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We present a finite element solution method that is well-suited for interac-
tive simulations of cutting meshes in the regime of linear elastic models.
Our approach features fast updates to the solution of the stiffness system of
equations to account for real-time changes in mesh connectivity and bound-
ary conditions. Updates are accomplished by augmenting the stiffness ma-
trix to keep it consistent with the changes to the underlying model, without
re-factoring the matrix at each step of cutting. The initial stiffness matrix
and its Cholesky factors are used to implicitly form and solve a Schur com-
plement system using an iterative solver. As changes accumulate over many
simulation time steps, the augmented solution method slows down due to
the size of the augmented matrix. However, by periodically re-factoring the
stiffness matrix in a concurrent background process, fresh Cholesky factors
that incorporate recent model changes can replace the initial factors. This
controls the size of the augmented matrices and provides a way to maintain
a fast solution rate as the number of changes to a model grows. We exploit
sparsity in the stiffness matrix, the right-hand-side vectors and the solution
vectors to compute the solutions fast, and show that the time complexity
of the update steps is bounded linearly by the size of the Cholesky fac-
tor of the initial matrix. Our complexity analysis and experimental results
demonstrate that this approach scales well with problem size. Results for
cutting and deformation of 3D linear elastic models are reported for meshes
representing the brain, eye, and model problems with element counts up to
167, 000; these show the potential of this method for real-time interactiv-
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ity. An application to limbal incisions for surgical correction of astigma-
tism, where linear elastic models and small deformations are sufficient, is
included.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling; I.6.3
[Simulation and Modeling]: Applications; I.1.2 [Symbolic and Algebraic
Manipulation]: Algorithms—Algebraic algorithms

Additional Key Words and Phrases: finite element, surgery simulation, real-
time, deformable model, cutting.

1. INTRODUCTION

A method to support interactively cutting or deforming solid fi-
nite element models by solving the time-varying equations quickly
is presented in this paper. Topological mesh modifications and
boundary condition changes are essential parts of many simulation
scenarios, particularly surgical simulations. Integrating support for
cutting with real-time finite element solution methods is a computa-
tional challenge, first because graphic and haptic rendering require
demanding update rates, and second because connectivity changes
due to cutting necessitate corresponding changes to the underlying
matrix equations. Such changes invalidate previous factorizations
or inverse computations for the stiffness matrix, requiring either
computationally expensive update procedures or solution via an it-
erative method.

Many simulations that involve cutting would ideally support
unpredictable cutting paths. Enabling unpredictable cutting can
require that the internal deformation of a solid model be com-
puted and tracked so that accurate cut surfaces are exposed as cuts
progress into a model’s potentially inhomogeneous interior. Thus
a desirable solution method would quickly compute the displace-
ment of all nodes in a 3D mesh while accommodating changes to
the mesh and equations due to cutting, variable pushing and pulling
forces, and changes to the fixed displacements (Dirichlet boundary
conditions) created by different fixation scenarios.

Our solution approach is to represent the changing mesh of a
linear elastic model with an augmented 2 by 2 block matrix in
which the (1,1) block is fixed, the (2,2) block is zero, and the other
blocks vary. We then use an implicit solution approach to the Schur
complement system, in which we exploit the sparsity of the ma-
trices involved. Our current solution approach combines a matrix-
factorization based method for the (1,1) block with a Krylov space-
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based iterative solver for the Schur complement. A detailed treat-
ment of the algorithm’s complexity shows that performance scales
well with model size while supporting arbitrary cutting of any valid
finite element mesh. Periodic re-factorizations of the stiffness ma-
trix are performed concurrently with the real-time solution loop so
that changes to the model eventually become directly incorporated
into the non-augmented stiffness matrix factors. This allows the list
of nodes affected by accumulated changes to be periodically re-
duced, limiting the growth in solution time that can occur as the list
of mesh modifications grows longer over time.

A variety of existing algorithms for mesh generation [Goksel
and Salcudean 2011] [Mohamed and Davatzikos 2004] [Lederman
et al. 2010], collision detection [Teschner et al. 2005] [Spillmann
and Harders 2012] [Zhang and Kim 2012], and mesh refinement
[Steinemann et al. 2006] [Mor and Kanade 2000] [Forest et al.
2002] are available. Such algorithms that work for finite element
models can be paired with our solution algorithm to construct a
simulation platform. Thus the scope of this paper does not include
algorithms for simulation tasks other than solving the finite ele-
ment system of equations. In addition, although only node cutting
is demonstrated in this paper, many cutting and remeshing algo-
rithms cut edges and surfaces, and these can also be solved using
our method. A feature of the solution algorithm presented is its flex-
ibility to work with structured and unstructured meshes as well as a
number of different methods for adapting mesh geometry to respect
a cut surface.

Our results show that the augmented approach works well on
linear models exhibiting small deformations. This is valuable for
the important subset of medical applications that involve small
magnitude but medically significant deformations. For these ap-
plications linear elasticity can be an appropriate material model
because it realistically simulates deformation at a lower computa-
tional cost than more complex models. A variety of simulation re-
sults have been published based on linear elastic models in both the
computer graphics and biomedical engineering literature, in many
cases with validation of model accuracy against empirical data de-
rived from medical images or mechanical experiments. Examples
include modeling the lens [Mikielewicz et al. 2013] and cornea
[Gefen et al. 2009] of the eye, prostate biopsy [Jahya et al. 2014]
and prostate brachytherapy [Crouch et al. 2007], and bone [Keav-
eny et al. 1994] [Andreaus et al. 2014] [Juszczyk et al. 2011]. We
recognize that linear elasticity will not adequately model these or-
gans and tissue types under all loading scenarios, but the commu-
nity has found the linear elastic model to be useful for biomechan-
ical modeling when limited forces are applied. Non-linear models
are not considered in this paper but will be investigated in the fu-
ture.

1.1 Our Contributions

The three main contributions of this work are:

—a unified augmented matrix formulation of a finite element model
that allows both continuous, unpredictable cutting, and impo-
sition of new boundary conditions. This formulation keeps the
original stiffness matrix as a submatrix to eliminate the neces-
sity of re-factorization at each timestep.

—a hybrid solution approach that utilizes a direct solver and an it-
erative solver. The solution of the updated portion of a mesh is
decoupled from the solution of the unchanged portion, facilitat-
ing fast updates when the percentage of mesh elements affected
by topological changes is small. Preconditioning techniques for
the iterative part of the solution method are also discussed.

—acceleration of the solution algorithms by exploiting sparsity in
both the matrices and the vectors. A complexity analysis is pre-
sented using graph theory concepts applied to the accelerated
solution method.

1.2 Article Organization

This paper is organized as follows. Section 2 reviews previous work
on the real-time solution of physics-based models and finite ele-
ment equations. Section 3 presents our new augmented method for
assembling a finite element system of equations and accounting for
changes in mesh connectivity and boundary conditions via updates
to stiffness matrix factors. Section 4 presents speed and accuracy
results from finite element deformation and cutting experiments
with models of various size. Finally, Section 5 discusses conclu-
sions and directions for future work.

2. PREVIOUS WORK

Beginning with Terzopoulos et al. [1987] [Terzopoulos and Fleis-
cher 1988], physics-based deformable models have been used for
animation and simulation. By the mid-1990’s, a variety of work
specific to surgery simulation began to appear [Cover et al. 1993]
[Bro-Nielsen and Cotin 1996]. This section reviews existing ap-
proaches for computing physics-based deformation solutions, with
a particular focus on methods that involve finite element analysis
and cutting. Methods are categorized according to whether they use
a direct solution approach with pre-computation, an iterative solver,
or a combination of both.

