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1.1 Introduction

As detailed in other chapters in this book, combinatorial techniques have become essential
tools across the landscape of computational science. The history of what we now call Com-
binatorial Scientific Computing (CSC) has involved the steady accretion of new domains
where combinatorial theory and algorithms have been used to enable computational sci-
ence and engineering. The 1970s and 1980s witnessed the flourishing of graph algorithms
in sparse direct methods. The 1990s saw the growth of combinatorial algorithms as key
enablers of parallel computing. In recent years, graph algorithms have become essential to
automatic differentiation, and play a pivotal role in computational biology. Discrete algo-
rithms also play important roles in mesh generation, computational chemistry, performance
optimization, and many other fields.

In this chapter, we provide a brief overview of the historical roots of combinatorial sci-
entific computing, the formation of the CSC community in the last decade, and provide
our (of course, limited) perspective on likely future directions for CSC. We had provided a
longer exposition on our view of Combinatorial Scientific Computing a few years ago [19]. It
is our belief that the coming years will see still more applications of combinatorial scientific
computing. Computational science remains a young, and rapidly changing discipline. As it
evolves, new challenges will arise which discrete algorithms will be able to help solve. Our
predictions will certainly be incomplete, and probably wrong—certainly many past trends
would have been difficult to foresee. But we hope that by generating curiosity and interest
in new CSC applications, our predictions become self-fulfilling.
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We also believe that new applications will enrich the CSC community, leading to new
combinatorial problems, abstractions, algorithms, and analysis. As has been the case in
the past, we expect this work to have broader impact on the combinatorial theory and
algorithms communities.

Since CSC is so pervasive within computational science, we believe that the best way to
anticipate the future of CSC is to explore general trends within scientific computing. This
is the approach we will take in this paper.

1.2 The CSC Community

1.2.1 The Roots of the CSC Community

Sparse Matrix Computations. One root of the CSC community comes from research in
sparse matrix computations. Harry M. Markowitz, the Economics Nobel laureate in 1990,
writes about working with sparse matrices in modeling industrial capabilities using linear
programming at the RAND Corporation in the 1950s [28].

Our models strained the computer capabilities of the day. I observed that most of
the coefficients in our matrices were zero; i.e., the nonzeros were ”sparse” in the
matrix, and that typically the triangular matrices associated with the forward
and back solution provided by Gaussian elimination would remain sparse if pivot
elements were chosen with care. William Orchard-Hayes programmed the first
sparse matrix code. . . . Sparse matrix techniques are now standard in large
linear programming codes.

The Markowitz scheme [27] for pivot selection in factoring sparse unsymmetric matrices
is still in use today, but research in sparse matrix computations grew gradually in the
1960s before blossoming in the 1970s. Seymour Parter [32] introduced a graph model
for Gaussian elimination on sparse matrices in 1961. A number of early sparse matrix
conferences were held at I.B.M. from 1969 under the leadership of Ralph Willoughby [39, 36],
and a conference was held at Oxford in 1971 [34]. Collections of articles presented at two of
these meetings were published as books, and these were followed by further meetings and
book collections. Rose [35], in a PhD thesis written at Harvard, showed that the adjacency
graph of the Cholesky factor obtained by Gaussian elimination of a sparse symmetric matrix
was a chordal graph. George’s thesis at Stanford (1971) and Duff’s thesis at Oxford (1972)
were early contributions to sparse matrix algorithms and their implementations. Duff’s
comprehensive 1977 survey on sparse matrix research was influential on early researchers
in the field. The text book by George and Liu [14], the Waterloo Sparspak, sparse matrix
routines in the Harwell library (HSL), and the Yale Sparse Matrix Package (YSMP) enabled
the widespread use of sparse matrix computations in many areas of computational science
and engineering. The book, Graph Theory and Sparse Matrix Computation (edited by
George, Gilbert and Liu), which resulted from a special year on linear algebra held at
the Institute for Mathematics and its Applications (IMA) at the University of Minnesota
in 1991, provides a snapshot of research current at that time [13]. Much more detail is
available in the slides that accompanied Iain Duff’s talk on the Development and History
of Sparse Direct Methods at the SIAM Conference on Applied Linear Algebra in 20091.

