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We consider the problem of permuting the rows and columns of a rectangular or square, unsymmetric 
sparse matrix to compute its block triangular form. This block triangular form is based on a canonical 
decomposition of bipartite graphs induced by a maximum matching and was discovered by Dulmage 
and Mendelsohn. We describe implementations of algorithms to compute the block triangular form 
and provide computational results on sparse matrices from test collections. Several applications of 
the block triangular form are also included. 
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1. INTRODUCTION 

We consider the problem of permuting the rows and columns of a sparse matrix 
with arbitrary row and column dimensions to compute its block triangular form 
(btf). Block triangularization of a sparse matrix leads to savings in computational 
work and intermediate storage for many sparse matrix algorithms, including 
algorithms for solving linear systems of equations, the linear least squares 
problem, the null space problem, partitioning sparse matrices in parallel com- 
putation, and so forth. Inasmuch as block triangularization is equivalent to 
computing a particular decomposition of bipartite graphs, it has applications 
to problems outside the sparse matrix domain as well. 

Algorithms for computing the btf of a sparse matrix are based on a canonical 
decomposition of bipartite graphs discovered by Dulmage and Mendelsohn. These 
algorithms rely on the concept of matchings in bipartite graphs, or equivalently, 
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on the dual concept of vertex covers. Sparse matrix researchers have studied a 
version of this decomposition applicable to square, unsymmetric, structurally 
nonsingular matrices, inter alias Duff and Reid [8], Erisman et al. [13], Gustavson 
[20], and Howell [22]. An implementation of an algorithm for computing the btf 
of such matrices is described in Duff and Reid [B], and their program MC13D is 
included in the Harwell subroutine library. 

A more general btf exists for rectangular matrices and square, unsymmetric 
matrices that are structurally singular. This btf is based on a more general version 
of the Dulmage-Mendelsohn decomposition. The relationship between this more 
general btf and the btf of square, structurally nonsingular matrices will become 
clear in the next section. In this paper we report on the implementation of the 
algorithms that compute this more general btf and provide computational results 
on several sparse, rectangular matrices from different application areas. 

The organization of our paper is as follows. In Section 2, we describe the 
Dulmage-Mendelsohn decomposition on which our program is based. Next, in 
Section 3, we describe our implementations of the algorithms that are used to 
compute the btf. These include a maximum matching algorithm and algorithms 
that compute the btf in two stages, which we call the coarse decomposition and 
the fine decomposition. In Section 4, we compute the block triangular forms for 
several sparse matrices from the Boeing-Harwell test collection and from the 
lp/data collection in the Netlib electronic software library. In the final section, 
we describe several applications in which the btf of sparse matrices plays a role. 

2. THE DULMAGE-MENDELSOHN DECOMPOSITION 

In this section we describe the btf of an m X n matrix A, where we assume for 
convenience that m I n. This assumption causes no loss of generality, for if the 
matrix is underdetermined, we can consider its transpose. It is helpful in the 
computation of the btf to consider the bipartite graph associated with A, G(A) = 
(R, C, E). Here R is the set of vertices corresponding to the rows of A, C is the 
set of vertices corresponding to columns of A, and E is the set of edges corre- 
sponding to the nonzeros in A. Hence, R consists of m vertices, which we number 
from rl to r,, and C consists of n vertices, numbered c1 to c,. For every nonzero 
entry a,; in the matrix A, there is an edge (r;, cj) in E. 

A matching M in G(A) is a subset of its edges with no common endpoints. In 
the matrix A, this corresponds to a subset of nonzeros, no two of which belong 
to the same row or column. A node is matched if an edge in a matching is incident 
on it; otherwise it is unmatched. A bipartite graph G(A) with a matching is shown 
in Figure 1, where the matched edges are indicated by dark horizontal lines. The 
matched nonzeros in the corresponding matrix A are indicated by the ‘@’ symbol 
in Figure 2. Elements marked ‘x’ are the other nonzeros in the matrix, and zero 
elements are indicated by empty entries. 

A walk is a sequence of vertices vo, vl, . . . , v,-~; u, such that (vi, Q+~) is an 
edge for i = 0, . . . , n - 1. Edges or vertices can be repeated in a walk. An 
alternating walk is a walk with alternate edges in a matching M. An alternating 
tour is an alternating walk whose endpoints are the same. An alternating path is 
an alternating walk with no repeated vertices. An augmenting path is an alter- 
nating path that begins and ends with unmatched nodes. 
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990. 
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Fig. 1. The Dulmage-Mendelsohn decomposition of 
a bipartite graph. 
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Fig. 2. The block triangular form of A. 
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The cardinality of a matching is the number of edges in it. An augmenting 
path can be used to increase the cardinality of a matching by interchanging 
its matched and unmatched edges. A maximum matching is a matching of 
maximum cardinality. This corresponds in the matrix to a diagonal with the 
maximum number of nonzeros in it. Berge [28] proved that a matching in a graph 
is maximum if and only if the graph contains no augmenting path with respect 
to it. A matching is column-perfect if every column vertex in C is matched; it is 
row-perfect if every row vertex in R is matched. A matching is perfect if it is 
column-perfect and row-perfect; this implies that R and C have equal sizes. The 
matching in Figures 1 and 2 is a maximum matching. 

Lawler [25], Lovasz and Plummer [28], and Papadimitriou and Steiglitz [31] 
contain good discussions of matching theory and algorithms. 

The m x n matrix A (with m L n) has the Hall Property (HP) if every subset 
of k columns has nonzeros in at least as many rows. Philip Hall [28] proved that 
A has a maximum matching in which all its columns are matched if and only if 
it has the Hall Property. A stronger requirement on A is the Strong Hall Property 
(SHP): every subset of 0 < k < m columns has nonzeros in at least k + 1 rows. 
(Thus, when n < m, every subset of k I n columns has the required property, 
and when n = m, every subset of k < n columns has the property.) The importance 
of the Strong Hall Property will become clear after the description of the 
Dulmage-Mendelsohn decomposition. Both these terms are due to Coleman, 
Gilbert, and Edenbrandt [ 31. 

