
Computing the Block Triangular Form of a
Sparse Matrix

ALEX POTHEN and CHIN-JU FAN
The Pennsylvania State University

We consider the problem of permuting the rows and columns of a rectangular or square, unsymmetric
sparse matrix to compute its block triangular form. This block triangular form is based on a canonical
decomposition of bipartite graphs induced by a maximum matching and was discovered by Dulmage
and Mendelsohn. We describe implementations of algorithms to compute the block triangular form
and provide computational results on sparse matrices from test collections. Several applications of
the block triangular form are also included.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra-sparse
and very large systems; G.4 [Mathematics of Computing]: Mathematical Software-ulgoritltm
analysis

General Terms: Algorithms

Additional Keywords and Phrases: Block triangular form, Dulmage-Mendelsohn decomposition,
maximum matchings, sparse matrices

1. INTRODUCTION

We consider the problem of permuting the rows and columns of a sparse matrix
with arbitrary row and column dimensions to compute its block triangular form
(btf). Block triangularization of a sparse matrix leads to savings in computational
work and intermediate storage for many sparse matrix algorithms, including
algorithms for solving linear systems of equations, the linear least squares
problem, the null space problem, partitioning sparse matrices in parallel com-
putation, and so forth. Inasmuch as block triangularization is equivalent to
computing a particular decomposition of bipartite graphs, it has applications
to problems outside the sparse matrix domain as well.

Algorithms for computing the btf of a sparse matrix are based on a canonical
decomposition of bipartite graphs discovered by Dulmage and Mendelsohn. These
algorithms rely on the concept of matchings in bipartite graphs, or equivalently,

The work of A. Pothen was supported by NSF grant CCR-8701723 and by U.S. Air Force Office of
Scientific Research Grant AFOSR-88-0161.
Authors’ addresses: A. Pothen, Department of Computer Science, The Pennsylvania State University,
University Park, PA 16802; e-mail address: pothen@cs.psu.edu or na.pothengna-net.stanford.edu;
C.-J. Fan, Department of Computer Science, The Pennsylvania State University, University Park,
PA 16802; e-mail address: fan@cs.psu.edu
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0098-3500/90/1200-0303 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990, Pages 303-324.

304 ’ A. Pothen and C.-J. Fan

on the dual concept of vertex covers. Sparse matrix researchers have studied a
version of this decomposition applicable to square, unsymmetric, structurally
nonsingular matrices, inter alias Duff and Reid [8], Erisman et al. [13], Gustavson
[20], and Howell [22]. An implementation of an algorithm for computing the btf
of such matrices is described in Duff and Reid [B], and their program MC13D is
included in the Harwell subroutine library.

A more general btf exists for rectangular matrices and square, unsymmetric
matrices that are structurally singular. This btf is based on a more general version
of the Dulmage-Mendelsohn decomposition. The relationship between this more
general btf and the btf of square, structurally nonsingular matrices will become
clear in the next section. In this paper we report on the implementation of the
algorithms that compute this more general btf and provide computational results
on several sparse, rectangular matrices from different application areas.

The organization of our paper is as follows. In Section 2, we describe the
Dulmage-Mendelsohn decomposition on which our program is based. Next, in
Section 3, we describe our implementations of the algorithms that are used to
compute the btf. These include a maximum matching algorithm and algorithms
that compute the btf in two stages, which we call the coarse decomposition and
the fine decomposition. In Section 4, we compute the block triangular forms for
several sparse matrices from the Boeing-Harwell test collection and from the
lp/data collection in the Netlib electronic software library. In the final section,
we describe several applications in which the btf of sparse matrices plays a role.

2. THE DULMAGE-MENDELSOHN DECOMPOSITION

In this section we describe the btf of an m X n matrix A, where we assume for
convenience that m I n. This assumption causes no loss of generality, for if the
matrix is underdetermined, we can consider its transpose. It is helpful in the
computation of the btf to consider the bipartite graph associated with A, G(A) =
(R, C, E). Here R is the set of vertices corresponding to the rows of A, C is the
set of vertices corresponding to columns of A, and E is the set of edges corre-
sponding to the nonzeros in A. Hence, R consists of m vertices, which we number
from rl to r,, and C consists of n vertices, numbered c1 to c,. For every nonzero
entry a,; in the matrix A, there is an edge (r;, cj) in E.

A matching M in G(A) is a subset of its edges with no common endpoints. In
the matrix A, this corresponds to a subset of nonzeros, no two of which belong
to the same row or column. A node is matched if an edge in a matching is incident
on it; otherwise it is unmatched. A bipartite graph G(A) with a matching is shown
in Figure 1, where the matched edges are indicated by dark horizontal lines. The
matched nonzeros in the corresponding matrix A are indicated by the ‘@’ symbol
in Figure 2. Elements marked ‘x’ are the other nonzeros in the matrix, and zero
elements are indicated by empty entries.

A walk is a sequence of vertices vo, vl, . . . , v,-~; u, such that (vi, Q+~) is an
edge for i = 0, . . . , n - 1. Edges or vertices can be repeated in a walk. An
alternating walk is a walk with alternate edges in a matching M. An alternating
tour is an alternating walk whose endpoints are the same. An alternating path is
an alternating walk with no repeated vertices. An augmenting path is an alter-
nating path that begins and ends with unmatched nodes.
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix -

Fig. 1. The Dulmage-Mendelsohn decomposition of
a bipartite graph.

HR

VR

Rows 121 Columns

1 2 3 4 5 6 7 8 9 10 11

1 xxc3xxx
2 QX xx x HR
3x x Q
4 Q x X

5 x Q X

Fig. 2. The block triangular form of A.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

306 - A. Pothen and C.-J. Fan

The cardinality of a matching is the number of edges in it. An augmenting
path can be used to increase the cardinality of a matching by interchanging
its matched and unmatched edges. A maximum matching is a matching of
maximum cardinality. This corresponds in the matrix to a diagonal with the
maximum number of nonzeros in it. Berge [28] proved that a matching in a graph
is maximum if and only if the graph contains no augmenting path with respect
to it. A matching is column-perfect if every column vertex in C is matched; it is
row-perfect if every row vertex in R is matched. A matching is perfect if it is
column-perfect and row-perfect; this implies that R and C have equal sizes. The
matching in Figures 1 and 2 is a maximum matching.

Lawler [25], Lovasz and Plummer [28], and Papadimitriou and Steiglitz [31]
contain good discussions of matching theory and algorithms.

The m x n matrix A (with m L n) has the Hall Property (HP) if every subset
of k columns has nonzeros in at least as many rows. Philip Hall [28] proved that
A has a maximum matching in which all its columns are matched if and only if
it has the Hall Property. A stronger requirement on A is the Strong Hall Property
(SHP): every subset of 0 < k < m columns has nonzeros in at least k + 1 rows.
(Thus, when n < m, every subset of k I n columns has the required property,
and when n = m, every subset of k < n columns has the property.) The importance
of the Strong Hall Property will become clear after the description of the
Dulmage-Mendelsohn decomposition. Both these terms are due to Coleman,
Gilbert, and Edenbrandt [31.