1Slides are available at www.siam.org/meetings/la09/talks/duff.pdf
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Automatic Differentiation. Another root of the CSC community comes in the context
of derivative computation in optimization. Bauer [3] showed in 1974 how a computational
graph could be associated with the evaluation of a mathematical function in terms of intrin-
sic mathematical operations such as addition, multiplication, and elementary mathematical
functions (trigonometric functions, transcendentals, etc.), with vertices corresponding to
independent, intermediate, and dependent variables, and with an edge joining an operand
of an intrinsic operation to its result. This computational graph is now used in Auto-
matic Differentiation (AD) to compute the derivative of a function specified by a program
by applying the chain rule of differentiation along paths between dependent variables and
independent variables [15].

Yet another early use of combinatorial methods arose in computing Jacobians and Hes-
sians efficiently with the fewest function evaluations (when finite differencing is used), or
with the fewest passes through the computational graph (when AD is used). The essential
idea is that of structural orthogonality, i.e., when two columns of the Jacobian have nonze-
ros in disjoint row indices, the nonzeros in both columns can be evaluated simultaneously by
differencing along both column directions. Furthermore, this observation can be extended
to a subset of columns with the property that for each row, at most one of the columns
in the subset has a nonzero in it. This observation was used by Curtis, Powell, and Reid
in 1974 to compute sparse Jacobians; it was then extended to Hessians, where symmetry
could be exploited in addition to sparsity, by Powell and Toint. Coleman and Moré [7] ob-
served that the problem of minimizing the number of function evaluations for the Jacobian
could be modeled as a vertex coloring problem on a derived graph, thus establishing that
the minimization problem was NP-hard, and proposed a greedy heuristic approach with a
number of vertex ordering algorithms. Coleman and various coauthors also extended the
graph model to Hessian matrices, to relaxed versions of structural orthogonality (leading
to a tree-based computation of the nonzeros beginning with the leaves in the tree, and
proceeding iteratively after removing the leaves computed), and bidirectional evaluations
of Jacobians where both columns and rows are used.
Statistical Physics. Since the 1930s, statistical physicists have been using combinatorial
models as simplified representations of complex physical systems (see [17] for a survey).
The paradigm for this work is the Ising spin model, which attempts to represent the salient
features of ferromagnetism. In the Ising model, atoms are assumed to be located at the
points of a two- or three-dimensional lattice, and they only interact with atoms at neigh-
boring lattice points. Each atom has a spin, and the energy is a function of the spins of
neighboring atoms. The goal is to understand the characteristics of low energy configura-
tions of spins, subject to various external and boundary conditions. This seemingly simple
problem leads to difficult combinatorial optimization problems with rich graph properties.
Key combinatorial kernels include counting the number of perfect matchings in a graph,
and their connection to matrix Pfaffians. Several Nobel Prizes in physics have been awarded
for work that has deep combinatorial underpinnings.

The success of the Ising model in describing the essence of some magnetic phenomena
led to the development of a plethora of combinatorial models for other problems. These
include protein folding, quantum systems, material science, and orbital mechanics. The
statistical physics community is often interested in the asymptotic statistics of optimal
solutions to their combinatorial models. This is somewhat different from the traditional
focus in CSC on algorithmic performance to enable scientific modeling and simulation. But
the two communities are closely aligned in spirit and in interests, and we foresee significant
opportunities for beneficial interactions in the future.
Parallel Computing. Partial differential equations model many physical phenomena in
the sciences and engineering, and their solutions are often computed through discretizations
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on finite difference or finite element meshes. Complex geometries and efficiencies in compu-
tation often require the use of unstructured or block-structured meshes. The computational
intensity of these simulations necessitates the use of parallel computing. To make effective
use of a parallel computer, the problem must be decomposed into subtasks, the subtasks
must be assigned to processors, and the resulting communication and computation must
be carefully orchestrated. The goals of these steps are to ensure that the work is equally
distributed among the processors while keeping the communication costs low, so as to en-
sure that the parallel computation completes in the least possible time. Algorithms for
solving this load-balancing problem use graph models of the computation to compute good
partitions and mappings.