The Dulmage-Mendelsohn decomposition was described in a series of papers 
by Dulmage, Johnson, and Mendelsohn [lo-12, 231. We state the decomposition 
by a series of lemmas. Let M be a maximum matching in the bipartite graph 
of A, with row set R and column set C. With respect to M, we can define the 
following sets: 

VR = {row vertices reachable by alternating path from some unmatched row] 
HR = (row vertices reachable by alternating path from some unmatched column1 
SR = R\( VR U HR) 
VC = (column vertices reachable by alternating path from some unmatched row] 
HC = (column vertices reachable by alternating path from some unmatched 

column} 
SC = c\( VC U HC). 

The reader will find it helpful to consider the example in Figure 1 and its btf 
in Figure 2. In the btf, the rows and columns of A are permuted such that it has 
the block upper triangular form: 

A=(“” Ts ;“), 

where Ah is underdetermined, A, is square, A, is overdetermined, and Xs denote 
possibly nonzero matrices of appropriate dimensions. (The prefix H stands for 
“horizontal”, S for “square”, and V for “vertical.“) 

The proofs of the following results may be found in [32]. 
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990 



Computing the Block Triangular Form of a Sparse Matrix - 307 

LEMMA 2.1 The sets VR, SR, and HR are pairwise disjoint; similarly the sets 
VC, SC, and HC are pairwise disjoint. 

LEMMA 2.2 A matching edge joins a row vertex in VR only to a column vertex 
in VC; a row vertex in SR only to a column vertex in SC; and a row vertex in HR 
only to a column vertex in HC. 

LEMMA 2.3 Row vertices in SR are perfectly matched to column vertices in SC. 

LEMMA 2.4 No edge joins: a column vertex in HC to row vertices in SR or VR; 
a column vertex in SC to row vertices in VR. 

From the previous two lemmas, and from the construction of the various 
row and column sets, it follows that 1 VR 1 > 1 VC 1, 1 SR 1 = 1 SC 1, and 
1 HR 1 < 1 HC 1. Let us denote by (HR, HC) the submatrix of A induced by the 
row set HR and the column set HC, and similarly for the other row and column 
subsets. We call the submatrix Ah = (HR, HC) the horizontal submatrix, the 
submatrix A, = (SR, SC) the square submatrix, and A, = (VR, VC) the vertical 
submatrix. The corresponding bipartite subgraphs are denoted Gh, G,, G,, respec- 
tively. The submatrix Ah is underdetermined, A, is square, and A, is overdeter- 
mined, as stated earlier. In addition, A,, has a row-perfect matching, A, has a 
perfect matching, and A, has a column-perfect matching. The above lemmas 
imply that A can be permuted into a block upper triangular form with diagonal 
blocks A,,, A,, and A, as shown in Figure 2. 

LEMMA 2.5 The submatrix A, has the Strong Hall Property, as does the 
submatrix AT. 

The importance of the SHP of these blocks in two sparse matrix problems, 
the null space problem, and the linear least squares problem, is described in 
Section 5. 

The next theorem states that even though the Dulmage-Mendelsohn decom- 
position was stated with respect to a particular maximum matching, any other 
choice of a maximum matching would partition A into the same submatrices A,,, 
A,, and A,. Hence the vertical, square, and horizontal submatrices in the btf of 
A are unique. 

THEOREM 2.1 The sets VR, SR, HR and VC, SC, and HC are independent of 
the choice of the maximum matching M; hence the Dulmage-Mendelsohn decom- 
position is a canonical decomposition of the bipartite graph G. 

We call the above decomposition of A into the submatrices Ah, A,, and A, the 
coarse decomposition. One or two of the three submatrices may be absent in the 
coarse decomposition of a given matrix A. If A is overdetermined with a column- 
perfect matching, then A,, will be absent in its coarse decomposition; if A does 
not have a column-perfect matching, then A,, will be present. The submatrix A, 
will be present or absent depending on the nonzero structure of A. Similarly, if 
A is underdetermined, the presence of the submatrix A, will depend on whether 
it has a row-perfect matching or not. The presence of A, will again depend on 
the structure of A. 
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If A is square and unsymmetric, there are two possible cases, depending on 
whether A has a perfect matching or not. (This corresponds to A being structur- 
ally nonsingular or singular.) If A has a perfect matching, then its coarse 
decomposition has only the submatrix A,; otherwise, both A,, and A, will be 
present. 

It may be possible to further decompose the submatrices Ah, A,, and A, to 
obtain the fine decomposition of these submatrices. Each of Ah or A, may be 
decomposable into block diagonal form; this corresponds to finding the connected 
components of G,, and G,. If there are p connected components in G,,, then A,, 
has p diagonal blocks and can be permuted to the structure 

A hp 

Here, each diagonal block Ahi is underdetermined and has all of its rows matched 
to a subset of its columns. 

The fine decomposition corresponding to A, is similar to that of Ah, the only 
difference being that the diagonal blocks are now overdetermined. 

The square submatrix A, has a more interesting fine decomposition; it may 
have the block triangular form described below. 

Consider the perfectly matched square submatrix A, and the associated 
subgraph G, induced by SR and SC. We call two-column vertices in SC equivalent 
if they lie on an alternating tour. This is an equivalence relation. Let the classes 
of this equivalence relation be C, , C2, . . . , C,, and let R; be the set of rows 
matched to Ci. 

LEMMA 2.6 The row subsets (RiJ and column subsets (Ci) can be renumbered 
such that if Ci has nonzeros in the row set Rj, then j I i. 

We call this the fine decomposition of G,. This decomposition for a graph G, 
and the corresponding block upper triangular form for its matrix A, are shown 
in Figure 3. (This graph and matrix are different from G,, A, in Figures 1 and 2.) 

LEMMA 2.7 The submatrix induced by Ri and Ci has SHP. 

THEOREM 2.2 The partitions R, , . . . , R, and C, , . . . , C, are independent of the 
choice of maximum matching. 

THEOREM 2.3 Let nonmatching edges in G, be directed from columns to rows, 
matching edges shrunk into single vertices, and the vertices identified with the 
rows. The resulting directed graph G, has RI, . . . , Rp as its strongly connected 
components. 