The Dulmage-Mendelsohn decomposition was described in a series of papers
by Dulmage, Johnson, and Mendelsohn [lo-12, 231. We state the decomposition
by a series of lemmas. Let M be a maximum matching in the bipartite graph
of A, with row set R and column set C. With respect to M, we can define the
following sets:

VR = {row vertices reachable by alternating path from some unmatched row]
HR = (row vertices reachable by alternating path from some unmatched column1
SR = R\(VR U HR)
VC = (column vertices reachable by alternating path from some unmatched row]
HC = (column vertices reachable by alternating path from some unmatched

column}
SC = c\(VC U HC).

The reader will find it helpful to consider the example in Figure 1 and its btf
in Figure 2. In the btf, the rows and columns of A are permuted such that it has
the block upper triangular form:

A=(“” Ts ;“),

where Ah is underdetermined, A, is square, A, is overdetermined, and Xs denote
possibly nonzero matrices of appropriate dimensions. (The prefix H stands for
“horizontal”, S for “square”, and V for “vertical.“)

The proofs of the following results may be found in [32].
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990

Computing the Block Triangular Form of a Sparse Matrix - 307

LEMMA 2.1 The sets VR, SR, and HR are pairwise disjoint; similarly the sets
VC, SC, and HC are pairwise disjoint.

LEMMA 2.2 A matching edge joins a row vertex in VR only to a column vertex
in VC; a row vertex in SR only to a column vertex in SC; and a row vertex in HR
only to a column vertex in HC.

LEMMA 2.3 Row vertices in SR are perfectly matched to column vertices in SC.

LEMMA 2.4 No edge joins: a column vertex in HC to row vertices in SR or VR;
a column vertex in SC to row vertices in VR.

From the previous two lemmas, and from the construction of the various
row and column sets, it follows that 1 VR 1 > 1 VC 1, 1 SR 1 = 1 SC 1, and
1 HR 1 < 1 HC 1. Let us denote by (HR, HC) the submatrix of A induced by the
row set HR and the column set HC, and similarly for the other row and column
subsets. We call the submatrix Ah = (HR, HC) the horizontal submatrix, the
submatrix A, = (SR, SC) the square submatrix, and A, = (VR, VC) the vertical
submatrix. The corresponding bipartite subgraphs are denoted Gh, G,, G,, respec-
tively. The submatrix Ah is underdetermined, A, is square, and A, is overdeter-
mined, as stated earlier. In addition, A,, has a row-perfect matching, A, has a
perfect matching, and A, has a column-perfect matching. The above lemmas
imply that A can be permuted into a block upper triangular form with diagonal
blocks A,,, A,, and A, as shown in Figure 2.

LEMMA 2.5 The submatrix A, has the Strong Hall Property, as does the
submatrix AT.

The importance of the SHP of these blocks in two sparse matrix problems,
the null space problem, and the linear least squares problem, is described in
Section 5.

The next theorem states that even though the Dulmage-Mendelsohn decom-
position was stated with respect to a particular maximum matching, any other
choice of a maximum matching would partition A into the same submatrices A,,,
A,, and A,. Hence the vertical, square, and horizontal submatrices in the btf of
A are unique.

THEOREM 2.1 The sets VR, SR, HR and VC, SC, and HC are independent of
the choice of the maximum matching M; hence the Dulmage-Mendelsohn decom-
position is a canonical decomposition of the bipartite graph G.

We call the above decomposition of A into the submatrices Ah, A,, and A, the
coarse decomposition. One or two of the three submatrices may be absent in the
coarse decomposition of a given matrix A. If A is overdetermined with a column-
perfect matching, then A,, will be absent in its coarse decomposition; if A does
not have a column-perfect matching, then A,, will be present. The submatrix A,
will be present or absent depending on the nonzero structure of A. Similarly, if
A is underdetermined, the presence of the submatrix A, will depend on whether
it has a row-perfect matching or not. The presence of A, will again depend on
the structure of A.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

308 . A. Pothen and C.-J. Fan

If A is square and unsymmetric, there are two possible cases, depending on
whether A has a perfect matching or not. (This corresponds to A being structur-
ally nonsingular or singular.) If A has a perfect matching, then its coarse
decomposition has only the submatrix A,; otherwise, both A,, and A, will be
present.

It may be possible to further decompose the submatrices Ah, A,, and A, to
obtain the fine decomposition of these submatrices. Each of Ah or A, may be
decomposable into block diagonal form; this corresponds to finding the connected
components of G,, and G,. If there are p connected components in G,,, then A,,
has p diagonal blocks and can be permuted to the structure

A hp

Here, each diagonal block Ahi is underdetermined and has all of its rows matched
to a subset of its columns.

The fine decomposition corresponding to A, is similar to that of Ah, the only
difference being that the diagonal blocks are now overdetermined.

The square submatrix A, has a more interesting fine decomposition; it may
have the block triangular form described below.

Consider the perfectly matched square submatrix A, and the associated
subgraph G, induced by SR and SC. We call two-column vertices in SC equivalent
if they lie on an alternating tour. This is an equivalence relation. Let the classes
of this equivalence relation be C, , C2, . . . , C,, and let R; be the set of rows
matched to Ci.

LEMMA 2.6 The row subsets (RiJ and column subsets (Ci) can be renumbered
such that if Ci has nonzeros in the row set Rj, then j I i.

We call this the fine decomposition of G,. This decomposition for a graph G,
and the corresponding block upper triangular form for its matrix A, are shown
in Figure 3. (This graph and matrix are different from G,, A, in Figures 1 and 2.)

LEMMA 2.7 The submatrix induced by Ri and Ci has SHP.

THEOREM 2.2 The partitions R, , . . . , R, and C, , . . . , C, are independent of the
choice of maximum matching.

THEOREM 2.3 Let nonmatching edges in G, be directed from columns to rows,
matching edges shrunk into single vertices, and the vertices identified with the
rows. The resulting directed graph G, has RI, . . . , Rp as its strongly connected
components.

This result enables us to use Tarjan’s algorithm [34] for finding strongly
connected components in a directed graph in order to find the block upper
triangular form of the square submatrix. As noted above, if A is square, unsym-
metric, and has a perfect matching, its coarse decomposition consists of the
submatrix A, alone. It is the fine decomposition of A, that Duff and Reid [8]
have implemented in their program MC13D. If A is square, unsymmetric, and
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix * 309

does not have a perfect matching, then MC13D puts the maximum number of
nonzeros on the diagonal, treats the remaining zeros on the diagonal as nonzeros,
and then computes a block upper triangular form corresponding to this diagonal.
However, in this case, the matrix has a finer btf that can be obtained from the
coarse and fine decompositions described here.