Partitioning methods for parallel computing benefited from earlier work on graph parti-
tioning for sparse direct methods. Graph partitioning provides a mechanism for ordering
sparse matrices through a divide and conquer paradigm called nested dissection, pioneered
by Alan George [12] in 1973. George’s work was generalized to sparse and irregular graphs
by Lipton, Rose and Tarjan [25], and led to theory and algorithms for finding vertex and
edge separators that divide a graph into two subgraphs of roughly equal sizes. By recursive
application of graph partitioning, the load balancing problem in parallel computation and
the problem of computing fill-reducing orderings for sparse matrices could be solved. This
work led to the development of spectral graph partitioning algorithms as well as multi-level
graph partitioning in the 1990’s.

1.2.2 Organization of the CSC Community

Although the many subcommunities mentioned above were employing combinatorial math-
ematics, algorithms and software in the context of scientific computing, they remained
isolated from each other because they contributed to different fields in scientific computing
and computational science and engineering, attending different conferences. By 2000, a
group of thirty international researchers began efforts to formally organize a community.
An email discussion in 2002 settled on the name Combinatorial Scientific Computing to
describe the research undertaken by members of this community. An email subscription
server was created for the CSC community2, and a number of minisymposia on CSC were
organized at SIAM and ICIAM conferences during this period.

Five CSC workshops have been organized thus far, beginning with a SIAM workshop
on CSC in February 2004, co-located with SIAM Conference on Parallel Processing, in
San Francisco, CA. The organizers of this meeting were John Gilbert, Horst Simon, Sivan
Toledo, and the authors. A special volume of the Electronic Transactions on Numerical
Analysis (ETNA) consisting primarily of papers presented at CSC04 was published in 2005
(available as Volume 21 at www.emis.de/journals/ETNA). The second CSC Workshop was
held in Europe, at CERFACS, Toulouse in 2005, with Iain Duff and Alex Pothen serving
as Co-Chairs of the meeting. The following two CSC workshops were organized as SIAM
Workshops in 2007 (co-located with SIAM Conference on Computational Science and Engi-
neering at Costa Mesa, CA) and 2009 (co-located with SIAM Conference on Applied Linear
Algebra at Seaside, CA). The Dagstuhl Seminar on CSC, which served as the stimulus for
the papers in this volume, was organized in January 2009. The next CSC workshop, CSC11,
will be held in May 2011 in Darmstadt, Germany, co-located with the SIAM Conference on
Optimization, and Uwe Naumann and Ali Pınar serve as Co-Chairs of the workshop.

2Subscribe at https://lists.purdue.edu/mailman/listinfo/csc
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Currently Paul Hovland, Sivan Toledo and the authors serve as members of the Steering
committee for this series of CSC workshops. One measure that indicates that CSC is
thriving as a community is that the the responsibility of organizing the biennial SIAM CSC
Workshops has been passed from the original group of organizers to the ‘next generation’
in the CSC community.

1.3 Current Opportunities

From the disparate foundations discussed above, combinatorial scientific computing has
emerged to be recognized as a key enabler for a wide array of scientific areas. The cross-
fertilization of disciplines that has been encouraged by the formation of the CSC community
has accelerated progress in both algorithm development and applications. In this section,
we briefly sketch some of these areas of current activity. Many are discussed in more detail
in other chapters within this book, but several are not.

The diversity of applications of CSC can be daunting, but this seeming complexity masks
significant underlying commonality. Several algorithmic themes are at the core of CSC, and
recur throughout the chapters of this book. Graph and hypergraph algorithms are central
to many (perhaps most) CSC activities. Geometric algorithms and algebraic methods on
graphs also appear prominently. CSC researchers span a range of activities including mod-
eling, algorithm development, theoretical analysis, application and empirical performance
analysis. Parallel and architecturally-informed algorithms also play a prominent role.

One area of high CSC activity and impact is the development and deployment of tech-
niques to support parallel computing. Since the early work of Simon [37], graph partitioning
has been used as a tool for dividing a parallel computation among processors to balance the
work while minimizing the communication. Sophisticated multilevel heuristics have been
developed for this problem, which have subsequently been adapted for a range of other
combinatorial optimization problems. The underlying graph model has been enhanced in
a variety of ways, most notably by the generalization to hypergraphs by Çatalyürek and
Aykanat [6]. These models are surveyed by Hendrickson and Kolda [18].