2.1 Pre-computation Approaches

Pre-computation strategies accelerate the solution step of a simu-
lation by shifting the bulk of the computational burden to a pre-
processing stage. The bottleneck in a finite element simulation is
the solution of a system of linear equations, Ka = f , where K is
the stiffness matrix, a is a vector of nodal displacements, and f is
a vector of nodal forces. Precomputation methods such as [Zhong
et al. 2005] minimize the time required to calculate the solution
vector by inverting K before a simulation begins so that a can be
directly computed via the multiplication a = K−1f during the sim-
ulation. Since K−1 is dense, condensation methods such as [Bro-
Nielsen and Cotin 1996], [Bro-Nielsen 1998], [Berkley et al. 2004],
and [Lee et al. 2010] further reduce computation time by produc-
ing from the full inverse matrix a smaller dimension one that con-
tains only the equations necessary to compute a solution for a small
subset of the nodes, such as a set of surface nodes. The inability to
compute a solution for nodes not included in the pre-selected subset
poses a problem for applications that involve cutting. The Sherman-
Morrison-Woodbury update formula [Hager 1989] has been used to
address this by allowing selected degrees of freedom to be added
back into a condensed stiffness matrix as they are needed. This ap-
proach was suggested by James and Pai [1999], and later was used
in needle insertion simulation [DiMaio and Salcudean 2002] and
[DiMaio 2003], and in a cutting simulation [Zhong et al. 2005].
The approach is most successful when access to a small number of
degrees of freedom needs to be added to an already condensed sys-
tem. It becomes computationally intensive and slow as the added
number of degrees of freedom increases and is impractical for ap-
plications that require cutting with non-trivial remeshing.

A variation on the precomputed inverse approach sharing some
similarities with our work is the precomputed stiffness matrix
factorization described by Turkiyyah [2011] which updated a
Cholesky factorization to accommodate the addition and modifica-
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tion of discontinuous basis functions along a cutting path. While
our work also updates the solution to a system of equations in-
volving the stiffness matrix, it does so without updating the fac-
tors by solving a Schur complement system with an iterative solver.
Hence our method supports any local mesh modification, whether
from remeshing or addition of basis functions; consequently our
method’s update process substantially differs from Turkiyyah’s
work.

Solution techniques that rely on the superposition principle such
as [Cotin et al. 1999], [Picinbono et al. 2002], and [Sedef et al.
2006] pre-compute and record the set of node displacements that
result from a constraint being applied to a single node. This com-
putation is repeated for every node that might be subject to a con-
straint, and all the results are stored. At runtime nodal displace-
ments are computed as a linear combination of the stored results.
For some applications this approach can closely approximate the
ideal solution, but without modification it cannot handle changes in
mesh connectivity.

Pre-computed Green’s functions have also been used by Nikitin
et al., [2002] and James and Pai [2003] to quickly compute defor-
mation solutions for subsets of mesh nodes. Similarly, the banded
matrix method proposed by Berkley et al. [1999] prioritizes and re-
arranges the rows and columns of a stiffness matrix based on node
type, then factors the stiffness matrix in such a way that a fast up-
date is provided only for the highest priority nodes. In both cases,
solutions for internal nodes are generally not computed.

A limitation generally shared by pre-computation approaches
is that results produced in the pre-computation phase are inval-
idated when the topology of the mesh changes, so cutting and
remeshing require special consideration. Constraint removal is a
pre-computation approach that requires cutting paths to be known
a priori. Lindblad and Turkiyyah [2007] and Sela et al. [2007] have
demonstrated how duplicate nodes along a cutting path can be con-
strained to move together until they are cut, at which time the con-
straint is removed to open up a predefined cut.

Discontinuous basis functions provide a more flexible cutting
scheme that has been used in concert with pre-computation. This
approach was originally introduced in the engineering literature as
a way of studying crack formation [Mos et al. 1999] and more re-
cently has been applied to the problem of cutting in surgical simula-
tions [Vigneron et al. 2004] [Turkiyyah et al. 2011]. Unpredictable
and arbitrary cutting paths are accommodated through the addi-
tion of new degrees of freedom that use discontinuous interpola-
tion functions to account for mid-element breaks in nodal influ-
ence. The Turkiyyah work has important similarities to our work,
in that both approaches progressively update the solution of the
stiffness matrix equation. However, an important distinction is that
our work maintains a finite element mesh that respects cut surfaces
by remeshing areas as needed, while the Turkiyyah work maintains
separate, distinct meshes for graphic rendering and for computation
of the finite element solution. In their method rendered surfaces are
remeshed as needed but the finite element equations accommodate
cutting through the addition of discontinuous basis functions with-
out remeshing. As shown in [Lindblad and Turkiyyah 2007], an up-
date procedure similar to the Sherman-Morrison-Woodbury update
can be employed to update a pre-computed inverse stiffness matrix
to account for the new degrees of freedom. Because the complex-
ity of Sherman-Morrison-Woodbury update is cubic with respect to
the number of matrix rows and columns changed, this works well
only when the modifications are very limited.

Nonlinear elastodynamics problems in which the nonlinearities
are due to rotations within an object have been solved using a coro-
tational approach in [Hecht et al. 2012]. They approximate the ro-

tation by applying an average of the rotations of the surrounding
elements to a node. They compute the solution by updating the
Cholesky factors of the system matrix by exploiting the nonzero
pattern of the factor due to a nested dissection ordering, observing
as we have done here that only the submatrices of the factor that
lie on a path in the elimination tree from a submatrix to the root
of the tree are affected. In order to have the simulations run fast,
they trade-off an increased error tolerance for time, by choosing
which submatrices in the factors to update. There are major differ-
ences between our work and theirs. They have applied their work
to nonlinear problems where rotations are the major source of the
non-linearity, while our work in this paper applies to linear prob-
lems. Our augmented matrix approach models the stiffness system
exactly and the solutions should be identical to the original sys-
tem in exact arithmetic. They have not applied their work to cutting
problems addressed in this work, and it would require the ability to
handle changes in the mesh topology. The way the two approaches
exploit sparsity is also different. Hecht et al. have chosen to update
selected submatrices of the Cholesky factors, and this requires dy-
namic updates to the large datastructure that stores the Cholesky
factor and the update matrices, increasing the storage needs. Our
approach is to update the solution but not the Cholesky factors, by
implicitly solving a Schur complement system with a Krylov space
solver, without forming the Schur complement matrix. We exploit
the sparsity not only in the factor, but also in the right-hand-side
vectors and the solutions, as described in Sec. 3.3 and the Ap-
pendix. The time complexity of the update step is bounded linearly
by the number of nonzeros in the (static) Cholesky factor (and the
number of iterations of the Krylov space solver) in our case, but the
corotational approach cannot be bounded in this manner since the
factors are updated.

Finally we consider the CHOLMOD approach of Chen, Davis
and Hager [2008] for updating the Cholesky factors when rows or
columns are added or deleted from the matrix. This algorithm re-
lies on dynamic supernodal updates of the Cholesky factor. Unfor-
tunately the number of columns to be added or deleted (change in
the rank of the factor) during the cutting of meshes is much larger
than can be efficiently performed with this software since we need
to remesh around the cut. Hecht et al. [2012] have come to simi-
lar conclusions for their problem. Furthermore, dynamic updates to
the large sparse Cholesky factor and update matrix data structure
are expensive, and instead we work with an implicit Schur comple-
ment approach whose time complexity can be bounded linearly by
the size of the Cholesky factor.