3. ALGORITHMS

We describe our algorithm to compute a Dulmage-Mendelsohn decomposition of
an m x n matrix A, where, without loss of generality, we have assumed m 2 n.

We represent the nonzero structure of the matrix A by both column-oriented
and row-oriented adjacency lists and pointer arrays used by SPARSPAK [15].
Thus the array adjcol(.) and the pointer array ~a@(.) are used to represent the
column indices of nonzeros in rows of A. Similarly, arrays adjrow (.) and xudjr(.)
are used to represent row indices of nonzeros in columns of A.

The algorithm to compute the btf has three phases:

Phase 1 Find a maximum matching M in the bipartite graph G(A).
Phase 2 With respect to M, partition R into the sets VR, SR, HR; similarly

partition C into the sets VC, SC, HC.
Phase 3 Find the diagonal blocks of the submatrix A, = (VR, VC), from the

connected components of G,; similarly for A, = (HR, HC).
Find the block upper triangular form of the submatrix A, = (SR, SC)
by finding strong components in the associated directed graph Gd.

3.1 The Maximum Matching

Duff [5] has described the implementation of an O(m) maximum matching
algorithm. More recently, Duff and Wiberg [9] have implemented an O(&,)
algorithm due to Hopcroft and Karp. Either of these algorithms could be used to
find the maximum matching in this phase. The latter algorithm has an asymp-
totically superior worst-case complexity. However, empirically, the running times
of the algorithms are greatly improved by the use of heuristic features, and the
relative performance of the two algorithms is problem dependent. Duffs imple-
mentation of the former algorithm is conceptually simpler and uses less storage.
A detailed description of Duff s implementation of an 0 (m) matching algorithm
may be found in the book by Duff et al. [6].

We implemented an algorithm similar to the one in [5], but found it to be slow
on the denser problems we considered. This motivated the design of the variant
of the O(m) maximum matching algorithm described below. We found that our
implementation of this algorithm was competitive with Duff s 0 (m-) algorithm
on sparser problems, while it was faster than the latter on denser problems. A
description of our O(m) matching algorithm follows.

Algorithm 1. Maximum Matching
Step 0. [Initialize]

Set the matching M and the set of unmatched columns U to be empty.
Step 1. [cheap matching]

for each column vertex c E C do
match c to the first unmatched row vertex r E c&(c), if there is such a row;
if c cannot be matched, add c to U;

end for

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

310 * A. Pothen and C.-J. Fan

Fig. 3. The fine decomposition of G, and the block
upper triangular form of A,.

RI 1 Cl

2

5

6

R3

7

Rows Columns

1234567

Step 2. [augment matching]
u,., := 0
repeat

(perform one pass of the augmenting procedure)
for each column vertex c E U do

search for an augmenting path from c,
visiting only row vertices that have not been visited previously in this
pass;
mark all row vertices reached as visited,
if an augmenting path is found, augment M; else include c in U,,,;

end for
u:= u,,,; u,., := PI;

until no augmenting path is found in a pass.

Inasmuch as an augmenting path has an unmatched column vertex at one end
and an unmatched row vertex at the other, it is no loss of generality to search
for augmenting paths from unmatched columns only. Since we are searching by
alternating paths, the depth-first searches (dfs) have a simple structure. From
each column vertex, we search all rows adjacent to it, but from a row vertex, we
search only the column matched to it.

Duff et al. [6] call Step 1 finding a cheap matching. If A is a square, unsymmetric
matrix of order n with a perfect matching, then, using the Hall property, it is

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix - 311

easy to show that at least (n/21 columns can be matched in the cheap-matching
step. (This is Exercise 6.5 in [6].) We now prove that a similar result holds even
when the matrix is overdetermined and does not have a column-perfect matching.
We first prove the result using matrix theory, via the following theorem due to
Konig, stated and proved in Mint [30] (Ch. 4, Theorem 2.2).

THEOREM 3.1 (Konig) Let A be an m x n matrix, where m 2 n, and let k I n
be a nonnegative integer. A necessary and sufficient condition that the size of a
maximum matching of A is n - k is that it contains an s X t zero submatrix with
s+t=m+k.

LEMMA 3.1 Let A be a matrix with dimensions as in Theorem 3.1, with a
maximum matching of size n - k. The cheap-assignment phase of Algorithm 1
finds a matching of size at least r(n - k)/21.

PROOF. Let 1 be the size of a matching obtained in the cheap-matching step.
Reorder the rows and columns of A such that it can be partitioned as

where AI1 is the 1 x 1 submatrix consisting of the matched rows and columns.
The (m - 1) X (n - 1) submatrix A,, must be the zero submatrix, else the cheap
phase would be able to extend the matching. Since A has a maximum matching
of size n - k, by Konig’s theorem,

(m - 1) + (n - 1) I m + k.

Simplifying, we get 12 (n - k)/2. Since 1 is an integer, the lemma follows. 0

An alternative proof of Lemma 3.1, which uses matching theory only, can be
obtained as follows. Let L be a matching found by the cheap phase, M a maximum
matching of size n - k, and N the empty matching. The symmetric difference
M @ N = (M\N) U (N\M) consists of the (n - k) matched edges of M, forming
a set of n - k vertex disjoint-augmenting paths with respect to the empty
matching N, each consisting of a single edge. Let (u, v) be any edge of the graph
included in L. At most two edges of M may become ineligible to be included in L
as a result of including (u, v), that is, an edge in M with u as one endpoint and
another edge in M with u as one endpoint. Hence the matching L contains at
least f(n - k)/21 edges.

We now turn to a consideration of Step 2 of Algorithm 1. This step is organized
into passes; in each pass, we search for vertex-disjoint augmenting paths from
all unmatched columns that are maintained in the set U. The cost of searching
for the augmenting paths in a pass is at most O(T), since the adjacency list of
each column is examined at most once during the pass. When no augmenting
path is found in a pass, the algorithm terminates. We will prove that then the
algorithm does find a maximum matching.

THEOREM 3.2 Algorithm 1 terminates with a maximum matching in the graph.

PROOF. A matching is maximum if and only if there is no augmenting path in
the graph with respect to it. Hence we prove that, at termination, there is no

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

312 - A. Pothen and C.-J. Fan

augmenting path in the graph. Suppose, for a contradiction, that there exists an
augmenting path in the graph when the algorithm terminates.

Number the unmatched columns in U in the last pass of the algorithm in the
order in which the algorithm performs augmenting path searches from them. Let
c, be the smallest column in U such that there is an augmenting path in the
graph beginning with this unmatched column. Let the corresponding augmenting
path be

G, rl, cl, .+., rk--1, ck-1, rk’kl

where (r;, Cj) is a matched edge for j = 1, . . . , k - 1, and rk is an umatched row.
The algorithm failed to find this path when it performed a vertex disjoint dfs
from c,. This happened because some row on this path ri, where i < k, was visited
by an earlier dfs from an unmatched column c’, during this pass. Then the
alternating path from c’ to ri concatenated with the path from ri to rk is an
augmenting path in the graph. This contradicts the choice of c,. q

Step 1 of the algorithm can be implemented in O(T) time. Each pass of the
algorithm can also be implemented in O(T) time. There can be at most O(n)
passes, since in each pass, except the last one, at least one more column is
matched. Hence the complexity of the algorithm is O(nr).

