complexity of matrix inversion, it does not provide the solution speed needed for interactive simulations.

The augmented formulation reflects changes to any limited portion of K while preserving the utility of its pre-computed LDLT factors. We rely on an effective column replacement procedure applied to a matrix as follows. Suppose we want to replace the third column of a matrix K^0 in a system with a vector k and compute the solution to the modified system. We can form the following augmented system of equations that, if exact arithmetic is used, will yield the same solution as the modified system after appropriate permutation of the solution vector.

$$
\begin{bmatrix}
K^0 & k \\
0 & a_3 \\
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
z_3 \\
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
\end{bmatrix},
$$

where e_3 is the third row vector of the identity matrix, and z_3 is a placeholder variable at the third component of the solution vector.

Notice that multiplying the a vector by the last row of the augmented matrix constrains z_3 to be 0, and thus the whole third column of K^0 is multiplied by 0, canceling its effect on the system of equations. As the variable a_3 is multiplied by k, this column acts as a replacement for the third column of K^0. This augmentation can be cascaded to replace multiple columns at the same time.

Suppose K, the global stiffness matrix at time $t > t_0$, differs from K^0, the initial stiffness matrix at time t_0, by m columns. We can use the aforementioned effective column replacement procedure on these m columns to form an equivalent, augmented system of equations

$$
K^Aa^A = f^A,
$$

where superscript A suggests that the matrix and vectors are in augmented forms.

All topological mesh changes, including those resulting from cutting or element subdivision, can be represented in a finite element system of equations by replacing or deleting existing stiffness matrix columns and expanding the matrix to accommodate...
new columns. As described in [Bathe 1996], the global stiffness matrix for a model is assembled by summing the contributions of the stiffness matrices of the individual elements. When a mesh is cut, the affected elements can be removed from the mesh by subtracting their contributions from the global stiffness matrix. Then a set of replacement elements that respect the cut can be added to the global stiffness matrix using the standard assembly procedure. For a large mesh with a localized cut, this results in a small percentage of columns in the global stiffness matrix being changed. These changes can be implemented for a previously factored matrix using the aforementioned matrix augmentation technique.

Similarly, the imposition of Dirichlet boundary conditions that specify the displacements of selected mesh nodes is accomplished through the removal of the associated degrees of freedom from the finite element equations. In the standard formulation this is accomplished by deleting the associated rows and columns from the stiffness matrix. In the augmented matrix formulation, degrees of freedom are removed via steps that resemble the effective column replacement procedure in Eqn. 1. The following example illustrates removal of the third degree of freedom from the augmented system.

\[
\begin{bmatrix}
 K^0 & e_3 \\
 e_3 & 0
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 z_3 \\
 a_4 \\
 \vdots \\
 -f_3
\end{bmatrix}
= \begin{bmatrix}
 f_1 \\
 f_2 \\
 0 \\
 f_4 \\
 0 \\
 0
\end{bmatrix}
- \begin{bmatrix}
 a_3 K e_3
\end{bmatrix}
\]

As seen from Eqn. 1, the last row constrains \(z_3 \) to be 0. Performing the multiplication of the third row yields

\[
K_{33} a_1 + K_{32} a_2 + K_{34} a_4 + \cdots - f_3 = -K_{33} a_3.
\]

Substituting \(z_3 = 0 \) and rearranging the terms would get back the third row of the standard formulation. Similarly, performing the multiplication of the \(i \)th row other than the third row yields

\[
K_{i3} a_1 + K_{i2} a_2 + K_{i4} a_4 + \cdots = f_i - K_{i3} a_3,
\]

which is identical to the \(i \)th row of the standard formulation after substitution of \(z_3 = 0 \) and rearrangements of terms.

Here \(f_3 \) is moved from the right-hand-side vector to the solution vector since the force applied to the third degree of freedom becomes unknown after the imposition of Dirichlet boundary condition. Notice the similar structure of Eqns. 1 and 3, demonstrating that both topological changes and imposition of Dirichlet boundary conditions can be accomplished using a unified augmentation procedure. Next we provide the complete algorithm for formulating the augmented system that supports both replacement and expansion affecting multiple matrix columns.

In the ensuing discussion, any matrix or vector without a superscript is assumed to refer to the model at some time \(t > t_0 \). At the beginning of a simulation the augmented system is identical to the standard finite element system at time \(t_0 \). For time steps \(t > t_0 \), \(K^A \) retains \(K^0 \) as a sub-matrix so that pre-computed factors of \(K^0 \) remain useful, and new rows and columns contained in rectangular matrices \(J \) and \(H \) are appended to account for the updates in \(K \). Mathematically, \(K^A \) has the form

\[
K^A = \begin{bmatrix}
 K^0 & 0 & J \\
 0 & I & H \\
 J & H & 0
\end{bmatrix}
\]