A second recurring combinatorial kernel in parallel computing is graph coloring. Con-
sider a graph in which vertices represent entities that require updating and edges indicate
conflicts that preclude simultaneous updating of the adjacent vertices. One example of such
a problem arises in mesh refinement [21]. In this setting, it is useful to identify a maximal
subset of vertices, no two of which are adjacent to each other. All of the vertices in this
subset can be updated in parallel, with no concern about conflicts. More generally, one
could color all the vertices in such a way that no pair of adjacent vertices has the same
color. The fewer colors required, the fewer the number of phases necessary to update all
the entities. More detail on parallel computing, partitioning and coloring can be found in
the other chapters in this book.

As has been discussed earlier, graph coloring also arises in optimization as a tool for
exploiting sparsity structure in the computation of derivative matrices. Several variations
of graph coloring, including distance-k vertex coloring (where a vertex must receive a color
distinct from every neighbor within a distance k from it), star coloring, acyclic coloring,
partial coloring (where only a subset of the vertices need to be colored), edge coloring,
and hypergraph coloring, arise as graph models of derivative matrix computation problems.
Efficient heuristic algorithms have been developed for these problems, and these algorithms
often yield nearly optimal colorings for many classes of graphs and real-life instances of
irregular graphs, since they are close to lower bounds which can be computed for the
problem. Other chapters in this book discuss these problems in more detail, and a survey
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is provided in [11].
As sketched in §1.2, the CSC community has deep roots in sparse direct methods. Graph

algorithms are central to the exploitation of sparse structure in the factorization of various
classes of matrices, and this continues to be an active area of research as detailed elsewhere
in this book. Iterative methods for solving linear systems also rely upon combinatorial al-
gorithms in various ways. Incomplete factorization preconditioners use graph algorithms to
reorder the matrix. Algebraic multigrid approaches employ graph matchings and colorings
in the construction of coarse representations. Support theory preconditioners make exten-
sive use of graph embeddings in the construction and analysis of preconditioners. Other
chapters in this book discuss some of these topics in greater depth.

A key step in many computational problems is the construction of a discrete representa-
tion of the geometry of the system being modeled. The mesh might represent the interior of
a combustion chamber for a fluid simulation, the components of an automobile for virtual
crash tests, or a tokamak for fusion modeling. The mesh must decompose the overall geom-
etry into a set of well-shaped polyhedra (usually tetrahedra or octahedra). Geometric and
combinatorial algorithms are central to this task. More detail can be found in subsequent
chapters.

Combinatorial algorithms also play a prominent role in scientific applications that are
not covered in this book. One of these is modern biology. String algorithms are central to
the assembly of genomic data from shotgun sequencing methods, to the analysis of genomic
data, and to searching gene and protein databases for close matches to a new sequence [16].
Dynamic programming on the entire sequences is forbiddingly expensive, and clever heuris-
tic algorithms to identify promising substrings to perform exact dynamic programming on
are the basis of search techniques such as BLAST, FASTA, PatternHunter, and others. Suf-
fix trees and suffix arrays are critical for solving genome wide assembly problems as well as
comparative studies in metagenomics [1]. Phylogenetics, the construction of evolutionary
trees from sequence data, relies on multiple sequence alignments and rich combinatorics to
reduce the search space of potential trees. Population genomics includes the reconstruction
of genotypes from haplotype data (the number of variations in a specific allele in a pair
of chromosomes, which can be 0, 1 or 2), and leads to problems in chordal graphs, as dis-
cussed in §1.4.4. Biological networks such as gene regulatory networks, protein interaction
networks, and metabolic networks lead to a collection of graph problems. Random graph
models for generating networks help in understanding the evolutionary relationships of these
networks from different organisms. Discovering the modular organization (the decomposi-
tion of the network into topological clusters and the overlaps among the clusters) of these
networks aids in understanding the biology of the processes of life and help in systematically
identifying drug targets.