We have incorporated several features that have been previously employed by
Duff to obtain an efficient implementation of Algorithm 1. We briefly describe
them now. Detailed descriptions of these features may be found in Duff [5] and
Duff et al. [6].

The depth-first searches are made efficient by a technique called lookahead
(which is one step of a breadth-first search). Before performing the dfs from a
column, all rows adjacent to it are examined to see if there is an unmatched row
among them. If so, the dfs can be terminated, since an augmenting path from an
unmatched column to an unmatched row has been found.

A pointer array into the adjacency lists of each column is maintained to ensure
that each edge is examined at most once in Step 1, and the look-ahead part of
the dfs in Step 2, over the entire algorithm. Hence the look-ahead feature costs
only O(7) over the whole algorithm. Another pointer array into the adjacency
lists of the columns is used to ensure that each edge is examined at most once
during the vertex-disjoint depth-first searches in a pass. Thus each pass can cost,
at most, O(7). An array is also used to mark rows that have already been visited
during a dfs; the reinitialization of this array at the beginning of each pass can
be avoided by using the number of the pass as a flag.

The matching is represented by means of two arrays rowset and colset. Row ir
is matched to column ic if rowset = ic and colset(ic) = ir.

It is appropriate at this point to compare Algorithm 1 to the Duff and Wiberg
[9] implementation of the Hopcroft and Karp algorithm. The Hopcroft and Karp
algorithm is organized into phases; in each phase, they find a maximal set of
vertex disjoint shortest augmenting paths in the graph. This is accomplished by
generating an auxiliary graph by breadth-first search (bfs) from unmatched rows
and stopping the search at the level at which the first unmatched column is
found. A maximal set of shortest augmenting paths is found by vertex disjoint
depth-first searches from the unmatched columns (in the last level) of the

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix - 313

auxiliary graph. Each phase can be implemented in O(T) time, and Hopcroft and
Karp proved that there are at most O(n”‘) phases in the algorithm.

Duff and Wiberg [9] found that in their implementation of the Hopcroft and
Karp algorithm, the breadth-first searches dominated the running times and
examined several ways of reducing this cost. They succeeded in finding a variant
algorithm ((C4) in their paper), with the O(rz”‘%) worst-case time bound, which
was competitive with Duffs earlier implementation of the O(M) algorithm. In
this variant algorithm, they found, during each phase, a maximal set of shortest
augmenting paths in the auxiliary graph (generated by the bfs) by vertex-disjoint
depth-first searches from the unmatched columns in the auxiliary graph. In
addition, more augmenting paths were found by performing vertex-disjoint depth-
first searches in the original graph from the remaining unmatched rows in that
graph. These latter searches cost, at most O(T) time and serve to reduce the total
number of breadth-first searches in the algorithm. This variant algorithm per-
forms well in practice compared to Duff’s original O(n7) algorithm. It is possible
to implement this algorithm without explicitly generating and storing the auxil-
iary graph; only a few arrays for recording the level structure information and
for maintaining the queues of unmatched rows and columns are needed.

Algorithm 1 finds a maximal set of vertex disjoint augmenting paths, without
paying heed to the augmenting path lengths, by the vertex disjoint depth-first
searches in each pass. Each pass may find several augmenting paths at the cost
of O(T) operations, but because shortest augmenting paths are not found, the
worst-case complexity of the algorithm becomes O(~T).

We compare the running times of Algorithm 1 implemented in Fortran 77 on
a Sun 4/260 with implementations of Duff’s O(M) algorithm and the Duff and
Wiberg algorithm on two classes of problems in Table I. Our implementation
of the latter two algorithms are variants of the implementations described in
Duff [5] and Duff and Wiberg [9], modified to work with the Sparspak data
structures that represent the matrix. Our implementation of the Duff and Wiberg
algorithm requires extra storage only for two additional arrays of length m and
two of length rz, to mark the row and column level structures in the bfs and to
maintain queues of unmatched row and column nodes. The programs were run
on a Sun 41260, and additional details about experimental conditions may be
found in Section 4.

The first class of problems in Table I is a set of fairly dense (density
~20 percent), rectangular (but nearly square) economy problems in the Boeing-
Harwell test collection. On this class, Algorithm 1 and the Duff and Wiberg
algorithm perform much better than Duff’s algorithm. The second class of
problems in the table is the set of Ncube problems (from Duff [5]), constructed
to exhibit the worst-case O(M) time behavior of Duff’s algorithm. It can be seen
that Algorithm 1 has almost the same running times as Duff’s algorithm, and
hence also requires O(nT) time on these examples, and that the Duff and Wiberg
algorithm is much faster than both the former algorithms. In Section 4,
Table IV, we compare the performance of Algorithm 1 with the Duff and Wiberg
algorithm on a set of 28 linear programming constraint matrices from the netlib
library. We find that Algorithm 1 is, on the average, more than three times faster
than the Duff and Wiberg algorithm on this set of problems.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

314 * A. Pothen and C.-J. Fan

Table I. Time (in seconds) Required for Maximum Matching
in Two Classes of Problems

Problem Matching time

Rows Cols. Nonzeros Duff Alg. 1 D-W Alg.

497 493 44551 5.03 0.36 0.33
497 493 53403 6.70 0.39 0.41
497 493 50409 7.07 0.38 0.38
492 490 41063 5.21 0.36 0.33
492 490 49920 6.51 0.38 0.38
492 490 49920 6.73 0.39 0.39

120 120 1760 0.12 0.14 0.03
240 240 6720 0.72 0.81 0.08
360 360 14880 2.28 2.57 0.15
480 480 26240 5.36 5.72 0.25
600 600 40800 10.12 11.02 0.37
660 660 49280 13.27 14.76 0.44
720 720 58560 17.42 18.88 0.58

Thus we find that the relative performance of Algorithm 1 and the Duff and
Wiberg algorithm is problem-dependent. More experience with problems from a
wide variety of application areas is needed before definitive conclusions can be
drawn. Unfortunately, the number of rectangular test matrices in the Boeing-
Harwell collection is fairly small, and this makes extensive testing difficult.
However, the time taken by the matching algorithms on most problems is a tiny
fraction of the time required for numerical factorization; for most linear programs
in Table IV, it is also small in comparison with the other steps in block
triangularization. At this time, for a general-purpose matching algorithm, we
would advocate the use of the Duff and Wiberg algorithm because of its better
asymptotic worst-case complexity and reasonable practical performance.