Here \(J \) is the identity matrix with dimension equal to the number of degrees of freedom added to \(K \) at times \(t > t_0 \) corresponding to possible new nodes added to the mesh due to the cut. The columns of \(J \) inserted into \(K^A \) are effectively replaced by new columns in \(K \). As shown below, \(J \) contains a copy of all columns of \(K \) that have been added or changed, and \(H \) contains rows from the identity matrix. The matrices \(J \) and \(H \) are defined as

\[
J_{i,i} = \begin{cases}
 K_{i,i} & \text{if } L_i \notin \mathcal{D} \\
 I_{i,i} & \text{if } L_i \in \mathcal{D}
\end{cases}, \quad H_{i,i} = I_{i,i}.
\]

Here \(\mathcal{D} \) is the set of degrees of freedom constrained by Dirichlet boundary conditions, and \(\mathcal{L} \) is an accessory data structure that maps the indices of columns and rows in \(J \) and \(H \) to the indices of columns in \(K^0 \) to be replaced, i.e. the \(i \)th column of \(J \) replaces the \(\mathcal{L}^i \) column of \(K^0 \). Hence, the \(i \)th column of \(J \) contains a copy of the \(\mathcal{L}^i \) column of \(K \).

Augmented displacement and force vectors must have sizes and degree of freedom orderings consistent with the augmented stiffness matrix. The augmented displacement vector, \(a^A \), can be partitioned into two parts denoted \(a_1 \), a vector of length \(n \), and \(a_2 \), a vector of length \(m \). Here

\[
a^A = \begin{bmatrix}
 a_1 \\
 a_2
\end{bmatrix},
\]

\[
(a_1)_i = \begin{cases}
 a_i & \text{if } i \notin \mathcal{L}, \\
 z_i & \text{if } i \in \mathcal{L}
\end{cases},
\]

\[
(a_2)_i = \begin{cases}
 a_{\mathcal{L}_i} & \text{if } i \notin \mathcal{D}, \\
 -f_{\mathcal{L}_i} & \text{if } i \in \mathcal{D}
\end{cases}.
\]

As in Eqns. 1 and 3, the \(z \) terms are constrained to have a value of zero, the \(a \) terms represent unknown nodal displacements, and the \(f \) terms represent the unknown nodal forces when a new Dirichlet boundary condition is imposed.

The augmented force vector is also partitioned into two parts: \(\hat{f} \) of length \(n \), and a zero vector of length \(m \). Some components of \(\hat{f} \) have terms subtracted to account for imposition of new Dirichlet boundary conditions. Here

\[
f^A = \begin{bmatrix}
 \hat{f} \\
 0
\end{bmatrix},
\]

\[
\hat{f} = \begin{cases}
 f_i - \sum_{j \in \mathcal{D}} K_{i,j} a_j & \text{if } i \notin \mathcal{D}, \\
 -\sum_{j \notin \mathcal{D}} K_{i,j} a_j & \text{if } i \in \mathcal{D}
\end{cases}.
\]

The augmentation procedure can be summarized by the following four steps.

1. Construct the accessory data structures \(\mathcal{L} \) and \(\mathcal{D} \).
2. Form matrices \(J \) and \(H \) using Eqns. 5 and 6. Append \(J \) to the right side of the stiffness matrix, \(K^0 \), and append \(H \) to its bottom as shown in Eqn. 4.
3. Form the right-hand-side vector \(f^A \) using Eqns. 10 and 11.
4. After computing the solution, copy terms in \(a^A \) to the appropriate positions in the nodal displacement and force vectors as indicated by Eqns. 8 and 9, discarding the \(z_\mathcal{L} \) terms.
3.2 Solution Method

Since we assume a conservative material model, the reduced stiffness matrix K is guaranteed to be symmetric positive definite. Thus, it can be factored as $K^0 = L_0 D_0 L_0^\top$, where L_0 is a lower triangular matrix and D_0 is a diagonal matrix. If new degrees of freedom are added to the model in subsequent time steps, the factors can be padded as follows.

$$
\begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
$$

Thus, it can be factored as $K = L D L^\top$, where L is guaranteed to be symmetric positive definite.

3.3 Accelerated Implementation Using Sparsity

3.3.1 Exploiting Sparsity in the Solution Steps. A careful examination of the sparsity of the matrices and vectors in Eqs. 17 and 16 allows us to maximize the efficiency of our implementation. The sparsity analysis is expressed using concepts from graph theory that are outlined in the Appendix. Each of the three solution steps outlined for Eqs. 16 and 17 in Section 3.2 involves computation with sparse vectors and matrices. We carefully exploit this sparsity to avoid unnecessary computation.