This result enables us to use Tarjan’s algorithm [34] for finding strongly 
connected components in a directed graph in order to find the block upper 
triangular form of the square submatrix. As noted above, if A is square, unsym- 
metric, and has a perfect matching, its coarse decomposition consists of the 
submatrix A, alone. It is the fine decomposition of A, that Duff and Reid [8] 
have implemented in their program MC13D. If A is square, unsymmetric, and 
ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990. 
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does not have a perfect matching, then MC13D puts the maximum number of 
nonzeros on the diagonal, treats the remaining zeros on the diagonal as nonzeros, 
and then computes a block upper triangular form corresponding to this diagonal. 
However, in this case, the matrix has a finer btf that can be obtained from the 
coarse and fine decompositions described here. 

3. ALGORITHMS 

We describe our algorithm to compute a Dulmage-Mendelsohn decomposition of 
an m x n matrix A, where, without loss of generality, we have assumed m 2 n. 

We represent the nonzero structure of the matrix A by both column-oriented 
and row-oriented adjacency lists and pointer arrays used by SPARSPAK [15]. 
Thus the array adjcol(.) and the pointer array ~a@(.) are used to represent the 
column indices of nonzeros in rows of A. Similarly, arrays adjrow (.) and xudjr(.) 
are used to represent row indices of nonzeros in columns of A. 

The algorithm to compute the btf has three phases: 

Phase 1 Find a maximum matching M in the bipartite graph G(A). 
Phase 2 With respect to M, partition R into the sets VR, SR, HR; similarly 

partition C into the sets VC, SC, HC. 
Phase 3 Find the diagonal blocks of the submatrix A, = (VR, VC), from the 

connected components of G,; similarly for A, = (HR, HC). 
Find the block upper triangular form of the submatrix A, = (SR, SC) 
by finding strong components in the associated directed graph Gd. 

3.1 The Maximum Matching 

Duff [5] has described the implementation of an O(m) maximum matching 
algorithm. More recently, Duff and Wiberg [9] have implemented an O(&,) 
algorithm due to Hopcroft and Karp. Either of these algorithms could be used to 
find the maximum matching in this phase. The latter algorithm has an asymp- 
totically superior worst-case complexity. However, empirically, the running times 
of the algorithms are greatly improved by the use of heuristic features, and the 
relative performance of the two algorithms is problem dependent. Duffs imple- 
mentation of the former algorithm is conceptually simpler and uses less storage. 
A detailed description of Duff s implementation of an 0 (m) matching algorithm 
may be found in the book by Duff et al. [6]. 

We implemented an algorithm similar to the one in [5], but found it to be slow 
on the denser problems we considered. This motivated the design of the variant 
of the O(m) maximum matching algorithm described below. We found that our 
implementation of this algorithm was competitive with Duff s 0 (m-) algorithm 
on sparser problems, while it was faster than the latter on denser problems. A 
description of our O(m) matching algorithm follows. 

Algorithm 1. Maximum Matching 
Step 0. [Initialize] 

Set the matching M and the set of unmatched columns U to be empty. 
Step 1. [cheap matching] 

for each column vertex c E C do 
match c to the first unmatched row vertex r E c&(c), if there is such a row; 
if c cannot be matched, add c to U; 

end for 
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Fig. 3. The fine decomposition of G, and the block 
upper triangular form of A,. 
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Step 2. [augment matching] 
u,., := 0 
repeat 

(perform one pass of the augmenting procedure) 
for each column vertex c E U do 

search for an augmenting path from c, 
visiting only row vertices that have not been visited previously in this 
pass; 
mark all row vertices reached as visited, 
if an augmenting path is found, augment M; else include c in U,,,; 

end for 
u:= u,,,; u,., := PI; 

until no augmenting path is found in a pass. 

Inasmuch as an augmenting path has an unmatched column vertex at one end 
and an unmatched row vertex at the other, it is no loss of generality to search 
for augmenting paths from unmatched columns only. Since we are searching by 
alternating paths, the depth-first searches (dfs) have a simple structure. From 
each column vertex, we search all rows adjacent to it, but from a row vertex, we 
search only the column matched to it. 

Duff et al. [6] call Step 1 finding a cheap matching. If A is a square, unsymmetric 
matrix of order n with a perfect matching, then, using the Hall property, it is 
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easy to show that at least (n/21 columns can be matched in the cheap-matching 
step. (This is Exercise 6.5 in [6].) We now prove that a similar result holds even 
when the matrix is overdetermined and does not have a column-perfect matching. 
We first prove the result using matrix theory, via the following theorem due to 
Konig, stated and proved in Mint [30] (Ch. 4, Theorem 2.2). 

THEOREM 3.1 (Konig) Let A be an m x n matrix, where m 2 n, and let k I n 
be a nonnegative integer. A necessary and sufficient condition that the size of a 
maximum matching of A is n - k is that it contains an s X t zero submatrix with 
s+t=m+k. 

LEMMA 3.1 Let A be a matrix with dimensions as in Theorem 3.1, with a 
maximum matching of size n - k. The cheap-assignment phase of Algorithm 1 
finds a matching of size at least r(n - k)/21. 

PROOF. Let 1 be the size of a matching obtained in the cheap-matching step. 
Reorder the rows and columns of A such that it can be partitioned as 

where AI1 is the 1 x 1 submatrix consisting of the matched rows and columns. 
The (m - 1) X (n - 1) submatrix A,, must be the zero submatrix, else the cheap 
phase would be able to extend the matching. Since A has a maximum matching 
of size n - k, by Konig’s theorem, 

(m - 1) + (n - 1) I m + k. 

Simplifying, we get 12 (n - k)/2. Since 1 is an integer, the lemma follows. 0 

An alternative proof of Lemma 3.1, which uses matching theory only, can be 
obtained as follows. Let L be a matching found by the cheap phase, M a maximum 
matching of size n - k, and N the empty matching. The symmetric difference 
M @ N = (M\N) U (N\M) consists of the (n - k) matched edges of M, forming 
a set of n - k vertex disjoint-augmenting paths with respect to the empty 
matching N, each consisting of a single edge. Let (u, v) be any edge of the graph 
included in L. At most two edges of M may become ineligible to be included in L 
as a result of including (u, v), that is, an edge in M with u as one endpoint and 
another edge in M with u as one endpoint. Hence the matching L contains at 
least f(n - k)/21 edges. 