2.2 Iterative Solvers

Iterative solvers do not share the same limitations as pre-
computation methods because all of the calculations needed to pro-
duce a solution occur at runtime. Thus iterative solvers can be suc-
cessfully applied when stiffness matrix updates are caused by topo-
logical mesh changes. However, using an iterative solver does re-
quire that attention be paid to issues of convergence and stability.

Conjugate Gradient solvers have been frequently used with fi-
nite element simulations [Frank et al. 2001] [Nienhuys and van der
Stappen 2001] [Courtecuisse et al. 2010]. The popularity and rela-
tively straightforward implementation of the Conjugate Gradient
algorithm make the method a good benchmark for comparisons
with alternative solution methods. Conjugate Gradient implemen-
tations that take advantage of sparse matrix-vector multiplication
have been used for interactive applications and can be accelerated
with parallel [Chentanez et al. 2009] and GPU implementations
[Wu and Heng 2004]. However, the simulation community contin-
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ues to seek solution methods that outperform Conjugate Gradient,
as real-time performance on higher resolution models promises im-
proved realism.

Some of the most recent work in interactive finite element sim-
ulation has explored the use of multigrid solution methods [Dick
et al. 2011a] [Zhu et al. 2010] [Georgii and Westermann 2006]
[Wu and Tendick 2004]. Multigrid methods are among the most
efficient iterative solution approaches and accelerate convergence
by reducing error at multiple spatial resolutions. However, they
also have higher fixed overhead costs than methods such as Con-
jugate Gradient. A GPU implementation of multigrid by Dick et
al., [2011b] has demonstrated further speed improvement. Precon-
ditioning can also be used to speed up the iterative solvers. In
[Courtecuisse et al. 2010], the authors have demonstrated the asyn-
chronous update of Cholesky factors for preconditioning on a sep-
arate thread. The asynchronous update of the factors is similar to
our re-factorization scheme. The need for a multi-resolution mesh
makes multigrid naturally suited for structured meshes, with hexa-
hedral grids typically being used. Although hexahedral grids do not
lend themselves to smooth cutting surfaces, recent work by Zhu et
al. [2010] has demonstrated a way to incorporate cutting into a sim-
ulation with a multigrid solver.

A final category of iterative solvers is explicit integration meth-
ods. Explained in detail in [Bathe 1996], it was originally suggested
for use in surgery simulation by Bro-Nielsen [1998] and also im-
plemented in the software suite described in [Joldes et al. 2009].
Explicit integration has been successfully used in real-time simula-
tion with dynamic and non-linear finite element models [Wu et al.
2001], and has been used in simulations involving surgery [Wittek
et al. 2010] and cutting [Serby et al. 2001]. Care must be taken in
selecting the time step size for explicit integration because it can be
numerically unstable if the time steps are too large.

2.3 Hybrid Solution Methods

Some simulations have been implemented using hybrid approaches
that use two or more solution methods. Typically, some portion of
a model is designated as susceptible to cuts and deformation while
the remainder is subject only to deformation. The strategy is to ap-
ply a fast pre-computation approach to the portion of a model that
cannot be cut and apply a slower method that supports cutting to the
remainder. For example, Wu and Heng [2005] [Heng et al. 2004]
combine the use of condensation and Conjugate Gradient solvers,
while Cotin et al. [2000] combine the use of a linear superposition
method with explicit integration applied selectively to the dynamic,
cuttable portion of a mesh. Kocak et al. [2009] provided further
support for this approach by describing a framework for building
a consistent finite element simulation when different regions of the
mesh are solved at different update rates.

3. METHODS

The augmented matrix approach presented here is a hybrid solution
method that employs both direct and iterative solution algorithms
without restricting cutting to a specific part of a model. An LDL>
factorization computed by a direct solver is used in conjunction
with the generalized minimal residual method (GMRES), an itera-
tive algorithm. Applied together, these methods compute fast and
accurate solution updates for a finite element model as it undergoes
stiffness matrix changes, including topological changes due to cut-
ting.

This section is organized into three parts. First we show how
matrix augmentation can be used to express changes to a stiffness

matrix. Next we outline the steps required to solve an augmented
system of finite element equations. Finally, we detail how the spar-
sity inherent in the equations can be exploited to maximize the ef-
ficiency of the implementation.

3.1 Augmented Finite Element Matrices

In an elastostatic finite element model, an object is represented by
a discrete mesh governed by a system of linear equations Ka = f ,
whereK is the n×n global stiffness matrix, a represents nodal dis-
placements, and f represents forces applied to mesh nodes. These
are finite element matrices and vectors that are constructed using
standard finite element methods [Bathe 1996]. Here n is the num-
ber of degrees of freedom in the model; for a 3D solid model n
equals three times the number of mesh nodes.

If the ith degree of freedom is involved in a change to the model,
the ith row and the ith column of K will be modified to reflect the
change in its relationship with the rest of the mesh. Changing any
portion of K invalidates a previous factorization, thus necessitat-
ing a re-factorization or an update. For a 3D finite element model
represented on a mesh with good aspect ratios, stiffness matrix re-
factorization can be performed in O(n2) operations [Lipton et al.
1979]. While this is better than the O(n3) complexity of matrix
inversion, it does not provide the solution speed needed for interac-
tive simulations.

The augmented formulation reflects changes to any limited por-
tion of K while preserving the utility of its pre-computed LDL>
factors. We rely on an effective column replacement procedure ap-
plied to a matrix as follows. Suppose we want to replace the third
column of a matrixK0 in a system with a vector k and compute the
solution to the modified system. We can form the following aug-
mented system of equations that, if exact arithmetic is used, will
yield the same solution as the modified system after appropriate
permutation of the solution vector.

K0 k

e>3 0





a1
a2
z3
a4
...
a3

=



f1
f2
f3
f4
...
0

 , (1)

where e>3 is the third row vector of the identity matrix, and z3 is a
placeholder variable at the third component of the solution vector.

Notice that multiplying the a vector by the last row of the aug-
mented matrix constrains z3 to be 0, and thus the whole third col-
umn of K0 is multiplied by 0, canceling its effect on the system of
equations. As the variable a3 is multiplied by k, this column acts as
a replacement for the third column of K0. This augmentation can
be cascaded to replace multiple columns at the same time.

Suppose K, the global stiffness matrix at time t > t0, differs
from K0, the initial stiffness matrix at time t0, by m columns. We
can use the aforementioned effective column replacement proce-
dure on these m columns to form an equivalent, augmented system
of equations

KAaA = fA, (2)

where superscriptA suggests that the matrix and vectors are in aug-
mented forms.

All topological mesh changes, including those resulting from
cutting or element subdivision, can be represented in a finite ele-
ment system of equations by replacing or deleting existing stiff-
ness matrix columns and expanding the matrix to accommodate
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new columns. As described in [Bathe 1996], the global stiffness
matrix for a model is assembled by summing the contributions of
the stiffness matrices of the individual elements. When a mesh is
cut, the affected elements can be removed from the mesh by sub-
tracting their contributions from the global stiffness matrix. Then a
set of replacement elements that respect the cut can be added to the
global stiffness matrix using the standard assembly procedure. For
a large mesh with a localized cut, this results in a small percent-
age of columns in the global stiffness matrix being changed. These
changes can be implemented for a previously factored matrix using
the aforementioned matrix augmentation technique.