3.2 Coarse Decomposition

In the coarse decomposition, we use the maximum matching found in Phase 1 to
partition the rows and columns. Initially, we include every column vertex in SC
and then mark columns belonging to VC and HC. When the marking process
terminates, all columns still marked SC will indeed belong to the set SC. A
similar technique is used for the row vertices, The coarse decomposition algorithm
is described below.

Algorithm 2. Coarse Decomposition
Step 0. [Initialize]

Include all column vertices in SC, all row vertices in SR.
Step 1. [Identify Ah]

U := (set of all unmatched column vertices];
for each u E U do

Include u in HC;
Perform a dfs from u,
including all rows reachable by alternating path in HR
and all columns reachable by alternating path in HC.

end for

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix - 315

Step 2. [Identify A,.]
W := (set of all unmatched row vertices);
for each w E W do

Include w in VR;
Perform a dfs from w,
including all columns reached by alternating path in VC
and all rows reached by alternating path in VR.

end for

Consider the dfs from an unmatched column vertex. As noted before, since we
are searching for alternating paths, the search from a row vertex is simple; we
consider only the column matched to it. From a column vertex we search all rows
adjacent to it. Hence we use the column-oriented adjacency lists, adjrow and
xadjr, to find all rows adjacent to a given column and to find a column matched
to a row from rowset. We use a pointer array into the column adjacency lists to
mark how far we have progressed in the dfs from a column. Thus the adjacency
list of each column in HC is searched at most once.

The first time a row vertex is reached by an alternating path from some
unmatched column, we include the row in HR. Hence we can check if a row has
already been visited by checking if it is in SR or HR.

By symmetry, by searching for rows and columns reached by alternating paths
from unmatched row vertices, we can identify the sets VR and VC. The only
difference is that now we need the row-oriented adjacency lists adjcol and xadjc
and the array colset to identify rows matched to columns.

3.3 Fine Decomposition

In Phase 3, we further decompose the submatrices A,,, A,, and A,v by finding the
block diagonal forms of Ah and A, and the block upper triangular form of A,. The
first task is accomplished by finding the connected components of the subgraphs
Gh and G,.

We find the connected components of each subgraph by a simple marking
algorithm that uses dfs from vertices in the subgraph. We mark all vertices
reachable by dfs from a start vertex; these belong to the same connected
component. The marking procedure is repeated from an unmarked start vertex,
as long as unmarked vertices exist. The dfs from each start vertex finds a
connected component. Since we are no longer finding alternating paths, we must
search the adjacency lists of both rows and columns. We need pointers to both
column and row adjacency lists to ensure that each edge is examined at most,
twice: once in a column adjacency list and once in a row adjacency list. Hence
this algorithm has O(7) time complexity.

Row vertices in HR may be adjacent to columns in SC or VC also. Hence,
when a column vertex is reached by dfs from a row in HR, we include it in this
connected component of Gh only if the column belongs to HC. A similar test is
used to ensure that only rows in VR are included in connected components
of G,.

The second task is the computation of the block upper triangular form of the
square submatrix A,. From Theorem 2.3, this can be accomplished by forming a
directed graph G, from G, by directing the edges from column vertices to row
vertices and shrinking matched edges to single vertices and by then finding the

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

316 l A. Pothen and C.-J. Fan

strong components in Gd. It turns out that we can work with G,q directly, as will
be described later.

Tarjan [34] has designed an algorithm using dfs to find the strong components
of a directed graph in time linear in its edges. Duff and Reid [8] have implemented
this algorithm, and their program is available as subroutine MC13D in the
Harwell library. The program we have used is a variant of MC13D, modified to
work with a sparse matrix represented by the SPARSPAK data structures. A
good description of the program MC13D may be found in the book by Duff
et al. [6], and we direct the reader there for details of the implementation.

One difference between our program and MC13D is that MC13D assumes that
the matrix has already been permuted to have a zero-free diagonal. We do not
permute the matrix A,9 to make its diagonal zero-free, but work implicitly with
Gd as follows. We search G, using alternating paths beginning at row vertices
and, from each row, taking a matched edge to the column vertex it is matched
to. From a column vertex we search all edges leading to rows in SR.

We require a stack to put the rows we reach by alternating paths, a linked list
to maintain the rows in the alternating paths, and an array lowlink, of size m, to
identify the strong components. In addition, a pointer array is used to point to
the next row to be examined in the dfs in a column’s adjacency list, and another
array represents the dfs numbers of the rows.

3.4 output

We represent the btf of an m x n matrix A by means of three pointer arrays p,
cptr, rptr and two integer arrays c and r. The pointer array p has length four, and
the arrays cptr and rptr have length one greater than the total number of diagonal
blocks in the btf of A. The integer arrays c and r have length n, m, respectively.

Columns in VC are listed in the array c in positions cptr(p(1)) to cptr(p(2)) -
1; similarly, columns in SC are listed in positions cptr (p(2)) to cptr(p (3)) - 1,
and columns in HC in positions cptr(p(3)) to cptr(p(4)) - 1. A similar represen-
tation using p, rptr, and r is used for the rows.

The pointer arrays cptr and rptr are used to indicate the diagonal block
structure of the submatrices A,, A,T, and Ah. Columns in the first diagonal block
of A, are listed in array c in positions cptr(p(1)) to cptr(p(1) + 1) - 1, columns
in the second block in cptr(p(1) + 1) to cptr(p(1) + 2) - 1, and so on.

4. RESULTS

We implemented the algorithms described in the previous section in Fortran 77.
We report computational results for several classes of rectangular matrices. Our
code was executed on a Sun 4/260 running Sun Unix 4.0, and the f 77 compiler
was used to compile the code.

We report computational results on two collections of problems. When neces-
sary, we have transposed the matrices to make them overdetermined. One set of
problems was obtained from the constraint matrices of linear programming
problems from the lp/data collection in the Netlib electronic software library.
This set of 28 problems was selected arbitrarily from the lp/data collection; we
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix - 317

Table II. Linear Programming Test Problems

Problem Rows Cols. Nonzeros Density (‘%)

25FV47 1571 821
FFFFF800 854 524
BORE3D 315 234
SCFXMl 457 330
SCRS8 1169 490
SHIP04L 2118 400
SHIP04S 1458 400
SHIP08S 2387 776
SHIPlZS 2763 1149
SIERRA 2036 1227
VTP.BASE 203 198
FORPLAN 421 161
STANDGUB 1184 361
STANDMPS 1075 467
GANGES 1681 1309
GFRD-PNC 1092 616
PILOT4 1000 410
SCAGR7 140 129
SCORPION 388 358
AGG 488 163
AGG2 516 302
SEBA 1028 515
RECIPE 180 91

SHELL 1775 536
GROW7 301 140
SCSDl 760 77
SCTAPl 480 300
SCTAPZ 1880 1090

10400 0.8
6227 1.4
1525 2.1
2589 1.7
3182 0.6
6332 0.8
4352 0.7
7114 0.4
8178 0.3
7302 0.3

908 2.3
4563 6.7
3140 0.7
3679 0.7
6912 0.3
2377 0.4
5141 1.3

420 2.3
1426 1.0
2410 3.0
4284 2.7
4352 0.8

663 4.0

3556 0.4
2612 6.2
2388 4.1
1692 1.2
6714 0.3

report results for all of the problems tested. Pictures of the nonzero structure of
some of these matrices are given by Lustig [29]. The problem parameters are
shown in Table II. The problems in Table II are listed in an order that reflects
the structure of their block triangular forms shown in Table III. The time needed
to compute the various phases in the btf is shown in Table IV. Times for
computing a maximum matching by Algorithm 1 and the Duff and Wiberg
algorithm are shown.