Sparsity of Solution Step 1:

The right hand side of Eqn. 17 is evaluated by computing

$$HR^{-1}f = HL^{-1}D^{-1}(L^{-1}f).$$

By applying Thm. 1 given in the Appendix, we find that $\text{struct}(L^{-1}f) \subseteq \text{closure}_L(f)$. This result says that the nonzero components in the vector in the left-hand-side are given by components that can reach the nonzero components in the vector f by an edge in a directed graph representation of the matrix L. Details are in the Appendix. Hence only the submatrix of L corresponding to $\text{closure}_L(f)$ is needed to evaluate the term $L^{-1}f$. We observe that the vector f is typically sparse because external forces are only applied to a small fraction of the nodes while a mesh is being cut or deformed.

Consider that after we have computed the vector y in Eqn. 18 it is projected through multiplication by the sparse matrix H. H is composed of a few rows from an identity matrix, and it has many more columns than rows. The columns of H contain nonzero components and consequently all but m components of y are multiplied by 0 and do not contribute to the value of the right-hand-side vector. Let the components of y necessary for the calculation be denoted \hat{y}, such that $Hy = \hat{y}$. Then

$$\begin{cases}
\hat{y}_i &= y_i & \text{if } H_{i,i} \neq 0, \\
0 &= y_i & \text{otherwise.}
\end{cases}$$

By applying Thm. 2 from the Appendix, we find that only the submatrix of L corresponding to $\text{closure}_L(f)$ is needed to complete the evaluation of the right-hand-side of Eqn. 17.

Sparsity of Solution Step 2:

During each GMRES iteration in solution step 2, the solution estimate a_2 is projected by a sparse matrix J to a larger space.

$$\begin{cases}
HR^{-1}J a_2 &= HL^{-1}D^{-1}L^{-1}(Ja_2),
\end{cases}$$

Because the product vector Ja_2 is sparse, only the submatrix of L corresponding to $\text{closure}_L(Ja_2)$ is useful. As in step 1, the vector w is projected through multiplication by H. Hence, during the backward substitution only a submatrix of L^\top corresponding to $\text{closure}_L(w)$ is needed for the computation.

Sparsity of Solution Step 3:

Since in Step 3 both f and Ja_2 are sparse, the difference vector $f - Ja_2$ is also sparse. Hence the forward substitution can be sped up by considering only those needed rows of L. However, since the solution vector a_1 is not projected by a sparse matrix, the whole matrix L^\top is needed in the backward substitution.

We note that in both Steps 1 and 3 the triangular solves are only done once, so we modify these routines to accept two additional inputs that indicate the sparsity of the right-hand-side vector and the indices of needed components in the solution vector. However, the
Table I

A summary of the calculation steps required by the augmented method is shown, along with a complexity bound for each step. Here n is the order of the initial stiffness matrix, m is the number of columns changed by cutting, and $|L|$ in solution steps 1, 2 & 3 is the number of non-zeros in L, which is bounded by $O(n^{4/3})$ for 3D meshes and $O(n \log n)$ for 2D meshes. The complexity upper bound for an entire update iteration is $O(|L| \cdot n_{\text{iter}})$, where n_{iter} is the number of GMRES iterations needed for convergence.

<table>
<thead>
<tr>
<th>Computation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization: $t = t_0$</td>
<td>$O(n^2)$ for 3D meshes; $O(n^{3/2})$ for 2D meshes</td>
</tr>
<tr>
<td>1. Real-time update steps: $t > t_0$</td>
<td></td>
</tr>
<tr>
<td>1. Update K</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>2. Compute J and H</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>3. Solution Step 1</td>
<td>$O(</td>
</tr>
<tr>
<td>4. Solution Step 2</td>
<td>$O(</td>
</tr>
<tr>
<td>5. Solution Step 3</td>
<td>$O(</td>
</tr>
</tbody>
</table>

The complexity for each step in the algorithm, including the pre-computation phase and the real-time update loop, is detailed in Table I. Summing the complexity of each of the real-time update steps for a 3D model and simplifying the expression to retain only the dominant terms results in a complexity bound for an update iteration of $O(n^{4/3} \cdot n_{\text{iter}})$, where n_{iter} is the number of GMRES iterations needed for convergence. Note that n_{iter} is influenced by m, the number of columns updated, rather than n, the dimension of the stiffness matrix.

3.4 Complexity Analysis

Key parts of the complexity analysis hinge on the sparsity of the stiffness matrix, the complexity of the LDL^T factorization, and the sparsity of the factors. The number of non-zeros in each column of the global stiffness matrix is dependent on the connectivity between nodes. Since in a well-formed mesh the number of edges incident on a single node is limited by geometric considerations, the number of non-zeros per column can be bounded by a constant that is independent of the total number of degrees of freedom in the model. Due to this assumption and since sparse matrix data structures are used in this work, the complexity of all the steps in the augmented algorithm that update or otherwise operate on stiffness matrix columns is dependent only on the number of columns affected, not the number of rows in the matrix.