Similarly, the imposition of Dirichlet boundary conditions that
specify the displacements of selected mesh nodes is accomplished
through the removal of the associated degrees of freedom from the
finite element equations. In the standard formulation this is accom-
plished by deleting the associated rows and columns from the stiff-
ness matrix. In the augmented matrix formulation, degrees of free-
dom are removed via steps that resemble the effective column re-
placement procedure in Eqn. 1. The following example illustrates
removal of the third degree of freedom from the augmented sys-
tem.

K0 e3

e>3 0





a1
a2
z3
a4
...
−f3

=



f1
f2
0
f4
...
0

−

a3Ke3

0

 . (3)

As seen from Eqn.1, the last row constrains z3 to be 0. Performing
the multiplication of the third row yields

K0
31a1 +K0

32a2 +K0
33z3 +K0

34a4 + · · · − f3 = −K0
33a3.

Substituting z3 = 0 and rearranging the terms would get back the
third row of the standard formulation. Similarly, performing the
multiplication of the ith row other than the third row yields

K0
i1a1 +K0

i2a2 +K0
i3z3 +K0

i4a4 + · · · = fi −K0
i3a3,

which is identical to the ith row of the standard formulation after
substitution of z3 = 0 and rearrangements of terms.

Here f3 is moved from the right-hand-side vector to the solu-
tion vector since the force applied to the third degree of freedom
becomes unknown after the imposition of Dirichlet boundary con-
dition. Notice the similar structure of Eqns. 1 and 3, demonstrating
that both topological changes and imposition of Dirichlet boundary
conditions can be accomplished using a unified augmentation pro-
cedure. Next we provide the complete algorithm for formulating
the augmented system that supports both replacement and expan-
sion affecting multiple matrix columns.

In the ensuing discussion, any matrix or vector without a 0 su-
perscript is assumed to reference the model at some time t > t0. At
the beginning of a simulation the augmented system is identical to
the standard finite element system at time t0. For time steps t > t0,
KA retainsK0 as a sub-matrix so that pre-computed factors ofK0

remain useful, and new rows and columns contained in rectangular
matrices J and H are appended to account for the updates in K.
Mathematically, KA has the form

KA =


K0 0

J
0 I

H 0

 .

n m

n

m

(4)

Here I is the identity matrix with dimension equal to the number
of degrees of freedom added to K at times t > t0 corresponding to
possible new nodes added to the mesh due to the cut. The columns
of I inserted into KA are effectively replaced by new columns in
K. As shown below, J contains a copy of all columns of K that
have been added or changed, andH contains rows from the identity
matrix. The matrices J and H are defined as

J∗,i =

{
K∗,Li if Li /∈ D
I∗,Li if Li ∈ D

, and (5)

Hi,∗ = ILi,∗ . (6)

Here D is the set of degrees of freedom constrained by Dirich-
let boundary conditions, and L is an accessory data structure that
maps the indices of columns and rows in J and H to the indices of
columns in K0 to be replaced, i.e. the ith column of J replaces the
Lth

i column of K0. Hence, the ith column of J contains a copy of
the Lth

i column of K.
Augmented displacement and force vectors must have sizes and

degree of freedom orderings consistent with the augmented stiff-
ness matrix. The augmented displacement vector, aA, can be par-
titioned into two parts denoted a1, a vector of length n, and a2, a
vector of length m. Here

aA =

[
a1

a2

]
, (7)

(a1)i =

{
ai if i /∈ L,
zi if i ∈ L.

(8)

(a2)i =

{
aLi if i /∈ D,
−fLi if i ∈ D.

(9)

As in Eqns. 1 and 3, the z terms are constrained to have a value of
zero, the a terms represent unknown nodal displacements, and the
f terms represent the unknown nodal forces when a new Dirichlet
boundary condition is imposed.

The augmented force vector is also partitioned into two parts: f̂
of length n, and a zero vector of length m. Some components of
f̂ have terms subtracted to account for imposition of new Dirichlet
boundary conditions. Here

fA
i =

[
f̂
0

]
, (10)

f̂ =


fi −

∑
j∈D

Ki,jaj i /∈ D,

−
∑
j∈D

Ki,jaj i ∈ D.
(11)

The augmentation procedure can be summarized by the follow-
ing four steps.

(1) Construct the accessory data structures L and D.

(2) Form matrices J and H using Eqns. 5 and 6. Append J to
the right side of the stiffness matrix, K0, and append H to its
bottom as shown in Eqn. 4.

(3) Form the right-hand-side vector fA using Eqns. 10 and 11.

(4) After computing the solution, copy terms in aA to the appro-
priate positions in the nodal displacement and force vectors as
indicated by Eqns. 8 and 9, discarding the zLi terms.
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3.2 Solution Method

Since we assume a conservative material model, the reduced stiff-
ness matrix K is guaranteed to be symmetric positive definite.
Thus, it can be factored as K0 = L0 D0 L

>
0 , where L0 is a lower

triangular matrix and D0 is a diagonal matrix. If new degrees of
freedom are added to the model in subsequent time steps, the fac-
tors can be padded as follows.[

K0 0
0 I

]
R

=

[
L0 0
0 I

]
L

[
D0 0
0 I

]
D

[
L>0 0
0 I

]
L>

(12)

where I is the identity matrix with dimension equal to the number
of columns added toK, as in Eqn. 4. Using the matrix names shown
above, the equation can be stated more compactly as R = LDL>.
Note particularly that R refers to the global stiffness matrix from
time t0 padded so that its dimension matches that of K in the cur-
rent time step.

Substituting the definitions provided in Eqns. 4, 7, 10, and 12
into the augmented system of equations given in Eqn. 2 gives[

R J
H 0

] [
a1

a2

]
=

[
f̂
0

]
. (13)

Performing the multiplication in Eqn. 13 yields the following two
equations.

Ra1 + J a2 = f̂ . (14)
H a1 = 0. (15)

Eqn. 14 can be rewritten as

a1 = R−1
(
f̂ − J a2

)
. (16)

Substituting Eqn. 16 into Eqn. 15 yields(
HR−1J

)
a2 = HR−1f̂ (17)

The solution of Eqn. 13 can then be broken into three steps.

(1) Calculate the right hand side of Eqn. 17.
Each occurrence of the multiplication R−1 x, for any vector
x, can be efficiently calculated using the pre-computed LDL>
factors ofR via triangular matrix solves with forward and back
substitution. We use this observation to first calculate the vec-
tor y, where y = R−1f̂ , and then calculate the product H y to
arrive at the vector on the right hand side of Eqn. 17.

(2) Solve Eqn. 17 to find a2 using an iterative solver.
Since the right hand side of Eqn. 17 is known from step 1, an it-
erative solver can be used to successively improve estimates of
a2 if the multiplication (HR−1J) a2 can be performed. J and
H have known values, and by making use of the LDL> fac-
tors of R again, multiplication with R−1 can be accomplished.
As in step 1, performing this multiplication requires triangu-
lar matrix solves with forward and back substitution. We use
GMRES, a Krylov space iterative solver that requires only one
or two matrix-vector multiplications per iteration. This choice
minimizes the number of triangular solves needed.

(3) Substitute a2 into Eqn. 16, then solve for a1.
This step requires the use of the LDL> factors a final time
to perform the multiplication of R−1 with the known vector(
f̂ − J a2

)
.