We now turn to a consideration of Step 2 of Algorithm 1. This step is organized 
into passes; in each pass, we search for vertex-disjoint augmenting paths from 
all unmatched columns that are maintained in the set U. The cost of searching 
for the augmenting paths in a pass is at most O(T), since the adjacency list of 
each column is examined at most once during the pass. When no augmenting 
path is found in a pass, the algorithm terminates. We will prove that then the 
algorithm does find a maximum matching. 

THEOREM 3.2 Algorithm 1 terminates with a maximum matching in the graph. 

PROOF. A matching is maximum if and only if there is no augmenting path in 
the graph with respect to it. Hence we prove that, at termination, there is no 
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augmenting path in the graph. Suppose, for a contradiction, that there exists an 
augmenting path in the graph when the algorithm terminates. 

Number the unmatched columns in U in the last pass of the algorithm in the 
order in which the algorithm performs augmenting path searches from them. Let 
c, be the smallest column in U such that there is an augmenting path in the 
graph beginning with this unmatched column. Let the corresponding augmenting 
path be 

G, rl, cl, .+., rk--1, ck-1, rk’kl 

where (r;, Cj) is a matched edge for j = 1, . . . , k - 1, and rk is an umatched row. 
The algorithm failed to find this path when it performed a vertex disjoint dfs 
from c,. This happened because some row on this path ri, where i < k, was visited 
by an earlier dfs from an unmatched column c’, during this pass. Then the 
alternating path from c’ to ri concatenated with the path from ri to rk is an 
augmenting path in the graph. This contradicts the choice of c,. q 

Step 1 of the algorithm can be implemented in O(T) time. Each pass of the 
algorithm can also be implemented in O(T) time. There can be at most O(n) 
passes, since in each pass, except the last one, at least one more column is 
matched. Hence the complexity of the algorithm is O(nr). 

We have incorporated several features that have been previously employed by 
Duff to obtain an efficient implementation of Algorithm 1. We briefly describe 
them now. Detailed descriptions of these features may be found in Duff [5] and 
Duff et al. [6]. 

The depth-first searches are made efficient by a technique called lookahead 
(which is one step of a breadth-first search). Before performing the dfs from a 
column, all rows adjacent to it are examined to see if there is an unmatched row 
among them. If so, the dfs can be terminated, since an augmenting path from an 
unmatched column to an unmatched row has been found. 

A pointer array into the adjacency lists of each column is maintained to ensure 
that each edge is examined at most once in Step 1, and the look-ahead part of 
the dfs in Step 2, over the entire algorithm. Hence the look-ahead feature costs 
only O(7) over the whole algorithm. Another pointer array into the adjacency 
lists of the columns is used to ensure that each edge is examined at most once 
during the vertex-disjoint depth-first searches in a pass. Thus each pass can cost, 
at most, O(7). An array is also used to mark rows that have already been visited 
during a dfs; the reinitialization of this array at the beginning of each pass can 
be avoided by using the number of the pass as a flag. 

The matching is represented by means of two arrays rowset and colset. Row ir 
is matched to column ic if rowset = ic and colset(ic) = ir. 

It is appropriate at this point to compare Algorithm 1 to the Duff and Wiberg 
[9] implementation of the Hopcroft and Karp algorithm. The Hopcroft and Karp 
algorithm is organized into phases; in each phase, they find a maximal set of 
vertex disjoint shortest augmenting paths in the graph. This is accomplished by 
generating an auxiliary graph by breadth-first search (bfs) from unmatched rows 
and stopping the search at the level at which the first unmatched column is 
found. A maximal set of shortest augmenting paths is found by vertex disjoint 
depth-first searches from the unmatched columns (in the last level) of the 
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auxiliary graph. Each phase can be implemented in O(T) time, and Hopcroft and 
Karp proved that there are at most O(n”‘) phases in the algorithm. 

Duff and Wiberg [9] found that in their implementation of the Hopcroft and 
Karp algorithm, the breadth-first searches dominated the running times and 
examined several ways of reducing this cost. They succeeded in finding a variant 
algorithm ((C4) in their paper), with the O(rz”‘%) worst-case time bound, which 
was competitive with Duffs earlier implementation of the O(M) algorithm. In 
this variant algorithm, they found, during each phase, a maximal set of shortest 
augmenting paths in the auxiliary graph (generated by the bfs) by vertex-disjoint 
depth-first searches from the unmatched columns in the auxiliary graph. In 
addition, more augmenting paths were found by performing vertex-disjoint depth- 
first searches in the original graph from the remaining unmatched rows in that 
graph. These latter searches cost, at most O(T) time and serve to reduce the total 
number of breadth-first searches in the algorithm. This variant algorithm per- 
forms well in practice compared to Duff’s original O(n7) algorithm. It is possible 
to implement this algorithm without explicitly generating and storing the auxil- 
iary graph; only a few arrays for recording the level structure information and 
for maintaining the queues of unmatched rows and columns are needed. 

Algorithm 1 finds a maximal set of vertex disjoint augmenting paths, without 
paying heed to the augmenting path lengths, by the vertex disjoint depth-first 
searches in each pass. Each pass may find several augmenting paths at the cost 
of O(T) operations, but because shortest augmenting paths are not found, the 
worst-case complexity of the algorithm becomes O(~T). 

We compare the running times of Algorithm 1 implemented in Fortran 77 on 
a Sun 4/260 with implementations of Duff’s O(M) algorithm and the Duff and 
Wiberg algorithm on two classes of problems in Table I. Our implementation 
of the latter two algorithms are variants of the implementations described in 
Duff [5] and Duff and Wiberg [9], modified to work with the Sparspak data 
structures that represent the matrix. Our implementation of the Duff and Wiberg 
algorithm requires extra storage only for two additional arrays of length m and 
two of length rz, to mark the row and column level structures in the bfs and to 
maintain queues of unmatched row and column nodes. The programs were run 
on a Sun 41260, and additional details about experimental conditions may be 
found in Section 4. 