The derivation of complexity bounds for the LDL^T factorization can be found in [Lipton et al. 1979]. Their work shows that using efficient sparse matrix algorithms, an LDL^T factorization of an $n \times n$ stiffness matrix for a 3D finite element model can be accomplished with $O(n^2)$ operations; the resulting lower triangular matrix L will contain $O(n^{1/3})$ non-zeros if the mesh elements have good aspect ratios. Therefore, without imposing any restrictions on the force vector, we can say that the triangular solves needed in steps 1 and 3 of the solution algorithm described in Section 3.2 can be completed in $O(n^{1/3})$ operations.

Considering the sparsity analysis in the previous section raises the question of whether sparsity could provide a basis for a tighter complexity bound. In solution step 1, the complexity depends on $|\text{closure}_L(f)|$ and $|\text{closure}_L(g)|$. Theorem 3 from the Appendix informs us that the sizes of the closures depend on the length of the path from the root of the elimination tree to the nodes in $\text{struct}(f)$ and $\text{struct}(g)$. If those nodes are close to the root, the sizes would be small constants, independent of n. On the other hand, if they are leaves of the elimination tree, the sizes would be close to n, and the cost of the triangular solve step would be linear in the number of nonzeros in L, $O(n^{4/3})$. In general, the cost lies in between these two extremes, and the upper bound of $O(n^{4/3})$ is not tight.

3.5 Preconditioning

The GMRES iteration in step 2 can be preconditioned to reduce the number of iterations. One possible preconditioner is a matrix M that approximates $HR^{-1}J$ in Eqn. 17. However, there are two drawbacks of this approach: neither forming the matrix $HR^{-1}J$ nor minimizing $\|M(HR^{-1}J) - I\|$ is computationally cheap. Also, M has to be recomputed whenever there is a change to the mesh. Another possible preconditioner is a matrix product HSJ such that S approximates R^{-1}. In this case, S only needs to be computed once and can be reused in later time steps, even after changes to the mesh. In this paper, we use two approximations of S: the inverse of D in the pre-computed LDL^T factors of R (for all meshes), and a tridiagonal sparse approximate inverse (SPA) [Benson and Frederickson 1982] of the matrix R (for Stanford Bunny, brain and eye meshes).

3.6 Re-factorization

The augmented matrix approach produces a solution for a finite element model with a time-varying stiffness matrix more quickly than a full re-factorization would allow, so long as m, the number of modified columns, is sufficiently small. As changes to a stiffness matrix accumulate across a growing number of columns, the augmented method begins to slow down because the size of the a_2 vector also increases. To maintain fast solution speeds for an interactive simulation, we prevent m from growing indefinitely by periodically re-computing a full LDL^T factorization of K in a process that runs concurrently with the simulation loop. Fig. 1 shows the changes in the equations before and after re-factorization. Let m' denote the number of columns modified due to cutting after the re-factorization was initiated. When freshly computed factors are used to replace the original factors, the size $m + m'$ is reduced to...
The rate at which matrix changes accumulate will vary widely and depend both on the nature of a simulation and how quickly and aggressively a user manipulates a model. Even considering a single user and a single simulation, the growth rate of \(m \) will vary unevenly across time as an interactive task progresses through moments of cutting, grasping, and pulling. Since the speed of our solution method is dependent on \(m + m' \), the simulation update rate it provides is affected by the speed of mesh cutting and other manipulations. The best way to address this issue will be depend on the application, but in some contexts it is reasonable to limit the rate at which cutting can occur in order to maintain an desired update rate. Variability in the update rate arising from the re-factorization process can be smoothed by buffering the computed solutions.

To provide some context for how re-factorization will impact simulation speed, the results in Figs. 5, 7, 10a, 12 and 13 indicate the simulation step at which the cumulative time for mesh updates equals the time for matrix factorization, assuming one newly cut node per update and beginning with an empty list of mesh modifications. In practice, the list of recent mesh modifications will be non-empty when a re-factorization step completes, there will be update steps that involve changes to multiple nodes, and many update steps will not involve any topological mesh changes. Depending on these factors, actual simulation updates rates could be faster or slower when re-factorization concludes than the times shown in the graphs. It is also feasible to run multiple re-factorization processes concurrently, so that mesh changes get incorporated into the factors

\[
\begin{align*}
K^A & \rightarrow R' \quad \text{factorize} \\
\begin{bmatrix} R & J \\ H & 0 \end{bmatrix} & \rightarrow \begin{bmatrix} R' & J' \\ H' & 0 \end{bmatrix} \\
\text{changes} & \quad \text{accumulate} \\
\text{re-factorization} & \quad \text{is done} \\
\text{augmented system} & \quad \text{re-assembled}
\end{align*}
\]

Fig. 1: Re-factorization process

![Fig. 2: Test meshes are shown after cuts described in the experiments in Section 4.2.](image)

![Fig. 3: Renderings of brain and eye models are shown with incisions used in the experiments reported in Section 4.2. (a) The incision on the brain model shown is on the superior portion of the right frontal lobe. (b) The incision on the eye model shown is along the corneal limbus, to correct for astigmatism.](image)
as quickly as possible and the size of \(m \) is kept to a minimum. If multiple processors are available, this is one way to maximize the update rate since it is not necessary for one factorization process to complete before another one begins.