An empty entry in the table for block triangular forms indicates that the
submatrix corresponding to that column is missing in the btf. The number of
diagonal blocks in each of the submatrices Ah, A,, and A,, and the row and
column dimensions of these blocks are shown. Most of these linear programming
constraint matrices have a nontrivial btf ; the exceptions are the last five problems
in Table III.

An empty entry in Table IV indicates that either the corresponding submatrix
is absent from the btf or that the time required for that part of the computation
was less than 0.01 seconds. Algorithm 1 finds a maximum matching, on the
average, more than three times faster than the Duff and Wiberg algorithm. For
these problems, the time to finely decompose the large submatrix A, is often

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

318 l A. Pothen and C.-J. Fan

Table III. Block Triangular Forms of lps.

Problem

Ah -4 A”

Rows Cols. Blocks Rows Blocks Rows Cols. Blocks

25FV47
FFFFF800
BORE3D
SCFXMI
SCRS8
SHIPOlL
SHIPOlS
SHIP08S
SHIPlPS
SIERRA
VTP.BASE
FORPLAN
STANDGUB
STANDMPS
GANGES
GFRD-PNC
PILOT4
SCAGR7
SCORPION
AGG
AGG2
SEBA
RECIPE

3 6 3 45 43
52 63 1 112 112

8 12 3 50 44
12 16 1 44 44
6 7 1 38 35

14 56 42 4 4
14 56 42 92 92
0 64 64 296 296
0 107 107 576 576

80 90 5 100 25
95 122 2 42 42

0 26 26 21 21
48 64 8 125 77
48 64 8 124 76

373 265
26 26

8 8
63 63
70 70
36 36
60 60

1523 770 1
690 349 1
257 171 1
401 270 1

1125 445 1
2100 340 4
1352 252 4
2091 416 1
2187 466 1
1856 1037 1

66 34 1
400 114 1

1011 172 2
903 279 1

1308 936 1

1066 590 1
992 402 1

77 66 1
318 288 6
452 127 3
456 242 3

1028 515 25
180 91 12

SHELL 1775 536 1

GROW7 301 140 1

SCSDl 760 77 1
SCTAPl 480 300 1
SCTAPZ 1880 1090 1

greater than the time to find the matching. This shows that the use of the various
heuristics makes the matching algorithms fast in comparison to the connected
components algorithm. Also, the time needed to compute the btf for these
problems is quite small in comparison to the time that would be required by, say,
a numeric factorization algorithm.

The second set of problems was obtained from the Boeing-Harwell test
collection [7]. The rows, columns, and nonzeros in these problems are described
in Table V. The four groups of problems indicate that they come from four
different files in the collection.

The first group comes from geodetic surveys; the matrices in the second group
are from least squares problems; and the last two groups are from economy
models. Note that the problems in the last group are fairly dense. The block
triangular forms of these problems and the total time to compute them are shown
in Table VI. As before, an entry is empty if the corresponding submatrix is empty
in the btf of the matrix. Not surprisingly, the survey matrices (except one) do

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix -

Table IV. Time (in hundredths of a second) Required to Compute the btf of lps
on a Sun 4/260

Time

Problem

Coarse
Matching decomp. Fine decomp.

Alp. 1 D-W Alg. Ah A, Ah A, A,

25FV47
FFFFF800
BORE3D
SCFXMl
SCRS8
SHIP04L
SHIP04S
SHIP08S
SHIP12S
SIERRA
VTP.BASE
FORPLAN
STANDGUB
STANDMPS
GANGES
GFRD-PNC
PILOT4
SCAGR7
SCORPION
AGG
AGG2
SEBA
RECIPE

SHELL
GROW7
SCSDl
SCTAPl
SCTAPP

3
5
2
3
3
3
2
3
3
5
2
2
3
3
4
2
2
1
2

1

3

20
13

4
6

11
13

9
9

11
20

2
6
8
8

11
8
8
2
3
2
7
8
2

5
3
1
1
2

1 4
3

1 4
5
5
1

1 1
2

1 2
4

1 2
3

1
2
3

1 1
2 1

1
1 1

1
1 1
1 1
1 2
2 4
1 1
1 1

1
1 1
1 1

4
1
1
1
1
1
1

11
5
1
2
5
9
6
9

10
10‘

2
3
4
5
1

7
3
4
3

11

not decompose at all. Finding the maximum matching accounts for about half
the total time, and the fine decomposition of the larger submatrix (A, for the
first three groups, A,, for the last) requires almost all of the other half.

There are some common features in the block triangular forms of the matrices
in these collections. Most of the matrices have one large submatrix, usually
irreducible, that has most of the rows and columns of the matrix. For all of these
problems, this large submatrix is A,; even when this submatrix has several
diagonal blocks, there is one large block, and the other blocks have at most two
rows and at most two columns. The square submatrix A, is almost always present,
though it is small for all but a few problems. Several problems have empty rows
or columns. Note that the last three matrices are square and structurally singular,
and require the use of the more general Dulmage-Mendelsohn decomposition
described here to compute their correct block triangular forms.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

320 l A. Pothen and C.-J. Fan

Table V. Test Problems from the Boeing-Harwell Collection

Problem Rows Cols. Nonzeros Density (%)

ASH219 219 85 438
ASH958 958 292 1916
ASH331 331 104 662
ASH608 608 188 1216
ABB313 313 176 1557

WELL1033 1033 320 4732
WELL1850 1850 712 8758

WMl 277 207 2909
WM2 260 207 2942
WM3 260 207 2948

BEAUSE 507 497 44551
BEAFLW 507 497 53403
BEACXC 506 497 50409
MBEAUSE 496 496 41063
MBEAFLW 496 496 49920
MBEACXC 496 496 49920

2.4
0.7
1.9
1.1
2.8

1.7
0.8

5.1
5.5
5.5

17.7
21.2
20.0
16.7
20.3
20.3

Table VI. Block Triangular Forms of Boeing-Harwell Problems and the Time (in seconds)
Required to Compute Them

Ah A A”

Problem Rows Cols. Blocks Rows Blocks Rows Cols. Blocks Time

ASH219 219 85
ASH958 958 292
ASH331 331 104
ASH608 608 188
ABB313 313 176

WELL1033
WELL1850

16 14
12 9

2 27 1 49 49
35 35
27 27

10 48 7 29 29
8 45 7 11 11
0 48 48 8 8
2 51 49 26 26
0 48 48 8 8
0 48 48 8 8

1017 304
1838 700

WMl
WM2
WM3

228 158
225 172
233 180

BEAUSE
BEAFLW
BEACXC
MBEAUSE
MBEAFLW
MBEACXC

468 420
488 441
498 441
468 419
488 440
488 440

1 0.03
1 0.08
1 0.03
1 0.04
2 0.05

1 0.11
1 0.22

27 0.06
1 0.06
1 0.06

3 0.84
8 0.90

18 0.87
7 0.75

12 0.87
12 0.96

5. APPLICATIONS

In this section, we consider several applications of the Dulmage-Mendelsohn
decomposition of a bipartite graph and the corresponding block triangular form
of the associated matrix. Some applications only require the computation of the
coarse decomposition; others can take advantage of the fine decomposition also.