The first class of problems in Table I is a set of fairly dense (density 
~20 percent), rectangular (but nearly square) economy problems in the Boeing- 
Harwell test collection. On this class, Algorithm 1 and the Duff and Wiberg 
algorithm perform much better than Duff’s algorithm. The second class of 
problems in the table is the set of Ncube problems (from Duff [5]), constructed 
to exhibit the worst-case O(M) time behavior of Duff’s algorithm. It can be seen 
that Algorithm 1 has almost the same running times as Duff’s algorithm, and 
hence also requires O(nT) time on these examples, and that the Duff and Wiberg 
algorithm is much faster than both the former algorithms. In Section 4, 
Table IV, we compare the performance of Algorithm 1 with the Duff and Wiberg 
algorithm on a set of 28 linear programming constraint matrices from the netlib 
library. We find that Algorithm 1 is, on the average, more than three times faster 
than the Duff and Wiberg algorithm on this set of problems. 
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Table I. Time (in seconds) Required for Maximum Matching 
in Two Classes of Problems 

Problem Matching time 

Rows Cols. Nonzeros Duff Alg. 1 D-W Alg. 

497 493 44551 5.03 0.36 0.33 
497 493 53403 6.70 0.39 0.41 
497 493 50409 7.07 0.38 0.38 
492 490 41063 5.21 0.36 0.33 
492 490 49920 6.51 0.38 0.38 
492 490 49920 6.73 0.39 0.39 

120 120 1760 0.12 0.14 0.03 
240 240 6720 0.72 0.81 0.08 
360 360 14880 2.28 2.57 0.15 
480 480 26240 5.36 5.72 0.25 
600 600 40800 10.12 11.02 0.37 
660 660 49280 13.27 14.76 0.44 
720 720 58560 17.42 18.88 0.58 

Thus we find that the relative performance of Algorithm 1 and the Duff and 
Wiberg algorithm is problem-dependent. More experience with problems from a 
wide variety of application areas is needed before definitive conclusions can be 
drawn. Unfortunately, the number of rectangular test matrices in the Boeing- 
Harwell collection is fairly small, and this makes extensive testing difficult. 
However, the time taken by the matching algorithms on most problems is a tiny 
fraction of the time required for numerical factorization; for most linear programs 
in Table IV, it is also small in comparison with the other steps in block 
triangularization. At this time, for a general-purpose matching algorithm, we 
would advocate the use of the Duff and Wiberg algorithm because of its better 
asymptotic worst-case complexity and reasonable practical performance. 

3.2 Coarse Decomposition 

In the coarse decomposition, we use the maximum matching found in Phase 1 to 
partition the rows and columns. Initially, we include every column vertex in SC 
and then mark columns belonging to VC and HC. When the marking process 
terminates, all columns still marked SC will indeed belong to the set SC. A 
similar technique is used for the row vertices, The coarse decomposition algorithm 
is described below. 

Algorithm 2. Coarse Decomposition 
Step 0. [Initialize] 

Include all column vertices in SC, all row vertices in SR. 
Step 1. [Identify Ah] 

U := (set of all unmatched column vertices]; 
for each u E U do 

Include u in HC; 
Perform a dfs from u, 
including all rows reachable by alternating path in HR 
and all columns reachable by alternating path in HC. 

end for 
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Step 2. [Identify A,.] 
W := (set of all unmatched row vertices); 
for each w E W do 

Include w in VR; 
Perform a dfs from w, 
including all columns reached by alternating path in VC 
and all rows reached by alternating path in VR. 

end for 

Consider the dfs from an unmatched column vertex. As noted before, since we 
are searching for alternating paths, the search from a row vertex is simple; we 
consider only the column matched to it. From a column vertex we search all rows 
adjacent to it. Hence we use the column-oriented adjacency lists, adjrow and 
xadjr, to find all rows adjacent to a given column and to find a column matched 
to a row from rowset. We use a pointer array into the column adjacency lists to 
mark how far we have progressed in the dfs from a column. Thus the adjacency 
list of each column in HC is searched at most once. 

The first time a row vertex is reached by an alternating path from some 
unmatched column, we include the row in HR. Hence we can check if a row has 
already been visited by checking if it is in SR or HR. 

By symmetry, by searching for rows and columns reached by alternating paths 
from unmatched row vertices, we can identify the sets VR and VC. The only 
difference is that now we need the row-oriented adjacency lists adjcol and xadjc 
and the array colset to identify rows matched to columns. 

3.3 Fine Decomposition 

In Phase 3, we further decompose the submatrices A,,, A,, and A,v by finding the 
block diagonal forms of Ah and A, and the block upper triangular form of A,. The 
first task is accomplished by finding the connected components of the subgraphs 
Gh and G,. 

We find the connected components of each subgraph by a simple marking 
algorithm that uses dfs from vertices in the subgraph. We mark all vertices 
reachable by dfs from a start vertex; these belong to the same connected 
component. The marking procedure is repeated from an unmarked start vertex, 
as long as unmarked vertices exist. The dfs from each start vertex finds a 
connected component. Since we are no longer finding alternating paths, we must 
search the adjacency lists of both rows and columns. We need pointers to both 
column and row adjacency lists to ensure that each edge is examined at most, 
twice: once in a column adjacency list and once in a row adjacency list. Hence 
this algorithm has O(7) time complexity. 

Row vertices in HR may be adjacent to columns in SC or VC also. Hence, 
when a column vertex is reached by dfs from a row in HR, we include it in this 
connected component of Gh only if the column belongs to HC. A similar test is 
used to ensure that only rows in VR are included in connected components 
of G,. 

The second task is the computation of the block upper triangular form of the 
square submatrix A,. From Theorem 2.3, this can be accomplished by forming a 
directed graph G, from G, by directing the edges from column vertices to row 
vertices and shrinking matched edges to single vertices and by then finding the 
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strong components in Gd. It turns out that we can work with G,q directly, as will 
be described later. 

Tarjan [34] has designed an algorithm using dfs to find the strong components 
of a directed graph in time linear in its edges. Duff and Reid [8] have implemented 
this algorithm, and their program is available as subroutine MC13D in the 
Harwell library. The program we have used is a variant of MC13D, modified to 
work with a sparse matrix represented by the SPARSPAK data structures. A 
good description of the program MC13D may be found in the book by Duff 
et al. [6], and we direct the reader there for details of the implementation. 

One difference between our program and MC13D is that MC13D assumes that 
the matrix has already been permuted to have a zero-free diagonal. We do not 
permute the matrix A,9 to make its diagonal zero-free, but work implicitly with 
Gd as follows. We search G, using alternating paths beginning at row vertices 
and, from each row, taking a matched edge to the column vertex it is matched 
to. From a column vertex we search all edges leading to rows in SR. 