4. RESULTS

The augmented matrix solution method was evaluated through finite element deformation and cutting experiments with five model types. This section provides relevant implementation details and presents experimental data, including comparisons with both non-preconditioned and Jacobi-preconditioned Conjugate Gradient (CG) solvers. ILU0 and ILUT preconditioners for CG were tested, but the reduction in number of iterations did not compensate for the increased computation complexity per iteration.

4.1 Implementation

All experiments were conducted on a desktop computer with four 8-core Intel Xeon E5-2670 processors running at 2.6GHz with 20 GB cache and 256 GB RAM. All data represent an average timing from 20 runs.

The precomputed \(LDL^T \) factorizations of the stiffness matrices were computed using OBLIO, a sparse direct solver library [Do-\(\text{brian and Pothen 2006} \). Both the GMRES iterative solver used in solution step 2 and the CG solver used for comparison purposes were from the Intel Math Kernel Library (MKL). The remainder of the code was written by the authors.

All matrices were stored in sparse matrix format to reduce both the storage space and access time. Since the closure of a set of indices in the graph of a triangular matrix can be found effectively column by column, and OBLIO uses supernodes in matrix factorization, all matrices were stored in compressed sparse column (CSC) format for efficient column access.

4.2 Model Meshes

Five types of solid tetrahedral meshes were used to evaluate the augmented matrix solution method in comparison to a traditional CG method. Meshes are shown in Figs. 2 and 3.

1. **Elongated Beam**: A group of five elongated rectangular solids with varying lengths were generated. Nodes were placed at regularly spaced grid points on a \(5 \times 5 \times h \) grid, where \(h \) ranged from 4 to 1024. The largest beam mesh has 25,600 nodes and 81,840 elements. Each block mesh was anchored at one end of the solid. All elements had good aspect ratios and were arranged in a regular pattern. However, models with greater degrees of elongation produced more poorly conditioned systems of equations, as fixation at only one end meant that longer structures were less stable. Thus experiments with this group of meshes illuminate the way solver performance varies with stiffness matrix conditioning. The estimated condition numbers of the beam mesh stiffness matrices range from \(1.14 \times 10^3 \) to \(3.29 \times 10^{12} \).

2. **Brick**: A group of five rectangular brick solids with varying mesh resolutions were generated. Each of the models had the same compact physical dimension of \(1 \times 1 \times 2 \). An initial good-quality mesh was uniformly subdivided to produce meshes of increasingly fine resolution. These meshes allowed us to examine solver performance relative to node count for fixed model geometry. Similar to the beam meshes, zero-displacement boundary conditions were applied to one face of the block. The largest brick mesh has 18,081 nodes and 80,000 elements.

The estimated condition numbers of the brick mesh stiffness matrices range from \(2.19 \times 10^3 \) to \(1.18 \times 10^5 \).

3. **Stanford bunny**: A 20,133 node, 62,608 element mesh of the Stanford bunny [Turk and Levoy 1994] is used to demonstrate solver performance on an irregular mesh. Zero-displacement boundary conditions are applied to nodes on the bottom of the bunny’s feet. The bunny mesh stiffness matrix has an estimated condition number of \(6.17 \times 10^7 \).

4. **Eye**: Incisions into a human eye model [Crouch and Cherry 2007] were used to demonstrate applicability to surgery simulation. Clear cornea cataract incisions were made into two models with resolutions containing 4, 444 nodes and 14, 841 elements, and 16, 176 nodes and 52, 772 elements. Zero displacement boundary conditions were applied to the posterior portion of the globe. The eye mesh stiffness matrices have estimated condition numbers of \(2.66 \times 10^6 \) and \(1.62 \times 10^7 \) respectively.

Relaxing limbal incisions used to treat severe astigmatism were also simulated using the eye models. Simulation of the relaxing limbal incision procedure is of particular interest because the deformation induced by the incisions is not incidental to the procedure but rather is the motivating reason for performing the procedure. Astigmatism causes blurred vision due to an aspherical corneal surface, meaning the corneal curvature is higher along some cross-sections than others. This variation in curvature can be reduced for patients through limbal incisions that are carefully placed around the periphery of the cornea to create a flattening effect along the meridian of highest curvature. Although guidelines exist for selecting appropriate placement, depth, and length for these incisions, such guidelines make a number of assumptions about a patient’s eye anatomy and cannot fully account for individual variations in corneal topography and thickness. Thus, simulations of this procedure might be useful both for individualizing treatment plans and as a teaching tool in medical education. While the tissue motion that is induced by relaxing limbal incisions is measured in millimeters, the resulting change in the optics of the cornea can be very significant, correcting up to 3 diopters of astigmatism. Since the cornea is responsible for two-thirds of the focusing power of the eye, small changes in corneal curvature can have a large impact on visual acuity. A linear elastic material model is appropriate for this application because the deformations are small in absolute terms. However, large, medically important changes in patients’ refractive error result from these small deformations.