3.3 Accelerated Implementation Using Sparsity

3.3.1 Exploiting Sparsity in the Solution Steps. A careful ex-
amination of the sparsity of the matrices and vectors in Eqns. 17
and 16 allows us to maximize the efficiency of our implementation.
The sparsity analysis is expressed using concepts from graph the-
ory that are outlined in the Appendix. Each of the three solution
steps outlined for Eqns. 16 and 17 in Section 3.2 involves compu-
tation with sparse vectors and matrices. We carefully exploit this
sparsity to avoid unnecessary computation.
Sparsity of Solution Step 1:
The right hand side of Eqn. 17 is evaluated by computing

HR−1f = H L−>D−1
(
L−1f

)
y

. (18)

By applying Thm. 1 given in the Appendix, we find that
struct(L−1f) ⊆ closureL(f). This result says that the nonzero
components in the vector in the left-hand-side are given by com-
ponents that can reach the nonzero components in the vector f by
an edge in a directed graph representation of the matrix L. Details
are in the Appendix. Hence only the submatrix of L corresponding
to closureL(f) is needed to evaluate the term L−1f . We observe
that the vector f is typically sparse because external forces are only
applied to a small fraction of the nodes while a mesh is being cut
or deformed.

Consider that after we have computed the vector y in Eqn. 18 it
is projected through multiplication by the sparse matrix H . H is
composed of a few rows from an identity matrix, and it has many
more columns than rows. Only m columns of H contain nonzero
components and consequently all but m components of y are mul-
tiplied by 0 and do not contribute to the value of the right hand side
vector. Let the components of y necessary for the calculation be
denoted ŷ, such that Hŷ = Hy. Then

ŷi =

{
yi if H(∗,i) 6= 0,

0 otherwise.
(19)

By applying Thm. 2 from the Appendix, we find that only the sub-
matrix of L> corresponding to closureL(ŷ) is needed to complete
the evaluation of the right hand side of Eqn. 17.
Sparsity of Solution Step 2:
During each GMRES iteration in solution step 2, the solution esti-
mate a2 is projected by a sparse matrix J to a larger space.(

HR−1J
)
a2 = H L−>D−1L−1 (Ja2)

w

. (20)

Because the product vector Ja2 is sparse, only the submatrix of L
corresponding to closureL(Ja2) is useful. As in step 1, the vec-
tor w is projected through multiplication by H . Hence, during the
backward substitution only a submatrix of L> corresponding to
closureL(w) is needed for the computation.
Sparsity of Solution Step 3:
Since in Step 3 both f and Ja2 are sparse, the difference vector
f − Ja2 is also sparse. Hence the forward substitution can be sped
up by considering only those needed rows of L. However, since the
solution vector α1 is not projected by a sparse matrix, the whole
matrix L> is needed in the backward substitution.

We note that in both Steps 1 and 3 the triangular solves are only
done once, so we modify these routines to accept two additional
inputs that indicate the sparsity of the right hand side vector and the
indices of needed components in the solution vector. However, the
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Computation Complexity

Initialization: t = t0

1 Compute LDL> factorization of KA0 O(n2) for 3D meshes; O(n3/2) for 2D meshes

Real-time update steps: t > t0

1 Update K O(m)

2 Compute J and H O(m)

3 Solution Step 1 O(| closureL(f) |+ | closureL(ŷ) |) ≤ O(|L|)
4 Solution Step 2 O(| closureL(Ja2) |+ | closureL(ŷ) |) · niter ≤ O(|L| · niter)

5 Solution Step 3 O(|L|)

Table I. : A summary of the calculation steps required by the augmented method is shown, along with a complexity bound for each step. Here
n is the order of the initial stiffness matrix, m is the number of columns changed by cutting, and |L| in solution steps 1, 2 & 3 is the number
of non-zeros in L, which is bounded by O(n4/3) for 3D meshes and O(n logn) for 2D meshes. The complexity upper bound for an entire
update iteration is O(|L| · niter), where niter is the number of GMRES iterations needed for convergence.

situation is different for step 2, where GMRES executes multiple
iterations before converging. In this case, to reduce the overhead
of indirect indexing we explicitly form the needed submatrices by
copying the needed rows and columns from L and L>.

3.4 Complexity Analysis

Key parts of the complexity analysis hinge on the sparsity of the
stiffness matrix, the complexity of the LDL> factorization, and
the sparsity of the factors. The number of non-zeros in each col-
umn of the global stiffness matrix is dependent on the connectivity
between nodes. Since in a well-formed mesh the number of edges
incident on a single node is limited by geometric considerations,
the number of non-zeros per column can be bounded by a constant
that is independent of the total number of degrees of freedom in the
model. Due to this assumption and since sparse matrix data struc-
tures are used in this work, the complexity of all the steps in the
augmented algorithm that update or otherwise operate on stiffness
matrix columns is dependent only on the number of columns af-
fected, not the number of rows in the matrix.

The derivation of complexity bounds for the LDL> factoriza-
tion can be found in [Lipton et al. 1979]. Their work shows that
using efficient sparse matrix algorithms, an LDL> factorization of
an n × n stiffness matrix for a 3D finite element model can be ac-
complished with O(n2) operations; the resulting lower triangular
matrixLwill containO(n4/3) non-zeros if the mesh elements have
good aspect ratios. Therefore, without imposing any restrictions on
the force vector, we can say that the triangular solves needed in
steps 1 and 3 of the solution algorithm described in Section 3.2 can
be completed in O(n4/3) operations.

Considering the sparsity analysis in the previous section raises
the question of whether sparsity could provide a basis for a tighter
complexity bound. In solution step 1, the complexity depends on
| closureL(f) | and | closureL(ŷ) |. Theorem 3 from the Appendix
informs us that the sizes of the closures depend on the length of the
path from the root of the elimination tree to the nodes in struct(f)
and struct(ŷ). If those nodes are close to the root, the sizes would
be small constants, independent of n. On the other hand, if they are
leaves of the elimination tree, the sizes would be close to n, and the
cost of the triangular solve step would be linear in the number of
nonzeros in L, O(n4/3). In general, the cost lies in between these
two extremes, and the upper bound of O(n4/3) is not tight.

The complexity for each step in the algorithm, including the pre-
computation phase and the real-time update loop, is detailed in Ta-
ble I. Summing the complexity of each of the real-time update steps
for a 3D model and simplifying the expression to retain only the
dominant terms results in a complexity bound for an update iter-
ation of O(n4/3 · niter), where niter is the number of GMRES
iterations needed for convergence. Note that niter is influenced by
m, the number of columns updated, rather than n, the dimension of
the stiffness matrix.

3.5 Preconditioning

The GMRES iteration in step 2 can be preconditioned to reduce
the number of iterations. One possible preconditioner is a matrix
M that approximates HR−1J in Eqn. 17. However, there are two
drawbacks of this approach: neither forming the matrix HR−1J
nor minimizing ‖M(HR−1J)−I‖ is computationally cheap. Also,
M has to be recomputed whenever there is a change to the mesh.
Another possible preconditioner is a matrix productHSJ such that
S approximates R−1. In this case, S only needs to be computed
once and can be reused in later time steps, even after changes to the
mesh. In this paper, we use two approximations of S: the inverse
of D in the pre-computed LDL> factors of R (for all meshes),
and a tridiagonal sparse approximate inverse (SPAI) [Benson and
Federickson 1982] of the matrix R (for Stanford Bunny, brain and
eye meshes).