We require a stack to put the rows we reach by alternating paths, a linked list 
to maintain the rows in the alternating paths, and an array lowlink, of size m, to 
identify the strong components. In addition, a pointer array is used to point to 
the next row to be examined in the dfs in a column’s adjacency list, and another 
array represents the dfs numbers of the rows. 

3.4 output 

We represent the btf of an m x n matrix A by means of three pointer arrays p, 
cptr, rptr and two integer arrays c and r. The pointer array p has length four, and 
the arrays cptr and rptr have length one greater than the total number of diagonal 
blocks in the btf of A. The integer arrays c and r have length n, m, respectively. 

Columns in VC are listed in the array c in positions cptr(p(1)) to cptr(p(2)) - 
1; similarly, columns in SC are listed in positions cptr (p(2)) to cptr(p (3)) - 1, 
and columns in HC in positions cptr(p(3)) to cptr(p(4)) - 1. A similar represen- 
tation using p, rptr, and r is used for the rows. 

The pointer arrays cptr and rptr are used to indicate the diagonal block 
structure of the submatrices A,, A,T, and Ah. Columns in the first diagonal block 
of A, are listed in array c in positions cptr(p(1)) to cptr(p(1) + 1) - 1, columns 
in the second block in cptr(p(1) + 1) to cptr(p(1) + 2) - 1, and so on. 

4. RESULTS 

We implemented the algorithms described in the previous section in Fortran 77. 
We report computational results for several classes of rectangular matrices. Our 
code was executed on a Sun 4/260 running Sun Unix 4.0, and the f 77 compiler 
was used to compile the code. 

We report computational results on two collections of problems. When neces- 
sary, we have transposed the matrices to make them overdetermined. One set of 
problems was obtained from the constraint matrices of linear programming 
problems from the lp/data collection in the Netlib electronic software library. 
This set of 28 problems was selected arbitrarily from the lp/data collection; we 
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Table II. Linear Programming Test Problems 

Problem Rows Cols. Nonzeros Density (‘%) 

25FV47 1571 821 
FFFFF800 854 524 
BORE3D 315 234 
SCFXMl 457 330 
SCRS8 1169 490 
SHIP04L 2118 400 
SHIP04S 1458 400 
SHIP08S 2387 776 
SHIPlZS 2763 1149 
SIERRA 2036 1227 
VTP.BASE 203 198 
FORPLAN 421 161 
STANDGUB 1184 361 
STANDMPS 1075 467 
GANGES 1681 1309 
GFRD-PNC 1092 616 
PILOT4 1000 410 
SCAGR7 140 129 
SCORPION 388 358 
AGG 488 163 
AGG2 516 302 
SEBA 1028 515 
RECIPE 180 91 

SHELL 1775 536 
GROW7 301 140 
SCSDl 760 77 
SCTAPl 480 300 
SCTAPZ 1880 1090 

10400 0.8 
6227 1.4 
1525 2.1 
2589 1.7 
3182 0.6 
6332 0.8 
4352 0.7 
7114 0.4 
8178 0.3 
7302 0.3 

908 2.3 
4563 6.7 
3140 0.7 
3679 0.7 
6912 0.3 
2377 0.4 
5141 1.3 

420 2.3 
1426 1.0 
2410 3.0 
4284 2.7 
4352 0.8 

663 4.0 

3556 0.4 
2612 6.2 
2388 4.1 
1692 1.2 
6714 0.3 

report results for all of the problems tested. Pictures of the nonzero structure of 
some of these matrices are given by Lustig [29]. The problem parameters are 
shown in Table II. The problems in Table II are listed in an order that reflects 
the structure of their block triangular forms shown in Table III. The time needed 
to compute the various phases in the btf is shown in Table IV. Times for 
computing a maximum matching by Algorithm 1 and the Duff and Wiberg 
algorithm are shown. 

An empty entry in the table for block triangular forms indicates that the 
submatrix corresponding to that column is missing in the btf. The number of 
diagonal blocks in each of the submatrices Ah, A,, and A,, and the row and 
column dimensions of these blocks are shown. Most of these linear programming 
constraint matrices have a nontrivial btf ; the exceptions are the last five problems 
in Table III. 

An empty entry in Table IV indicates that either the corresponding submatrix 
is absent from the btf or that the time required for that part of the computation 
was less than 0.01 seconds. Algorithm 1 finds a maximum matching, on the 
average, more than three times faster than the Duff and Wiberg algorithm. For 
these problems, the time to finely decompose the large submatrix A, is often 
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Table III. Block Triangular Forms of lps. 

Problem 

Ah -4 A” 

Rows Cols. Blocks Rows Blocks Rows Cols. Blocks 

25FV47 
FFFFF800 
BORE3D 
SCFXMI 
SCRS8 
SHIPOlL 
SHIPOlS 
SHIP08S 
SHIPlPS 
SIERRA 
VTP.BASE 
FORPLAN 
STANDGUB 
STANDMPS 
GANGES 
GFRD-PNC 
PILOT4 
SCAGR7 
SCORPION 
AGG 
AGG2 
SEBA 
RECIPE 

3 6 3 45 43 
52 63 1 112 112 

8 12 3 50 44 
12 16 1 44 44 
6 7 1 38 35 

14 56 42 4 4 
14 56 42 92 92 
0 64 64 296 296 
0 107 107 576 576 

80 90 5 100 25 
95 122 2 42 42 

0 26 26 21 21 
48 64 8 125 77 
48 64 8 124 76 

373 265 
26 26 

8 8 
63 63 
70 70 
36 36 
60 60 

1523 770 1 
690 349 1 
257 171 1 
401 270 1 

1125 445 1 
2100 340 4 
1352 252 4 
2091 416 1 
2187 466 1 
1856 1037 1 

66 34 1 
400 114 1 

1011 172 2 
903 279 1 

1308 936 1 

1066 590 1 
992 402 1 

77 66 1 
318 288 6 
452 127 3 
456 242 3 

1028 515 25 
180 91 12 

SHELL 1775 536 1 

GROW7 301 140 1 

SCSDl 760 77 1 
SCTAPl 480 300 1 
SCTAPZ 1880 1090 1 

greater than the time to find the matching. This shows that the use of the various 
heuristics makes the matching algorithms fast in comparison to the connected 
components algorithm. Also, the time needed to compute the btf for these 
problems is quite small in comparison to the time that would be required by, say, 
a numeric factorization algorithm. 