5. **Brain**: Two resolutions of a human brain model (contributed by INRIA to the AIM@SHAPE Shape Repository) were used to demonstrate applicability to surgery simulation on an organ of complicated structure. The models contained 23, 734 nodes and 81, 746 elements, and 50, 737 nodes and 167, 366 elements. Zero displacement boundary conditions were applied to the interior portion of the brain. The small brain mesh stiffness matrix has estimated condition number of \(4.64 \times 10^7 \). The condition estimation failed for the large brain mesh due to insufficient memory.

On average, the nodes in the brick meshes have a higher degree of connectivity than those in the elongated beam meshes. This is due to a greater proportion of surface nodes in the beam models versus interior nodes in the brick models. The increased connectivity leads to a higher percentage of non-zeros in the stiffness matrix factors and larger sizes for the closures referenced in Table 1.
Fig. 4: $\left| L_{\text{Ja}}(Ja) \right|$ vs. node count, shown for cutting steps 2, 8, and 16.

These differences have a significant impact on the relative performance of the solution methods. Fig. 4 compares $\left| L_{\text{Ja}}(Ja) \right|$ for the different test meshes during the cutting experiments. The set $L_{\text{Ja}}(Ja)$ is the largest of the closures referenced in the complexity analysis in Table I, and is a measure of the size of the triangular system to be solved. As expected, brick meshes have larger closures than the other two meshes.

4.3 Experiments

Performance was examined through two types of experiments: deformation of intact meshes, and deformation of meshes undergoing cutting.

4.3.1 Deformation of Intact Meshes. In this group of experiments, we applied an increasing number of non-zero essential boundary conditions to mesh nodes to create deformation. Fig. 5 shows how solution time varied with the number of constrained nodes for instances of the beam and brick meshes. It is interesting to note the dramatically different results for the beam meshes versus the brick meshes in these experiments. As shown in Fig. 5(a), the augmented method maintained a high update rate for the beam meshes throughout, and vastly outperformed the CG method. The beam deformation experiments ran so fast with the augmented method that the experiments concluded before there was time to compute a re-factorization. In the example shown in the figure, the update cycles ran at rates between 137–263 Hz.

For brick meshes, the augmented method outperformed CG as constraints were applied to the first one to two dozen nodes, but performance dropped as the number of constrained nodes increased, eventually resulting in similar update rates between the augmented method and CG. However, since the brick mesh experiments ran more slowly overall, re-factorization played a meaningful role in the augmented solution process. In the results shown in Fig. 5(b), a re-factorization process running concurrently with the solution loop completed after approximately 16 deformation steps. Thus we see that the augmented method outperformed CG by a modest margin in the brick deformation experiment.

Fig. 6 is a log-log plot that shows how solution times varied for different sizes of beam and brick meshes. These graphs show that the augmented method ran significantly faster than CG for the beam meshes except for the very smallest instance that had only 100 nodes. Most strikingly, on the largest beam mesh, which had 25,600 nodes, the augmented method provided updates at a rate of 113 Hz, while CG ran at 3×10^{-5} Hz. For the brick meshes, the augmented method ran faster than CG, although the margin was smaller.

4.3.2 Deformation of Meshes Undergoing Cutting. In this group of experiments we made an advancing planar cut into the volume of each mesh. As a cut progressed, a duplicate of each node along the cut path was added to the mesh, and connectivity was modified so that elements on opposite sides of the cut became separated. These changes required expanding the stiffness matrix and modifying existing entries in the stiffness matrix at dozens of locations each time a node was duplicated. Opposing force vectors were applied to selected surface nodes to pull the cut faces apart. Fig. 2 shows the three test meshes at the initial stages of cutting.

The differences between the results for the beam and brick meshes are even more pronounced for the cutting experiment than for the deformation experiment. Fig. 7(a) shows that the augmented method outperformed CG in the beam cutting experiments, providing updates in the range 49–145 Hz in the time period before the re-factorization completed. CG provided updates in the range 0.26–172 Hz for the same cutting steps, but failed to converge to any solution for seven of those steps. However, CG provided consistently better performance for the brick mesh cutting experiment, as shown in Fig. 7(b). The zig-zag appearance of the CG results was caused by the connectivity pattern of nodes in the tetrahedral brick mesh. Periodically, nodes with a higher degree of connectivity were cut. These cutting steps required a larger number of changes to the stiffness matrix and resulted in periodically slower CG solution times. The connectivity pattern is illustrated in Fig. 8.

Fig. 9 shows that the beam vs. brick performance trend held over a variety of mesh sizes. The augmented method provided the fastest updates when cutting a beam mesh, maintaining an update rate over 50 Hz even with a relatively large cut in a 25,600 node mesh. Particularly for the larger beam meshes, CG was often unable to provide any solution. However, CG reliably provided the fastest updates when cutting a brick mesh.