Another important CSC application area that is not covered in detail in this book is
chemistry. The word graph as used in CSC was first coined by Cayley in his study of molec-
ular structures, and graph concepts continue to be important in thinking about molecules
and materials. The graphs of molecules are used today to characterize potential drug de-
signs. Graph and geometric algorithms are also used in material science to describe complex
chemical bond or proximity structure in granular and other complex materials [10, 29, 38].

1.4 Future Challenges

1.4.1 Trends in High Performance Architectures

For the past two decades computer performance has improved steadily due to faster clock
speeds. But power consumption and heat generation are proportional to clock speeds, and
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these factors are constraining further speedups. Instead, future performance advances will
have to come from the increasing use of on-chip parallelism. Current generations of pro-
cessors are multi-core, and the number of cores on a chip is expected to grow quickly as
feature sizes continue to shrink exponentially. Effective use of current and future genera-
tions of on-chip multiprocessors will require algorithmic ideas that are closely informed by
architectural constraints. The CSC community can play an important role in algorithmic
design and implementation, and also in impacting the development of future architectures.

Several different designs of multicore processors are competing for market share right
now, so it is difficult to foresee the details of future market leaders. But it is likely that
future processors will contain multiple types of cores. These heterogeneous multiprocessors
will require careful decomposition of the work amongst the different core types to optimize
the utilization of each resource. The resulting scheduling and resource allocation problems
will benefit from new load balancing models. The parallel computing community has largely
avoided heterogeneity in the past, but will not be able to do so in the future.

Communication between cores on a chip is much more efficient than off-chip communica-
tion, and so algorithmic choices that are appropriate for our traditional cluster environments
may no longer be optimal. For instance, shared-memory algorithms will be more viable on-
chip. Shared variables can be used to store bounds in a branch-and-bound computation, or
to facilitate partner selection in a matching algorithm. Lower-latency, more finely grained
communication will support more fine-grained and asynchronous parallel algorithms.

Multi-core processors are likely to provide some multithreading capability to tolerate
memory latencies. Work on the Cray XMT [26] has showcased the potential for latency
tolerant computers to run graph algorithms with high efficiency while using very different
notions of parallelism than traditional message passing codes. The development of combi-
natorial algorithms that perform well on future processors will be a rich area of research
problems.

These multi-core processors will be the nodes of our future large parallel machines. For
optimal performance this will likely require applications to exploit multiple layers of paral-
lelism – message-passing between nodes but some other model within a node. The extreme
scale machines of the future will have hundreds of thousands or millions of cores. To use
such machines effectively we will need to improve our models and methods for load balanc-
ing, and devise algorithms that require fewer synchronizations. The cost of global collective
communication operations on so many cores will penalize synchronous applications. In
addition, slight deviations in core performance due to operating system jitter can induce
imbalance that will hinder the performance of highly synchronous algorithms. The cost
of global collective communication operations will also penalize synchronous applications.
Thus, there will be a need for greater asynchrony in key scientific computing algorithms.
With so many components, failures will be common occurrences, so fault tolerant and re-
silient algorithms will be important. In all of these areas, the CSC community will play an
important role.

A critical issue with future leadership-class supercomputers will be power consump-
tion [23, 22]. Current petascale machines consume multiple megawatts of power, and deliver
fewer than 300 Mflop/sec/Watt. Clearly, dramatic improvements in efficiency are required
for exascale computing. Current technology roadmaps indicate that the power consumption
in large machines of the future will be dominated by data movement, not by computation.
Thus, there will be a need for algorithms that use memory hierarchies efficiently to reduce
the overall movement and power consumption. This area of algorithmic analysis is currently
immature – the standard measure of algorithmic complexity is based upon computational
operations, not data movement. But the theoretical computer science community has gen-
erated interesting models for out-of-core algorithms, or cache-oblivious algorithms which
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provide new ways of thinking about memory hierarchies [9]. As it has always done, the
CSC community can serve as a bridge between theoretical computer science and computa-
tional applications and bring some of these ideas to the service of scientific computing.