3.6 Re-factorization

The augmented matrix approach produces a solution for a finite
element model with a time-varying stiffness matrix more quickly
than a full re-factorization would allow, so long as m, the number
of modified columns, is sufficiently small. As changes to a stiff-
ness matrix accumulate across a growing number of columns, the
augmented method begins to slow down because the size of the
a2 vector also increases. To maintain fast solution speeds for an
interactive simulation, we prevent m from growing indefinitely by
periodically re-computing a full LDL> factorization ofK in a pro-
cess that runs concurrently with the simulation loop. Fig. 1 shows
the changes in the equations before and after re-factorization. Let
m′ denote the number of columns modified due to cutting after the
re-factorization was initiated. When freshly computed factors are
used to replace the original factors, the size m +m′ is reduced to
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m′. The rate at which matrix changes accumulate will vary widely
and depend both on the nature of a simulation and how quickly
and aggressively a user manipulates a model. Even considering a
single user and a single simulation, the growth rate of m will vary
unevenly across time as an interactive task progresses through mo-
ments of cutting, grasping, and pulling. Since the speed of our so-
lution method is dependent onm+m′, the simulation update rate it
provides is affected by the speed of mesh cutting and other manip-
ulations. The best way to address this issue will be depend on the
application, but in some contexts it is reasonable to limit the rate
at which cutting can occur in order to maintain an desired update
rate. Variability in the update rate arising from the re-factorization
process can be smoothed by buffering the computed solutions.

To provide some context for how re-factorization will impact
simulation speed, the results in Figs. 5, 7, 10a, 12 and 13 indicate
the simulation step at which the cumulative time for mesh updates
equals the time for matrix factorization, assuming one newly cut
node per update and beginning with an empty list of mesh modi-
fications. In practice, the list of recent mesh modifications will be

R J

H 0

  R J J ′

H

H ′


 R′ J ′

H ′ 0

 
0

n

m

n

m

m′

n′

m′

changes
accumulate

KA R′
factorize

L′D′L′>

re-factorization
begins

re-factorization
is done

augmented system
re-assembled

Fig. 1: Re-factorization process

non-empty when a re-factorization step completes, there will be up-
date steps that involve changes to multiple nodes, and many update
steps will not involve any topological mesh changes. Depending
on these factors, actual simulation updates rates could be faster or
slower when re-factorization concludes than the times shown in the
graphs. It is also feasible to run multiple re-factorization processes
concurrently, so that mesh changes get incorporated into the factors

(a) (b) (c)

Fig. 2: Test meshes are shown after cuts described in the experiments in Section 4.2.

incisionparietal lobe

frontal lobe

temporal lobe

(a)

incision

cornea

sclera

(b)

Fig. 3: Renderings of brain and eye models are shown with incisions used in the experiments reported in Section 4.2. (a) The incision on the
brain model shown is on the superior portion of the right frontal lobe. (b) The incision on the eye model shown is along the corneal limbus,
to correct for astigmatism.
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as quickly as possible and the size of m is kept to a minimum. If
multiple processors are available, this is one way to maximize the
update rate since it is not necessary for one factorization process to
complete before another one begins.

4. RESULTS

The augmented matrix solution method was evaluated through
finite element deformation and cutting experiments with five
model types. This section provides relevant implementation details
and presents experimental data, including comparisons with both
non-preconditioned and Jacobi-preconditioned Conjugate Gradient
(CG) solvers. ILU0 and ILUT preconditioners for CG were tested,
but the reduction in number of iterations did not compensate for the
increased computation complexity per iteration.

4.1 Implementation

All experiments were conducted on a desktop computer with four
8-core Intel Xeon E5-2670 processors running at 2.6GHz with 20
GB cache and 256 GB RAM. All data represent an average timing
from 20 runs.

The precomputed LDL> factorizations of the stiffness matrices
were computed using OBLIO, a sparse direct solver library [Do-
brian and Pothen 2006]. Both the GMRES iterative solver used in
solution step 2 and the CG solver used for comparison purposes
were from the Intel Math Kernel Library (MKL). The remainder of
the code was written by the authors.

All matrices were stored in sparse matrix format to reduce both
the storage space and access time. Since the closure of a set of in-
dices in the graph of a triangular matrix can be found effectively
column by column, and OBLIO uses supernodes in matrix fac-
torization, all matrices were stored in compressed sparse column
(CSC) format for efficient column access.

4.2 Model Meshes

Five types of solid tetrahedral meshes were used to evaluate the
augmented matrix solution method in comparison to a traditional
CG method. Meshes are shown in Figs. 2 and 3.

(1) Elongated Beam: A group of five elongated rectangular solids
with varying lengths were generated. Nodes were placed at
regularly spaced grid points on a 5 × 5 × h grid, where h
ranged from 4 to 1024. The largest beam mesh has 25, 600
nodes and 81, 840 elements. Each block mesh was anchored
at one end of the solid. All elements had good aspect ratios
and were arranged in a regular pattern. However models with
greater degrees of elongation produced more poorly condi-
tioned systems of equations, as fixation at only one end meant
that longer structures were less stable. Thus experiments with
this group of meshes illuminates the way solver performance
varies with stiffness matrix conditioning. The estimated condi-
tion numbers of the beam mesh stiffness matrices range from
1.14× 103 to 3.29× 1012.

(2) Brick: A group of five rectangular brick solids with varying
mesh resolutions were generated. Each of the models had the
same compact physical dimension of 1×1×2. An initial good-
quality mesh was uniformly subdivided to produce meshes of
increasingly fine resolution. These meshes allowed us to exam-
ine solver performance relative to node count for fixed model
geometry. Similar to the beam meshes, zero-displacement
boundary conditions were applied to one face of the block. The
largest brick mesh has 18, 081 nodes and 80, 000 elements.

The estimated condition numbers of the brick mesh stiffness
matrices range from 2.19× 103 to 1.18× 105.

(3) Stanford bunny: A 20, 133 node, 62, 698 element mesh of the
Stanford bunny [Turk and Levoy 1994] is used to demonstrate
solver performance on an irregular mesh. Zero-displacement
boundary conditions are applied to nodes on the bottom of the
bunny’s feet. The bunny mesh stiffness matrix has an estimated
condition number of 6.17× 107.

(4) Eye: Incisions into a human eye model [Crouch and Cherry
2007] were used to demonstrate applicability to surgery sim-
ulation. Clear cornea cataract incisions were made into two
models with resolutions containing 4, 444 nodes and 14, 841
elements, and 16, 176 nodes and 52, 772 elements. Zero dis-
placement boundary conditions were applied to the posterior
portion of the globe. The eye mesh stiffness matrices have es-
timated condition numbers of 2.66 × 106 and 1.62 × 107 re-
spectively.
Relaxing limbal incisions used to treat severe astigmatism
were also simulated using the eye models. Simulation of the
relaxing limbal incision procedure is of particular interest be-
cause the deformation induced by the incisions is not inciden-
tal to the procedure but rather is the motivating reason for per-
forming the procedure. Astigmatism causes blurred vision due
to an aspherical corneal surface, meaning the corneal curva-
ture is higher along some cross-sections than others. This vari-
ation in curvature can be reduced for patients through limbal
incisions that are carefully placed around the periphery of the
cornea to create a flattening effect along the meridian of high-
est curvature. Although guidelines exist for selecting appro-
priate placement, depth, and length for these incisions, such
guidelines make a number of assumptions about a patient’s
eye anatomy and cannot fully account for individual variations
in corneal topography and thickness. Thus, simulations of this
procedure might be useful both for individualizing treatment
plans and as a teaching tool in medical education. While the
tissue motion that is induced by relaxing limbal incisions is
measured in millimeters, the resulting change in the optics of
the cornea can be very significant, correcting up to 3 diopters
of astigmatism. Since the cornea is responsible for two-thirds
of the focusing power of the eye, small changes in corneal cur-
vature can have a large impact on visual acuity. A linear elas-
tic material model is appropriate for this application because
the deformations are small in absolute terms. However, large,
medically important changes in patients’ refractive error result
from these small deformations.