Finding Node Separators from Edge Separators. In employing the divide and
conquer paradigm, say in the context of designing parallel algorithms for sparse
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix * 321

matrices or graphs, it is necessary to find a small vertex separator, a set of vertices
whose removal disconnects the graph into two or more components. One approach
to computing a vertex separator is to first compute an edge separator (a set of
edges whose removal disconnects the graph) and then to find a vertex separator
from the endpoints of the edge separator.

Several algorithms for computing edge separators exist; for example, the
Kernighan-Lin algorithm [24], spectral algorithms based either on the eigenvec-
tors of the adjacency matrix (Barnes [l]), or on the eigenvectors of the Laplacian
matrix of the graph [33].

Several strategies can be employed to find a vertex separator from an edge
separator. The simplest is to choose the smaller set of endpoints of the edge
separator; such a strategy has been employed by Gilbert and Zmijewski [19] in a
parallel algorithm to partition sparse matrices for Cholesky factorization on a
hypercube. Leiserson and Lewis [26] have implemented a heuristic algorithm to
find small vertex separators from edge separators. We describe a strategy to
compute the smallest vertex separator corresponding to a given edge separator.
The idea is to choose a subset 5’ of vertices from both endpoint sets such that
every edge in the edge separator is incident on at least one vertex in 5’.

Let E, be an edge separator that partitions a graph G into two disjoint vertex
sets U and W. Let B = (R, C, E,) be the bipartite graph induced by E,, where
R(C) is the set of endpoints of E, in U(W). A minimum couer S of B is a smallest
set of vertices such that every edge in E, has at least one endpoint in S. Since E,
is an edge separator of G, removing the set of vertices S from G will disconnect
this graph, and thus S is the desired smallest vertex separator.

Maximum matchings and minimum covers in a bipartite graph are dual
concepts, and a minimum cover S of B can be computed from its Dulmage-
Mendelsohn decomposition. The set S can be chosen to be either S = VC U
SC U HR or S = VC U SR U HR. (It might be helpful to recall the definition of
these sets in Figure 1.) This freedom in the choice of S can be used to partition
the graph into nearly equal parts.

We computed vertex separators by this technique for several sparse matrices
from edge separators obtained by a spectral algorithm described in [33].
The results are tabulated in Table VII. The time reported is in seconds on a
Sun 3/75. For several problems, this strategy yields smaller vertex separators
than the strategy of choosing the smaller endpoint set.

Improving Node Separators. A related problem is the improvement of node
separators by matching techniques. Liu [27] has considered the following problem
in the context of a constrained minimum degree ordering algorithm. Let S be a
vertex separator that separates a graph G/S into two parts with vertex sets A,
B. Suppose that] A] >] B 1, and that there exists a subset Y C S with C =
adj(Y) II A such that] C] < I Y I . Then 3 = S U C\ Y separates G\S into two
parts A = A\C and B = B U Y. Note that the new separator is smaller than the
initial separator S, and that the smaller set, B, has increased in size at the
expense of the bigger set, A.

The Dulmage-Mendelsohn decomposition can again be used to find a set Y
with the required properties, if it exists. Let D = adj(S) n A, and consider the
bipartite graph induced by the vertex sets S and D. If we identify D with
the column set and S with the row set in Figures 1 and 2, then the required set

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

322 - A. Pothen and C.-J. Fan

Table VII. Computing Vertex Separators from Edge Separators.
(Times are in seconds on a Sun 3/75)

Problem IRI ICI ISI Time

cannes 229 184 712 91 0.04
dwt 30 29 87 28 0.06
pwr09 78 44 90 40 0.04
pwrl0 279 181 365 160 0.08
stk13 392 322 4875 300 0.16

Y = HC and C = HR. It can also be shown that this is the unique smallest set Y
which maximizes the differences] Y] -] adj(Y)] in the bipartite graph.

Liu [27] does not compute the Dulmage-Mendelsohn decomposition, but finds
vertices in Y, one at a time, by an augmenting path search from vertices in S.

The Null Space Problem. We consider the problem of computing a sparse null
basis of a sparse underdetermined matrix A [4, 18, 321. An underdetermined A
has the block lower triangular form,

where, as before, A, is overdetermined, A,q is square, A,, is underdetermined, and
‘X’ denotes a possibly nonzero matrix of appropriate dimensions.

If A has full row rank, then all its rows are matched in a maximum matching,
and its btf may have the submatrices Ah and A,y, but not A,. Because A has full
row rank, a null basis of Ah is a null basis of A, and hence, the submatrix A, is of
no interest in computing a sparse null basis. Algorithms in [4] compute a null
vector by first identifying a dependent set in the matrix by means of matchings.
It turns out that the submatrix formed by the columns and the nonzero rows of
the dependent set has the Strong Hall Property.

If A does not have full row rank and if all its rows cannot be matched in a
maximum matching of A, then the submatrix A, may also be present in its btf.
Algorithms to compute null bases by maximum matching methods have been
designed in [4] and by Gilbert and Heath [18]. The btf of A enables these
algorithms to partition the null basis computations as follows. Matching methods
can be used to find dependent sets of columns and associated null vectors from
Ah, but not from A, or A,; the remaining null vectors of A can be computed by
numeric factorizations of each of the submatrices A, and A,.

The Linear Least Squares Problem. The problem of computing the orthogonal
factors of a large, sparse, overdetermined matrix A arises in the sparse linear
least squares problem. Algorithms for predicting the structure of the factors
R and Q have been developed in recent years by George, Heath, Liu, and
Ng [14, 16, 171. The btf of A is of interest in this context.

If A is initially permuted to its btf, then only the diagonal blocks of the
submatrices Ah, A,, and A, need be factored to compute the least squares solution,
and this can lead to savings in computation and storage. Further, because each
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Computing the Block Triangular Form of a Sparse Matrix - 323

submatrix that is factored has the Strong Hall Property, Coleman et al. [3] have
shown that algorithms in current use for predicting the structure of the triangular
factor R will not overestimate the storage required, since exact structural cancel-
lation will not occur. George et al. [16] also assume that the matrix has been
initially permuted to its btf and that their algorithms for predicting the structure
of the orthogonal factor Q are applied to the diagonal blocks in the btf, since
these have the Strong Hall Property.