A very different architectural trend is evident in the emergence of cloud computing —
highly distributed machines providing computing as a service. It is too early to assess the
likely impact of clouds on scientific computing, but their growing importance in business
and data analytics suggests that they will be an important feature of the future computing
ecosystem. CSC researchers can contribute to improving the efficiency of clouds and also
to studying the utility of such platforms for scientific applications.

1.4.2 Trends in Traditional Applications

Computational modeling and simulation are widely recognized as essential components of
the scientific process. Computation allows for the study of phenomena that would be danger-
ous, expensive, or even impossible to study experimentally. It also allows for the exploration
of detailed and complex phenomena that are beyond the reach of theory. The forefront of
computational science continues to advance via new mathematical models, algorithms and
computer architectures.

As they grow in fidelity and sophistication, state-of-the-art simulations increasingly in-
volve complex geometries, multiple temporal and spatial scales, and multiple physical phe-
nomena. These capabilities rely on unstructured and adaptive meshes, advanced linear and
non-linear solvers, and complex coupling between models within the simulation. Design
optimization and uncertainty quantification are playing a growing role above and beyond
the traditional phenomenological modeling.

Combinatorial scientific computing techniques are essential enablers of all this sophisti-
cation. Unstructured mesh generation employs sophisticated geometric and graph theoretic
algorithms. Numerical solvers rely upon graph algorithms for reordering and multigrid
coarsening. Multiscale and multiphysics problems make use of advanced load balancing
techniques that are built upon CSC technologies. Optimization and uncertainty quantifica-
tion use graph algorithms to exploit structure in computing derivatives.

As discussed in a subsequent chapter derivative computation is of growing importance in
computational science for design, optimization and uncertainty quantification. Automatic
differentiation (AD) relies on combinatorial models to represent transformations of the
computational graph representation of the computation of a mathematical function, through
vertex, edge, or face elimination, to compute the derivative with the least amount of work
or storage. In the adjoint or reverse mode of AD (where the derivatives are computed
by applying the chain rule from the dependent to independent variables), which is often
more efficient than the forward mode (computation from the independent to dependent
variables), one challenge is to reduce the large storage required by placing checkpoints at
chosen steps during the computation, and doing forward computations from them. Choosing
the number and placement of these checkpoints to reduce the storage required while keeping
the additional computations entailed by the checkpoints is an interesting combinatorial
problem. When the functions involved recursively call functions within themselves, the
problem becomes richer still.

All of these CSC underpinnings are essential to scientific computing and will become
even more so as scientific computing continues to progress. There will undoubtedly be
new nuances and variants of existing problems that will require new ideas within existing
areas of CSC. But of even greater interest to this current paper are broader changes in the
relationship between science and computation. We discuss several of these in the subsequent
sections.
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1.4.3 Emerging Applications

Data-Centric Scientific Computing

High-throughput experimental facilities are transforming many areas of science including
biology, astronomy, earth science, and high energy physics [20]. All of these fields are strug-
gling to make optimal use of a flood of new data. In biology, novel experimental method-
ologies are generating data that is qualitatively different from before, e.g. sequence data,
gene and protein expression data from tissue micro-arrays, functional magnetic resonance
imaging, multichannel flow cytometry and more. In other fields, the data are qualitatively
similar to what came before, but orders of magnitude more voluminous. New models and
abstractions are needed to address this growth in data quantity and diversity. And new com-
puting approaches will be required to extract maximal scientific insight from the available
data.

Extracting useful insight from this data is a preeminent scientific challenge. The internet
community has shown how the combination of vision, clever algorithms, and diverse data
can make data tremendously valuable. It is a certainty that large scientific data sets will
enable answers to scientific questions that have not yet been posed.

Advanced techniques for exploring large data sets will require computational tools that
are quite different from those that used in traditional scientific computing applications.
Mature capabilities already exist for fundamental operations like indexing, range queries,
and searching. More advanced analytics will be application-specific, and will involve various
data abstractions. Graphs are increasingly popular as a tool for describing entities and their
relationships, so graph algorithms will likely be an important component of data-centric
scientific computing (see §1.4.3). New geometric algorithms will likely play a role in the
analysis of complex spatial data in geoscience and other applications.