The second set of problems was obtained from the Boeing-Harwell test 
collection [7]. The rows, columns, and nonzeros in these problems are described 
in Table V. The four groups of problems indicate that they come from four 
different files in the collection. 

The first group comes from geodetic surveys; the matrices in the second group 
are from least squares problems; and the last two groups are from economy 
models. Note that the problems in the last group are fairly dense. The block 
triangular forms of these problems and the total time to compute them are shown 
in Table VI. As before, an entry is empty if the corresponding submatrix is empty 
in the btf of the matrix. Not surprisingly, the survey matrices (except one) do 
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Table IV. Time (in hundredths of a second) Required to Compute the btf of lps 
on a Sun 4/260 

Time 

Problem 

Coarse 
Matching decomp. Fine decomp. 

Alp. 1 D-W Alg. Ah A, Ah A, A, 

25FV47 
FFFFF800 
BORE3D 
SCFXMl 
SCRS8 
SHIP04L 
SHIP04S 
SHIP08S 
SHIP12S 
SIERRA 
VTP.BASE 
FORPLAN 
STANDGUB 
STANDMPS 
GANGES 
GFRD-PNC 
PILOT4 
SCAGR7 
SCORPION 
AGG 
AGG2 
SEBA 
RECIPE 

SHELL 
GROW7 
SCSDl 
SCTAPl 
SCTAPP 

3 
5 
2 
3 
3 
3 
2 
3 
3 
5 
2 
2 
3 
3 
4 
2 
2 
1 
2 

1 

3 

20 
13 

4 
6 

11 
13 

9 
9 

11 
20 

2 
6 
8 
8 

11 
8 
8 
2 
3 
2 
7 
8 
2 

5 
3 
1 
1 
2 

1 4 
3 

1 4 
5 
5 
1 

1 1 
2 

1 2 
4 

1 2 
3 

1 
2 
3 

1 1 
2 1 

1 
1 1 

1 
1 1 
1 1 
1 2 
2 4 
1 1 
1 1 

1 
1 1 
1 1 

4 
1 
1 
1 
1 
1 
1 

11 
5 
1 
2 
5 
9 
6 
9 

10 
10‘ 

2 
3 
4 
5 
1 

7 
3 
4 
3 

11 

not decompose at all. Finding the maximum matching accounts for about half 
the total time, and the fine decomposition of the larger submatrix (A, for the 
first three groups, A,, for the last) requires almost all of the other half. 

There are some common features in the block triangular forms of the matrices 
in these collections. Most of the matrices have one large submatrix, usually 
irreducible, that has most of the rows and columns of the matrix. For all of these 
problems, this large submatrix is A,; even when this submatrix has several 
diagonal blocks, there is one large block, and the other blocks have at most two 
rows and at most two columns. The square submatrix A, is almost always present, 
though it is small for all but a few problems. Several problems have empty rows 
or columns. Note that the last three matrices are square and structurally singular, 
and require the use of the more general Dulmage-Mendelsohn decomposition 
described here to compute their correct block triangular forms. 
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Table V. Test Problems from the Boeing-Harwell Collection 

Problem Rows Cols. Nonzeros Density (%) 

ASH219 219 85 438 
ASH958 958 292 1916 
ASH331 331 104 662 
ASH608 608 188 1216 
ABB313 313 176 1557 

WELL1033 1033 320 4732 
WELL1850 1850 712 8758 

WMl 277 207 2909 
WM2 260 207 2942 
WM3 260 207 2948 

BEAUSE 507 497 44551 
BEAFLW 507 497 53403 
BEACXC 506 497 50409 
MBEAUSE 496 496 41063 
MBEAFLW 496 496 49920 
MBEACXC 496 496 49920 

2.4 
0.7 
1.9 
1.1 
2.8 

1.7 
0.8 

5.1 
5.5 
5.5 

17.7 
21.2 
20.0 
16.7 
20.3 
20.3 

Table VI. Block Triangular Forms of Boeing-Harwell Problems and the Time (in seconds) 
Required to Compute Them 

Ah A A” 

Problem Rows Cols. Blocks Rows Blocks Rows Cols. Blocks Time 

ASH219 219 85 
ASH958 958 292 
ASH331 331 104 
ASH608 608 188 
ABB313 313 176 

WELL1033 
WELL1850 

16 14 
12 9 

2 27 1 49 49 
35 35 
27 27 

10 48 7 29 29 
8 45 7 11 11 
0 48 48 8 8 
2 51 49 26 26 
0 48 48 8 8 
0 48 48 8 8 

1017 304 
1838 700 

WMl 
WM2 
WM3 

228 158 
225 172 
233 180 

BEAUSE 
BEAFLW 
BEACXC 
MBEAUSE 
MBEAFLW 
MBEACXC 

468 420 
488 441 
498 441 
468 419 
488 440 
488 440 

1 0.03 
1 0.08 
1 0.03 
1 0.04 
2 0.05 

1 0.11 
1 0.22 

27 0.06 
1 0.06 
1 0.06 

3 0.84 
8 0.90 

18 0.87 
7 0.75 

12 0.87 
12 0.96 

5. APPLICATIONS 

In this section, we consider several applications of the Dulmage-Mendelsohn 
decomposition of a bipartite graph and the corresponding block triangular form 
of the associated matrix. Some applications only require the computation of the 
coarse decomposition; others can take advantage of the fine decomposition also. 

Finding Node Separators from Edge Separators. In employing the divide and 
conquer paradigm, say in the context of designing parallel algorithms for sparse 
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matrices or graphs, it is necessary to find a small vertex separator, a set of vertices 
whose removal disconnects the graph into two or more components. One approach 
to computing a vertex separator is to first compute an edge separator (a set of 
edges whose removal disconnects the graph) and then to find a vertex separator 
from the endpoints of the edge separator. 

Several algorithms for computing edge separators exist; for example, the 
Kernighan-Lin algorithm [24], spectral algorithms based either on the eigenvec- 
tors of the adjacency matrix (Barnes [l]), or on the eigenvectors of the Laplacian 
matrix of the graph [33]. 