(5) Brain: Two resolutions of a human brain model (contributed
by INRIA to the AIM@SHAPE Shape Repository) were used
to demonstrate applicability to surgery simulation on an organ
of complicated structure. The models contained 23, 734 nodes
and 81, 746 elements, and 50, 737 nodes and 167, 366 ele-
ments. Zero displacement boundary conditions were applied
to the interior portion of the brain. The small brain mesh stiff-
ness matrix has estimated condition number of 4.64×107. The
condition estimation failed for the large brain mesh due to in-
sufficient memory.

On average, the nodes in the brick meshes have a higher degree
of connectivity than those in the elongated beam meshes. This is
due to a greater proportion of surface nodes in the beam models
versus interior nodes in the brick models. The increased connectiv-
ity leads to a higher percentage of non-zeros in the stiffness ma-
trix factors and larger sizes for the closures referenced in Table 1.
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Fig. 4: | closureL(Ja2) | vs. node count, shown for cutting steps 2, 8, and
16.

These differences have a significant impact on the relative perfor-
mance of the solution methods. Fig. 4 compares | closureL(Ja2) |
for the different test meshes during the cutting experiments. The set
closureL(Ja2) is the largest of the closures referenced in the com-
plexity analysis in Table I, and is a measure of the size of the trian-
gular system to be solved. As expected, brick meshes have larger
closures than the other two meshes.

4.3 Experiments

Performance was examined through two types of experiments: de-
formation of intact meshes, and deformation of meshes undergoing
cutting.

4.3.1 Deformation of Intact Meshes. In this group of exper-
iments, we applied an increasing number of non-zero essential
boundary conditions to mesh nodes to create deformation. Fig. 5
shows how solution time varied with the number of constrained
nodes for instances of the beam and brick meshes. It is interest-
ing to note the dramatically different results for the beam meshes
versus the brick meshes in these experiments. As shown in Fig.
5(a), the augmented method maintained a high update rate for the
beam meshes throughout, and vastly outperformed the CG method.
The beam deformation experiments ran so fast with the augmented
method that the experiments concluded before there was time to
compute a re-factorization. In the example shown in the figure, the
update cycles ran at rates between 137–263 Hz.

For brick meshes, the augmented method outperformed CG as
constraints were applied to the first one to two dozen nodes, but per-
formance dropped as the number of constrained nodes increased,
eventually resulting in similar update rates between the augmented
method and CG. However, since the brick mesh experiments ran
more slowly overall, re-factorization played a meaningful role in
the augmented solution process. In the results shown in Fig. 5(b), a
re-factorization process running concurrently with the solution loop
completed after approximately 16 deformation steps. Thus we see
that the augmented method outperformed CG by a modest margin
in the brick deformation experiment.

Fig. 6 is a log-log plot that shows how solution times varied
for different sizes of beam and brick meshes. These graphs show
that the augmented method ran significantly faster than CG for the

beam meshes except for the very smallest instance that had only
100 nodes. Most strikingly, on the largest beam mesh, which had
25,600 nodes, the augmented method provided updates at a rate of
113 Hz, while CG ran at 3 × 10−5 Hz. For the brick meshes, the
augmented method ran faster than CG, although the margin was
smaller.

4.3.2 Deformation of Meshes Undergoing Cutting. In this
group of experiments we made an advancing planar cut into the
volume of each mesh. As a cut progressed, a duplicate of each
node along the cut path was added to the mesh, and connectivity
was modified so that elements on opposite sides of the cut became
separated. These changes required expanding the stiffness matrix
and modifying existing entries in the stiffness matrix at dozens of
locations each time a node was duplicated. Opposing force vectors
were applied to selected surface nodes to pull the cut faces apart.
Fig. 2 shows the three test meshes at the initial stages of cutting.

The differences between the results for the beam and brick
meshes are even more pronounced for the cutting experiment than
for the deformation experiment. Fig. 7(a) shows that the augmented
method outperformed CG in the beam cutting experiments, provid-
ing updates in the range 49–145 Hz in the time period before the
re-factorization completed. CG provided updates in the range 0.26–
172 Hz for the same cutting steps, but failed to converge to any so-
lution for seven of those steps. However, CG provided consistently
better performance for the brick mesh cutting experiment, as shown
in Fig. 7(b). The zig-zag appearance of the CG results was caused
by the connectivity pattern of nodes in the tetrahedral brick mesh.
Periodically, nodes with a higher degree of connectivity were cut.
These cutting steps required a larger number of changes to the stiff-
ness matrix and resulted in periodically slower CG solution times.
The connectivity pattern is illustrated in Fig. 8.

Fig. 9 shows that the beam vs. brick performance trend held over
a variety of mesh sizes. The augmented method provided the fastest
updates when cutting a beam mesh, maintaining an update rate over
50 Hz even with a relatively large cut in a 25,600 node mesh. Partic-
ularly for the larger beam meshes, CG was often unable to provide
any solution. However, CG reliably provided the fastest updates
when cutting a brick mesh.

Results from the bunny mesh cutting experiment are shown
in Fig. 10. Here we find that the non-preconditioned augmented
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Fig. 5: Deformation update rates are shown for both the augmented and CG
methods as constraints are progressively added to an increasing number of
nodes in (a) beam and (b) brick meshes.

method performed best, with a minimum update rate of 14 Hz dur-
ing the period before re-factorization completes. As seen in some
of the previous experiments, the update rate provided by the aug-
mented method diminishes as the size of the cut and complexity of
the attendant remeshing grows. However, the augmented method is
still faster than the 0.3–6.8 Hz update rate provided by precondi-
tioned CG in this experiment. Fig. 10(b) shows that the bulk of the
computation time is spent in the GMRES iteration of Step 2 in the
bunny mesh cutting experiment. The dominance of the GMRES it-
erations in the distribution of computing time is also a feature of
the experiments with beam and brick meshes. However, Fig. 11(a)
demonstrates that the number of GMRES iterations needed for con-
vergence does not grow with model size.

Results from the eye mesh cutting experiments are shown in
Fig. 12, and those from the brain mesh cutting experiments are
shown in Fig. 13. Here we show that augmented method outper-
formed the CG method with and without preconditioning. How-
ever, the update rate for the brain meshes remains lower than de-

sired for interactive simulation, and further reduction of the solu-
tion times for large, dense meshes is a priority for future work.

The experimental results also indicate that the augmented so-
lution method does not lead to problems with solution accuracy.
Fig. 11(b) shows that the relative error of the computed solutions
remains flat as a brick mesh is cut and increases only gradually as
the less stable beam mesh is cut.

5. CONCLUSIONS AND FUTURE WORK

There are two primary reasons for the disparity between the beam
mesh and brick mesh results. First, the beam meshes have a higher
percentage of surface nodes, resulting in sparser matrix factors and
smaller closure sizes, as shown in Fig. 4. Smaller closures result
in faster execution of the augmented solution steps, particularly the
GMRES iterations in Step 2. Thus we see that the structure of a
mesh is an important factor in determining whether the augmented
method will be a particularly efficient solution method for a given
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problem. In general, the augmented method is particularly attrac-
tive for meshes that have greater amounts of surface area relative to
their volume.