Computing in the Social Sciences

An emerging area of opportunity for CSC is the study of networks that arise in natural
or human systems. The connectivity structure of links in the world wide web is central
to search ranking algorithms. Communication links between people are reflected in blog
postings, email traffic, instant messaging, and other social media. These large, complex
networks are of keen interest in the social sciences, but techniques of extracting insight
from them remain immature. Two recent books that discuss network science from this
perspective have been written by Newman [31] and Easley and Kleinberg [8].

As happened recently with biology, the availability of large data sets is beginning to
transform social sciences from qualitative to quantitative disciplines. Not long ago, the
study of social interactions required direct observation, interviews and surveys. While
richly informative for social modeling, public health, and other applications, these labor-
intensive tasks limited the scale of the the communities being studied. But these days a
well-connected social scientist can make use of the huge volume of data generated by on-line
social networks, chat rooms, emails, instant messages, and more. In a recent study, Leskovec
and Horvitz studied data from a month of Microsoft’s instant-messaging traffic. The data
encompassed 240 million people and 30 billion interactions [24]. Tellingly, Leskovec and
Horvitz generated some summary statistics of the data, but did no real analysis. In another
recent study, Michel et al. studied millions of books digitized by Google to analyze changes
in language usage and various social trends [30]. As social science on this scale is in its
infancy, no one knows what questions to ask, let alone how best to answer them.

Internet data is not only much larger than traditional social science data, but it is qual-
itatively different. Internet data is less highly curated, and largely uncontrolled. It comes
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from natural, unconstrained human interaction which is attractive, but also greatly com-
plicates its analysis. New graph algorithms and implementations will be needed to address
emerging questions in social science. The structure of a social network is quite different
from that of a finite element mesh, so existing parallel algorithms may not be appropriate.
As with other areas of computational science, the future will emerge from the intersection
of what is scientifically interesting and what is computationally feasible.

1.4.4 Biological Applications

Combinatorial techniques have played an essential role in the development of modern biol-
ogy, with strings, networks, and trees playing prominent roles. Since these topics are not
discussed in detail elsewhere in this book, in this subsection we provide a brief introduction
to several important combinatorial problems in biology.

Population Genomics

A phylogenetic tree represents the evolutionary history of a set of biological sequences (e.g.,
proteins) from different organisms, individuals from the same species, etc. Given a matrix
of sequences, with columns corresponding to characters, and rows to specific organisms or
individuals, the state of a character for an individual is the value of the corresponding matrix
element. The problem is to construct an unrooted tree with the given set of sequences at
the leaves, generating new sequences at the internal nodes such that the subtree induced
by every character-state pair is a subtree (and hence connected). Such a tree has the virtue
of not displaying homoplasy, i.e., a state change in a character occurring at more than
one place in the tree. The perfect phylogeny problem is to determine if a tree with these
properties exists, and to construct such a tree if there is one.

When a fixed number k (with k > 2) states are permissible for a character, the perfect
phylogeny problem can be posed as a chordal graph completion problem on a k-partite
graph. Each character in the sequence matrix corresponds to a vertex part in the k-partite
graph, and each character-state pair corresponds to a vertex in this sequence intersection
graph. Each sequence is represented as a clique consisting of exactly one vertex from each
vertex part. A legal edge in this graph is an edge that joins two vertices from different vertex
parts, whereas an illegal edge joins two vertices in the same vertex part. Buneman [5] proved
in 1974 that a perfect phylogeny tree exists if and only if the sequence intersection graph
can be made a chordal graph by adding only legal edges.

Recently Gusfield (2009, 2010) has considered the perfect phylogeny problem with missing
data, where the goal is to determine if missing entries can be completed in the sequence
matrix so as to obtain a perfect phylogeny. The solution involves computing minimal
separators in the sequence intersection graph, and employs a clique tree representation of
a chordal completion.