Results from the bunny mesh cutting experiment are shown in Fig. 10. Here we find that the non-preconditioned augmented
method performed best, with a minimum update rate of 14 Hz during the period before re-factorization completes. As seen in some of the previous experiments, the update rate provided by the augmented method diminishes as the size of the cut and complexity of the attendant remeshing grows. However, the augmented method is still faster than the 0.3–6.8 Hz update rate provided by preconditioned CG in this experiment. Fig. 10(b) shows that the bulk of the computation time is spent in the GMRES iteration of Step 2 in the bunny mesh cutting experiment. The dominance of the GMRES iterations in the distribution of computing time is also a feature of the experiments with beam and brick meshes. However, Fig. 11(a) demonstrates that the number of GMRES iterations needed for convergence does not grow with model size.

Results from the eye mesh cutting experiments are shown in Fig. 12, and those from the brain mesh cutting experiments are shown in Fig. 13. Here we show that augmented method outperformed the CG method with and without preconditioning. However, the update rate for the brain meshes remains lower than desired for interactive simulation, and further reduction of the solution times for large, dense meshes is a priority for future work.

The experimental results also indicate that the augmented solution method does not lead to problems with solution accuracy. Fig. 11(b) shows that the relative error of the computed solutions remains flat as a brick mesh is cut and increases only gradually as the less stable beam mesh is cut.

5. CONCLUSIONS AND FUTURE WORK

There are two primary reasons for the disparity between the beam mesh and brick mesh results. First, the beam meshes have a higher percentage of surface nodes, resulting in sparser matrix factors and smaller closure sizes, as shown in Fig. 4. Smaller closures result in faster execution of the augmented solution steps, particularly the GMRES iterations in Step 2. Thus we see that the structure of a mesh is an important factor in determining whether the augmented method will be a particularly efficient solution method for a given
problem. In general, the augmented method is particularly attractive for meshes that have larger amounts of surface area relative to their volume. The second reason for the wide disparity in results is that the brick meshes had particularly well-conditioned stiffness matrices while the beam meshes had more poorly conditioned stiffness matrices. Iterative methods can converge very slowly or fail to converge at all when systems are not sufficiently well-conditioned. In contrast, the direct solution approach provided by the augmented factors is more robust in poorly conditioned scenarios. We conclude that the augmented method is particularly appropriate when a problem would benefit from the robustness of a direct solution approach but also needs the flexibility to update the system due to cutting or other changes.

In summary, we have demonstrated the feasibility of using augmented matrices to provide fast updates for finite element models undergoing cutting and deformation. The augmented method has been experimentally shown to offer advantages both in speed and reliability for certain classes of problems. We plan to explore the applicability of this method to a wider range of problems in future work. One particular application to investigate is surgery simulation, where there is evidence that viscoelastic and hyperelastic material models are often appropriate for soft tissues modeling [Fung 1993] [Lapeer et al. 2010] [Marchesseau et al. 2010]. Non-linear material models can require stiffness matrix updates at each time step, even without cutting. However, in the case of tool-tissue interaction, acceptable non-linear accuracy might possibly be achieved by only updating the stiffness of a subset of the most deformed elements or those closest to the contact area. This raises the interesting possibility of using the augmented matrix method for fast updates of non-linear materials.

Another direction for future investigation is inspired by the variety of recent publications that have reported accelerated solution methods via GPU implementations [Dick et al. 2011b] [Courtecuisse et al. 2010] [Joldes et al. 2010] [Nvidia 2013]. Our augmented matrix solution method could likely be similarly accelerated if the triangular solves and/or GMRES algorithm were implemented in a way that makes efficient use of GPU processing.

APPENDIX

Graph theory concepts relied upon in the discussions of sparsity and complexity are outlined here. Included are the definitions and Theorems referenced in Section 3.3. Note that in this discussion the matrix A is nonsymmetric. We apply these results to the lower and upper triangular factors of the stiffness matrix K, although the results here are more general.

Definition 1. An $n \times n$ sparse matrix A can be represented by a directed graph $G(A)$ whose vertices are the integers $1, \ldots, n$ and whose edges are

\[\{(i, j) : i \neq j, \text{ and } A_{ij} \neq 0\}. \]

This set of indices is called the structure of A.

Definition 2. The transitive reduction of a directed graph $G(L)$ is the graph obtained by removing edges (i, j) whenever there is a directed path (that does not use the edge (i, j)) joining vertices i and j. An elimination tree of a Cholesky factor L is the transitive reduction of the directed graph $G(L)$ (in this case it is a tree rather than a directed acyclic graph). [Liu 1990]

Definition 3. The structure of a vector x with n components is

\[\text{struct}(x) := \{ i : x_i \neq 0 \}, \]

which can be interpreted as a set of vertices, W, of the directed graph of $G(A)$ such that $i \in W$ if and only if $x_i \neq 0$ when solving $Ax = b$ or $A\vec{x} = \vec{x}$. In this paper, for a vector x, closure$_A(x)$ refers to closure$_A(\text{struct}(x))$.