The second reason for the wide disparity in results is that the
brick meshes had particularly well-conditioned stiffness matrices
while the beam meshes had more poorly conditioned stiffness ma-
trices. Iterative methods can converge very slowly or fail to con-
verge at all when systems are not sufficiently well-conditioned. In
contrast, the direct solution approach provided by the augmented
factors is more robust in poorly conditioned scenarios. We con-
clude that the augmented method is particularly appropriate when
a problem would benefit from the robustness of a direct solution
approach but also needs the flexibility to update the system due to
cutting or other changes.

In summary, we have demonstrated the feasibility of using aug-
mented matrices to provide fast updates for finite element models
undergoing cutting and deformation. The augmented method has
been experimentally shown to offer advantages both in speed and
reliability for certain classes of problems. We plan to explore the
applicability of this method to a wider range of problems in future
work. One particular application to investigate is surgery simula-
tion, where there is evidence that viscoelastic and hyperelastic ma-
terial models are often appropriate for soft tissues modeling [Fung
1993] [Lapeer et al. 2010] [Marchesseau et al. 2010]. Non-linear
material models can require stiffness matrix updates at each time
step, even without cutting. However, in the case of tool-tissue inter-
action, acceptable non-linear accuracy might possibly be achieved
by only updating the stiffness of a subset of the most deformed ele-
ments or those closest to the contact area. This raises the interesting
possibility of using the augmented matrix method for fast updates
of non-linear materials.

Another direction for future investigation is inspired by the
variety of recent publications that have reported acceleration of
solution methods via GPU implementations [Dick et al. 2011b]
[Courtecuisse et al. 2010] [Joldes et al. 2010] [nVidia 2013]. Our
augmented matrix solution method could likely be similarly accel-
erated if the triangular solves and/or GMRES algorithm were im-
plemented in a way that makes efficient use of GPU processing.

APPENDIX

Graph theory concepts relied upon in the discussions of sparsity
and complexity are outlined here. Included are the definitions and
Theorems referenced in Section 3.3. Note that in this discussion
the matrix A is nonsymmetric. We apply these results to the lower
and upper triangular factors of the stiffness matrix K, although the
results here are more general.

DEFINITION 1. An n × n sparse matrix A can be represented
by a directed graph G(A) whose vertices are the integers 1, . . . , n
and whose edges are

{(i, j) : i 6= j, and Aij 6= 0}.

This set of indices is called the structure of A.

DEFINITION 2. The transitive reduction of a directed graph
G(L) is the graph obtained by removing edges (i, j) whenever
there is a directed path (that does not use the edge (i, j)) joining
vertices i and j. An elimination tree of a Cholesky factor L is the
transitive reduction of the directed graph G(L) (in this case it is a
tree rather than a directed acyclic graph). [Liu 1990]

DEFINITION 3. The structure of a vector x with n components
is

struct(x) := {i : xi 6= 0},

which can be interpreted as a set of vertices, W, of the directed
graph of G(A) such that i ∈W if and only if xi 6= 0 when solving
Ax = b or Ay = x. In this paper, for a vector x, closureA(x)
refers to closureA(struct(x)).

DEFINITION 4. Given a directed graph G(A) and a subset of
its vertices denoted by W, we say W is closed with respect to A if
there is no edge of G(A) that joins a vertex not in W to a vertex in
W; that is, vj ∈ W and Aij 6= 0 implies vi ∈ W. The closure of
W with respect to A is the smallest closed set containing W,

closureA(W) :=
⋂
{U : W ⊆ U, and U is closed},

which is the set of vertices of G(A) from which there are directed
paths in G(A) to vertices in W.

THEOREM 1. Let the structures of A and b be given. Whatever
the values of the nonzeros in A and b, if A is nonsingular then

struct(A−1b) ⊆ closureA(b) .

The proof of Theorem 1 can be found in [Gilbert 1994].

THEOREM 2. Suppose we need only some of the components
of the solution vector x of the system Ax = b. Denote the needed
components by x̂. IfA is nonsingular, then the set of components in
b needed is closureA>(x̂).

PROOF. Let values be given for whichA is nonsingular. Renum-
ber the vertices of G(A>) so that closureA>(x̂) = {1, 2, . . . , k}
for some k ≤ n. Then Ax = b can be partitioned as(

B D
C E

)(
y
z

)
=

(
d
e

)
,

where B is k × k. By the definition of closureA>(x̂), there is no
edge (i, j) with i ∈ closureA>(x̂) and j /∈ closureA>(x̂). There-
fore D = 0. Then By = d. Since A is nonsingular, B is also non-
singular. Thus x̂ can be computed by solving only By = d, which
implies only closureA>(x̂) is needed to compute the components
in x̂.

THEOREM 3. Let A = LL> be a Cholesky factorization and
W be a subset of vertices inG(L). If r is the root of the elimination
tree T of L, then

closureL(W) =
⋃
v∈W

{r T
=⇒ v},

where r T
=⇒ v is the path from r to v in T , including all intermediate

vertices along the path.

PROOF. (i)
⋃
v∈W

{r T
=⇒ v} ⊆ closureL(W) :

For any edge between a node v and its parent u in T , there is
an edge (u, v) in G(L). By definition if v ∈ closureL(W),
then u ∈ closureL(W). Since W ∈ closureL(W), all ances-
tors of W must be in closureL(W).

(ii) closureL(W) ⊆
⋃
v∈W

{r T
=⇒ v} :

If a node u /∈
⋃
v∈W

{r T
=⇒ v}, there must be a path from a node
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w ∈
⋃
v∈W

{r T
=⇒ v} to u. Hence there is also a directed path

from w to u in G(L). Since L is lower triangular, there is no
cycle in G(L). Hence there is no directed path from u to w
and u /∈ closureL(W).
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Fig. 6: Update rates are shown for the series of (a) beam and (b) brick
meshes. CG results are shown with red lines, and augmented method re-
sults are shown with blue lines. Dotted lines show the results for deforma-
tion step #2 across the series of test mesh sizes. Dashed lines show results
for deformation step #8, and solid lines for deformation step #16.
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Fig. 7: Update rates are shown for the augmented and CG methods as a cut
is advanced through a (a) beam mesh and (b) brick mesh.
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B

Fig. 8: A portion of the tetrahedral brick test mesh. Node A has 13 con-
nected nodes (colored in orange) whereas Node B only has 5 (colored in
red).
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Fig. 9: Update rates are shown for the series of (a) beam and (b) brick
meshes. CG results are shown with red lines, and augmented method re-
sults are shown with blue lines. Dotted lines show the results for cutting
step #2 across the series of test mesh sizes. Dashed lines show results for
cutting step #8, and solid lines for cutting step #16.
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Fig. 10: Timing results are provided for the bunny mesh cutting experiment.
(a) Update rates are shown for the augmented and CG methods as a cut is
advanced. (b) The allocation of computation time to steps of the augmented
method is shown.
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Fig. 11: (a) The maximum number of GMRES iterations required by the
beam and brick meshes of a specific size. (b) Relative residual norm vs. cut
depth. For a solution x̂ to the system Ax = b, relative residual norm is
defined as ‖Ax̂− b‖2/‖b‖2.
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Fig. 12: Timing results are provided for the eye meshes of (a) 4,444 nodes
and (b) 16,176 nodes.
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Fig. 13: Timing results are provided for the brain meshes of (a) 23,734
nodes and (b) 50,737 nodes.
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