Several genome-scale phylogeny problems remain to be formulated and solved in this
area of population genetics with important consequences for understanding genetic simi-
larities and differences in human populations (the International HapMap project). Since
researchers in sparse matrix algorithms have made extensive use of chordal graph theory,
clique tree representations of chordal graphs, and computing minimal separators in non-
chordal graphs [4, 33], this is an example of an area of research in biology where the CSC
community might be able to make significant contributions.
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Computational Systems biology

Systems biology studies how large sets of genes and proteins within a cell interact with each
other to accomplish the manifold functions of the cell. High-throughput large-scale experi-
mental methodologies have been developed to characterize the interactions, and graphs are
used to represent and study them. Examples are protein-protein interaction networks and
gene regulatory networks, which are known for humans and model organisms such as yeast
and the worm C. elegans. The graphs occurring in the biological context have modified
power-law degree distributions, vertices have small average distances in the graph,

Topology based graph clustering methods have been used to understand the biological
role or function of newly discovered genes and proteins from the roles of proteins or genes in
their cluster. The frequency with which motifs, which are subgraphs with specific structures,
usually of small size due to the computational complexity, occur in a large graph have
been investigated through search algorithms. Network alignment is the problem of aligning
several networks of a type in a group of related organisms to study how the networks could
have evolved. Currently most of these networks are studied as static objects due to the
nature of the data that is gathered. How the networks change due to changing conditions
within the cell, or due to disease progression, requires the graphs to be dynamic, with edges
or vertices appearing or being deleted, or changing their weights. Furthermore, kinetics
of their interactions could be described by differential equation models. Most biological
systems that are known to such detail are small-scale networks, but as these data become
available, more sophisticated combinatorial and algebraic methods would be needed to study
them.

Comparing biological networks across organisms leads to the study of graph alignment
problems, where the goal is to identify how a subgraph in one network is present, with
modifications, in another network. These lead to integer programming formulations, and
often require the use of matching algorithms to solve them. Much remains to be done to
develop effective algorithms for large network alignment problems.

Next Generation Sequencing

As of February 2011, the genomes of more than 2700 individuals have been sequenced, and
tens of thousands of others are in the process of being sequenced. The discovery that our
specific genetic makeup could lead to different outcomes to a drug necessitates the ability
to sequence individual genomes at low costs, and the era of personalized medicine. New
sequencing methodologies (next generation sequencing or NGS) that lower costs are being
actively developed, and these rely on shotgun sequencing where the genomes are cut into
small fragments, which are sequenced, and then assembled based on overlaps and known
distances between the fragments. The assembly problems are more massive in the NGS
methods, since the fragments are smaller, and the coverage of the genome by fragments
is larger, to ensure that the sequences can be assembled correctly. Many new algorithms
remain to be discovered and implemented efficiently to solve this challenging problem. Fur-
thermore, new sequencing technologies such as single cell sequencing will soon be available,
resulting in new algorithmic problems to be solved.

This is a one instance of a recurring theme in bioinformatics and computational biology.
A large number of novel, high-throughput experimental methodologies are being developed
that result in massive amounts of multidimensional, error-plagued data that need to be
analyzed to discover features of interest to life scientists. An example of downstream analysis
of high-dimensional flow cytometry data from leukemias analyzed with techniques from
graph matching is in [2]. Often, measurements are taken from the samples at multiple
times in varying conditions, and one needs to register features in a sample from one time
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interval to the next. Researchers in CSC working on these problems need to understand
the experimental context well, and need to develop algorithms that can effectively deal with
the errors in the data.

1.5 Conclusions

From a diverse set of antecedents, combinatorial scientific computing has emerged as a
recognized and essential component of a broad range of scientific disciplines. The range
of problems and applications is growing rapidly, and we anticipate further growth in the
future due to several trends in science and technology.

First, as parallelism becomes a ubiquitous aspect of all computing platforms, the strong
role that CSC has played in facilitating parallelism will impact many more computations.
And the unrelenting increase in complexity of leadership class parallel machines will also de-
mand new combinatorial models and techniques for load balancing and scheduling. Second,
as traditional scientific computing applications grow in sophistication, they are increasingly
embracing complex geometries, adaptivity and multiscale methods. All of these changes
require sophisticated combinatorial algorithms to manage mesh generation, and to get op-
timal performance out of memory hierarchies. Third, emerging computational applications
are rich in combinatorial opportunities. Among these applications are data-centric science,
computational social science, and new challenges in biology.

For all these reasons, we believe that the breadth and depth of activity in combinatorial
scientific computing will continue to grow briskly.
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