Software Development. Several data structures used in mathematical software
for sparse matrices simplify if we assume that the input matrix is irreducible or
that the input graph is connected (strongly connected for directed graphs). For
instance, tree data structures become forests if this assumption is violated. Our
results in this paper show that sparse matrix test problems available from problem
collections are often reducible. Computing the btf of a sparse matrix and providing
the irreducible submatrices of Ah, A,, and A, as input to programs will help
simplify development and testing and aid in the correctness of sparse matrix
software.

ACKNOWLEDGMENTS

We wish to thank Tom Coleman and John Gilbert for their help in improving
the presentation of the results in Section 2. The examples in Figures 1 and 3 are
taken from John Gilbert’s unpublished lecture notes. Thanks also to John Lewis
for his comments on this paper.

REFERENCES

1. BARNES, E. R. An algorithm for partitioning the nodes of a graph. SIAM J. Alg. Disc. Meth. 4

(1982), 541-550.
2. BUNCH, J. R., AND ROSE, D. J., EDS. Sparse Matrix Computations. Academic Press, New York,

1976.
3. COLEMAN, T. F., EDENBRANDT, A., AND GILBERT, J. R. Predicting fill for sparse orthogonal

factorization. J. ACM 33 (1986), 517-532.
4. COLEMAN, T. F., AND POTHEN, A. The null space problem II: Algorithms. SIAM J. Alg. Disc.

Meth. 8 (1987), 544-563.
5. DUFF, I. S. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw. 7

(1981), 315-330.
6. DUFF, I. S., ERISMAN, A. M., AND REID, J. K. Direct Methods for Sparse Matrices. Clarendon

Press, Oxford, 1986.
7. DUFF, I. S., GRIMES, R., AND LEWIS, J. Sparse matrix test problems. ACM Trans. Math. Softw.

15 (1989), 1-14.
8. DUFF, I. S., AND REID, J. K. An implementation of Tarjan’s algorithm for the block triangolar-

ization of a matrix. ACM Trans. Math. Softw. 4 (1978) 137-147.
9. DUFF, I. S., AND WIBERG, T. Implementations of O(n”%) assignment algorithms. ACM Trans.

Math. Softw. 4 (1988), 267-287.
10. DULMAGE, A. L., AND MENDELSOHN, N. S. Coverings of bipartite graphs. Can. J. Math. IO

(1958), 517-534.
11. DULMAGE, A. L., AND MENDELSOHN, N. S. A structure theory of bipartite graphs of finite

exterior dimension. Trans. Roy. Sot. Can. Sec. III 53 (1959), 1-13.
12. DULMAGE, A. L., AND MENDELSOHN, N. S. Two algorithms for bipartite graphs. J. Sot. Ind.

A& Math. II (1963), 183-194.
13. ERISMAN, A. M., GRIMES, R. G., LEWIS, J. G., POOLE, W. G., AND SIMON, H. D. An evaluation

of orderings for unsymmetric sparse matrices. SIAM J. Sci. Stat. Comput. 8 (1987), 600-624.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

324 - A. Pothen and C.-J. Fan

14. GEORGE, J. A., AND HEATH, M. T. The solution of sparse linear least squares problems using
Givens rotations. Lin. Alg. Appl. 34 (1980), 69-83.

15. GEORGE, J. A., AND LIU, J. W. H. Computer Solution of Large Sparse Positive Definite Systems.
Prentice Hall, Englewood Cliffs, N.J., 1981.

16. GEORGE, J. A., LIU, J. W. H., AND NG, E. G. Y. A data structure for sparse QR and LU
factorizations. SIAM J. Sci. Stat. Comput. 9 (1988), 100-121.

17. GEORGE, J. A., AND LIU, J. W. H. Compact structural representation of sparse Cholesky, QR
and LU factors. In Computing Methods in Applied Sciences and Engineering VII, R. Glowinski
and J.-L. Lions, Eds. Elsevier, North Holland, New York, 1986, 93-106.

18. GILBERT, J. R., AND HEATH, M. T. Computing a sparse basis for the null space. SIAM J. Alg.
Disc. Meth. 8 (1987), 446-459.

19. GILBERT, J. R., AND ZMIJEWSKI, E. A parallel graph partitioning algorithm for a message
passing multiprocessor. Int. J. Parallel Program. 16 (1987), 427-449.

20. GUSTAVSON, F. G. Finding the block lower triangular form of a sparse matrix. In Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, Eds. Academic Press, New York, 1976.

21. HOPCROFT, J. E., AND KARP, R. M. An n2.5 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2 (1973), 225-231.

22. HOWELL, T. D. Partitioning using PAQ. In Sparse Matrix Computations, J. R. Bunch and
D. J. Rose, Eds. Academic Press, New York, 1976

23. JOHNSON, D. M., DULMAGE, A. L., AND MENDELSOHN, N. S. Connectivity and reducibility of
graphs. Can. J. Math. 14 (1962), 529-539.

24. KERNIGHAN, B. W., AND LIN, S. An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech. J. 49 (1970), 291-307.

25. LAWLER, E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and
Winston, New York, 1976.

26. LEISERSON, C. E., AND LEWIS, J. G. Orderings for parallel sparse symmetric factorization. Talk
at Third SIAM Conference on Parallel Processing for Scientific Computing (Tromso, Norway,
1987). SIAM, Philadelphia, 1987.

27. LIU, J. W. H. A graph partitioning algorithm by node separators. ACM Trans. Math. Softw. 15
(1989), 198-218.

28. LOVASZ, L., AND PLUMMER, M. D. Matching Theory. North Holland, Amsterdam, 1986.
29. LUSTIG, I. J. An analysis of an available set of linear programs. Tech. Rep. SOL 87-11, Dept.

of Operations Research, Stanford Univ., 1987.
30. MINC, H. Nonnegative Matrices. Wiley, New York, 1988.
31. PAPADIMITRIOU, C. H., AND STEIGLITZ, K. Combinatorial Optimization: Algorithms and Com-

plexity. Prentice Hall, Englewood Cliffs, N.J., 1982.
32. POTHEN, A. Sparse null bases and marriage theorems. Ph.D. Thesis, Cornell Univ., Ithaca,

N.Y., 1984.
33. POTHEN, A., SIMON, H. D., AND LIOU, K. P. Partitioning sparse matrices with eigenvectors of

graphs. SIAM J. Math. Anal. Appl. 11 (1990), 430-452.
34. TARJAN, R. E. Depth-first search and linear graph algorithms. SIAM J. Comput. I (1972),

146-160.

Received February 1989; revised June 1989; accepted November 1989.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