Several strategies can be employed to find a vertex separator from an edge 
separator. The simplest is to choose the smaller set of endpoints of the edge 
separator; such a strategy has been employed by Gilbert and Zmijewski [19] in a 
parallel algorithm to partition sparse matrices for Cholesky factorization on a 
hypercube. Leiserson and Lewis [26] have implemented a heuristic algorithm to 
find small vertex separators from edge separators. We describe a strategy to 
compute the smallest vertex separator corresponding to a given edge separator. 
The idea is to choose a subset 5’ of vertices from both endpoint sets such that 
every edge in the edge separator is incident on at least one vertex in 5’. 

Let E, be an edge separator that partitions a graph G into two disjoint vertex 
sets U and W. Let B = (R, C, E,) be the bipartite graph induced by E,, where 
R(C) is the set of endpoints of E, in U(W). A minimum couer S of B is a smallest 
set of vertices such that every edge in E, has at least one endpoint in S. Since E, 
is an edge separator of G, removing the set of vertices S from G will disconnect 
this graph, and thus S is the desired smallest vertex separator. 

Maximum matchings and minimum covers in a bipartite graph are dual 
concepts, and a minimum cover S of B can be computed from its Dulmage- 
Mendelsohn decomposition. The set S can be chosen to be either S = VC U 
SC U HR or S = VC U SR U HR. (It might be helpful to recall the definition of 
these sets in Figure 1.) This freedom in the choice of S can be used to partition 
the graph into nearly equal parts. 

We computed vertex separators by this technique for several sparse matrices 
from edge separators obtained by a spectral algorithm described in [33]. 
The results are tabulated in Table VII. The time reported is in seconds on a 
Sun 3/75. For several problems, this strategy yields smaller vertex separators 
than the strategy of choosing the smaller endpoint set. 

Improving Node Separators. A related problem is the improvement of node 
separators by matching techniques. Liu [27] has considered the following problem 
in the context of a constrained minimum degree ordering algorithm. Let S be a 
vertex separator that separates a graph G/S into two parts with vertex sets A, 
B. Suppose that ] A ] > ] B 1, and that there exists a subset Y C S with C = 
adj( Y) II A such that ] C ] < I Y I . Then 3 = S U C\ Y separates G\S into two 
parts A = A\C and B = B U Y. Note that the new separator is smaller than the 
initial separator S, and that the smaller set, B, has increased in size at the 
expense of the bigger set, A. 

The Dulmage-Mendelsohn decomposition can again be used to find a set Y 
with the required properties, if it exists. Let D = adj(S) n A, and consider the 
bipartite graph induced by the vertex sets S and D. If we identify D with 
the column set and S with the row set in Figures 1 and 2, then the required set 
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Table VII. Computing Vertex Separators from Edge Separators. 
(Times are in seconds on a Sun 3/75) 

Problem IRI ICI ISI Time 

cannes 229 184 712 91 0.04 
dwt 30 29 87 28 0.06 
pwr09 78 44 90 40 0.04 
pwrl0 279 181 365 160 0.08 
stk13 392 322 4875 300 0.16 

Y = HC and C = HR. It can also be shown that this is the unique smallest set Y 
which maximizes the differences ] Y ] - ] adj( Y) ] in the bipartite graph. 

Liu [27] does not compute the Dulmage-Mendelsohn decomposition, but finds 
vertices in Y, one at a time, by an augmenting path search from vertices in S. 

The Null Space Problem. We consider the problem of computing a sparse null 
basis of a sparse underdetermined matrix A [4, 18, 321. An underdetermined A 
has the block lower triangular form, 

where, as before, A, is overdetermined, A,q is square, A,, is underdetermined, and 
‘X’ denotes a possibly nonzero matrix of appropriate dimensions. 

If A has full row rank, then all its rows are matched in a maximum matching, 
and its btf may have the submatrices Ah and A,y, but not A,. Because A has full 
row rank, a null basis of Ah is a null basis of A, and hence, the submatrix A, is of 
no interest in computing a sparse null basis. Algorithms in [4] compute a null 
vector by first identifying a dependent set in the matrix by means of matchings. 
It turns out that the submatrix formed by the columns and the nonzero rows of 
the dependent set has the Strong Hall Property. 

If A does not have full row rank and if all its rows cannot be matched in a 
maximum matching of A, then the submatrix A, may also be present in its btf. 
Algorithms to compute null bases by maximum matching methods have been 
designed in [4] and by Gilbert and Heath [18]. The btf of A enables these 
algorithms to partition the null basis computations as follows. Matching methods 
can be used to find dependent sets of columns and associated null vectors from 
Ah, but not from A, or A,; the remaining null vectors of A can be computed by 
numeric factorizations of each of the submatrices A, and A,. 

The Linear Least Squares Problem. The problem of computing the orthogonal 
factors of a large, sparse, overdetermined matrix A arises in the sparse linear 
least squares problem. Algorithms for predicting the structure of the factors 
R and Q have been developed in recent years by George, Heath, Liu, and 
Ng [14, 16, 171. The btf of A is of interest in this context. 

If A is initially permuted to its btf, then only the diagonal blocks of the 
submatrices Ah, A,, and A, need be factored to compute the least squares solution, 
and this can lead to savings in computation and storage. Further, because each 
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submatrix that is factored has the Strong Hall Property, Coleman et al. [3] have 
shown that algorithms in current use for predicting the structure of the triangular 
factor R will not overestimate the storage required, since exact structural cancel- 
lation will not occur. George et al. [16] also assume that the matrix has been 
initially permuted to its btf and that their algorithms for predicting the structure 
of the orthogonal factor Q are applied to the diagonal blocks in the btf, since 
these have the Strong Hall Property. 

Software Development. Several data structures used in mathematical software 
for sparse matrices simplify if we assume that the input matrix is irreducible or 
that the input graph is connected (strongly connected for directed graphs). For 
instance, tree data structures become forests if this assumption is violated. Our 
results in this paper show that sparse matrix test problems available from problem 
collections are often reducible. Computing the btf of a sparse matrix and providing 
the irreducible submatrices of Ah, A,, and A, as input to programs will help 
simplify development and testing and aid in the correctness of sparse matrix 
software. 
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