Definition 4. Given a directed graph $G(A)$ and a subset of its vertices denoted by W, we say W is closed with respect to A if there is no edge of $G(A)$ that joins a vertex not in W to a vertex in W; that is, $v_i \in W$ and $A_{ij} \neq 0$ implies $v_i \in W$. The closure of W with respect to A is the smallest closed set containing W,

\[\text{closure}_A(W) := \bigcap \{ U : W \subseteq U, \text{ and } U \text{ is closed} \}, \]

which is the set of vertices of $G(A)$ from which there are directed paths in $G(A)$ to vertices in W.

Theorem 1. Let the structures of A and b be given. Whatever the values of the nonzeros in A and b, if A is nonsingular then

\[\text{struct}(A^{-1}b) \subseteq \text{closure}_A(b). \]

The proof of Theorem 1 can be found in [Gilbert 1994].

Theorem 2. Suppose we need only some of the components of the solution vector x of the system $Ax = b$. Denote the needed components by \hat{x}. If A is nonsingular, then the set of components in b needed is closure$_A(\hat{x})$.

Proof. Let values be given for which A is nonsingular. Rename the vertices of $G(A)$ so that closure$_A(\hat{x}) = \{1, 2, \ldots, k\}$ for some $k \leq n$. Then $Ax = b$ can be partitioned as

\[
\begin{pmatrix}
B & D \\
C & E
\end{pmatrix}
\begin{pmatrix}
y \\
\hat{x}
\end{pmatrix}
=
\begin{pmatrix}
b \\
d
\end{pmatrix},
\]

where B is $k \times k$. By the definition of closure$_A(\hat{x})$, there is no edge (i, j) with $i \in \text{closure}_A(\hat{x})$ and $j \notin \text{closure}_A(\hat{x})$. Therefore $D = 0$. Then $By = d$. Since A is nonsingular, B is also nonsingular. Thus \hat{x} can be computed by solving only $By = d$, which implies only closure$_A(\hat{x})$ is needed to compute the components in x. \square

Theorem 3. Let $A = LL^\top$ be a Cholesky factorization and W be a subset of vertices in $G(L)$. If r is the root of the elimination tree T of L, then

\[\text{closure}_L(W) = \bigcup_{v \in W} \{ r \to v \}, \]

where $r \to v$ is the path from r to v in T, including all intermediate vertices along the path.

Proof.

(i) $\bigcup_{v \in W} \{ r \to v \} \subseteq \text{closure}_L(W)$.

For any edge between a node v and its parent u in T, there is an edge (u, v) in $G(L)$. By definition if $v \in \text{closure}_L(W)$, then $u \in \text{closure}_L(W)$. Since $W \subseteq \text{closure}_L(W)$, all ancestors of W must be in $\text{closure}_L(W)$.

(ii) $\text{closure}_L(W) \subseteq \bigcup_{v \in W} \{ r \to v \}$.

If a node $u \notin \bigcup_{v \in W} \{ r \to v \}$, there must be a path from a node
REFERENCES

NVIDIA. 2013. CUDA Toolkit 5.0 performance report.

Received April 2014; accepted December 2015
Fig. 6: Update rates are shown for the series of (a) beam and (b) brick meshes. CG results are shown with red lines, and augmented method results are shown with blue lines. Dotted lines show the results for deformation step #2 across the series of test mesh sizes. Dashed lines show results for deformation step #8, and solid lines for deformation step #16.
Fig. 7: Update rates are shown for the augmented and CG methods as a cut is advanced through a (a) beam mesh and (b) brick mesh.

Fig. 8: A portion of the tetrahedral brick test mesh. Node A has 13 connected nodes (colored in orange) whereas Node B only has 5 (colored in red).
Fig. 9: Update rates are shown for the series of (a) beam and (b) brick meshes. CG results are shown with red lines, and augmented method results are shown with blue lines. Dotted lines show the results for cutting step #2 across the series of test mesh sizes. Dashed lines show results for cutting step #8, and solid lines for cutting step #16.
Fig. 10: Timing results are provided for the bunny mesh cutting experiment. (a) Update rates are shown for the augmented and CG methods as a cut is advanced. (b) The allocation of computation time to steps of the augmented method is shown.
Fig. 11: (a) The maximum number of GMRES iterations required by the beam and brick meshes of a specific size. (b) Relative residual norm vs. cut depth. For a solution \(\hat{x} \) to the system \(Ax = b \), relative residual norm is defined as \(\|A\hat{x} - b\|_2/\|b\|_2 \).
Fig. 12: Timing results are provided for the eye meshes of (a) 4,444 nodes and (b) 16,176 nodes.
Fig. 13: Timing results are provided for the brain meshes of (a) 23,734 nodes and (b) 50,737 nodes.